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Opinion Statement

The heterogeneity of asthma in relation to clinically significant outcomes, including re-
sponse to treatment, has been established beyond any doubt. However, current treatment
guidelines for asthma ignore disease heterogeneity and causal pathways. Extended hetero-
geneous disease-relatedmetabolic, inflammatory, immunological, and remodeling pathways
have been described, and a repetitive pattern is defined as a disease endotype. The response
to targeted and non-targeted interventions in asthma may vary among individuals or for the
same individual in relation to outcome measures (dissociated effect). Targeted treatment
should be both biomarker-driven and outcome-driven. The ideal biomarker should be path-
way-specific, reproducible, easily measurable, and affordable. Biomarker research in asthma
is increasingly shifting from the assessment of the value of single biomarkers to multidimen-
sional approaches, in which the clinical value of a combination of various markers is studied.
Translation of biomarkers into pathway-specific diagnostic tests is essential and should
guide the design of future large clinical trials, incorporating both longitudinal and mecha-
nism-tailored endpoints. The selection of outcome measure is difficult, as it must reflect the
mechanistic intervention and should be relevant for both the asthmatic population in gen-
eral and the particular individual with asthma. While endotype-driven therapeutic strategies
are increasingly successful, the issues of dissociated effect and drug efficacy at the target
site remain unresolved. Efforts needed to move the field forward include profiling of Th2-
low inflammation, incorporation of new targets, such as airway smoothmuscle and epithelial
components of asthma or epigenetics modifications, as well as application of systems phar-
macology.

Introduction
It has recently become increasingly evident that
antiasthmatic drugs aremore effective in relation to certain

molecular mechanisms of asthma, and hence the emer-
gence of biomarkers to predict response to treatment.



Data have suggested that sputum eosinophils are
accurate predictors for inhaled corticosteroids (ICS) re-
sponse, both in corticosteroid-naïve patients and in
cases of moderate/severe asthma, while neutrophilic
inflammation was associated with lack of response.
Other data sets have shown that the baseline values
of clinical parameters, particularly lung function, are
the major predictors of ICS response, and that blood
or sputum eosinophils merely complement this data
[1–5]. In addition, several reports have questioned
the stability of the sputum eosinophilic phenotype
over time, especially in the pediatric population [6,
7]. High levels of fractional exhaled NO (FeNO) have
also been suggested as predictive of response to ICS,
although the tailoring of treatment based on FeNO
measurements did not decrease asthma exacerba-
tions or increase asthma control [8]. There are sev-
eral factors that influence FeNO levels, including
age, atopy, medication use, and airway infections,
and these must be considered when using FeNO
for tailored interventions.

The accuracy of FeNO level surrogate for eosino-
philic inflammation has been questioned in recent
studies [9, 10]. One study that examined the use of
blood eosinophils, FeNO, FEV1, and IgE levels, either
alone or in combination, found that these were not ac-
curate predictors of sputum eosinophilia [11]. A longi-
tudinal study that assessed the relationship between
sputum eosinophils and FeNO in children with asth-
ma produced variable results in almost half of the sub-
jects who produced more than one sputum sample,
and it was not possible to identify a group in whom

FeNO would consistently reflect eosinophilia [12].
The lack of correlation can be explained if we accept
that FeNO and blood eosinophils reflect different
endotypes of Th2-mediated inflammation. In a cross-
sectional study, FeNO and blood eosinophil values of-
fered independent information with respect to the
prevalence of wheeze, asthma diagnosis, and asthma
events [13•]. The authors suggest that blood eosino-
philia is a marker of more severe systemic inflamma-
tion driven by a strong chemokine signal (such as IL-
5) and more extensive eosinophilic airway inflamma-
tion involving the small airways, and therefore is ICS
non-responsive. It may also highlight the risk of asth-
ma exacerbations requiring oral corticosteroids. Fur-
ther evidence was provided in the DREAM trial,
which indicated that blood eosinophils were most
closely related to a positive response to mepolizumab
(anti–IL-5) [14••]. In contrast, an increased FeNO val-
ue indicated IL-4/IL-13–mediated Th2 inflammation
localized in the bronchial mucosa responding to ICS
or to IL-4/IL-13 blockade. Increased FENO value was
a good predictor of a clinical response to lebrikizumab
in the MILLY trial [15••].

Exhaled air metabolomics was recently evaluated
as a predictor of ICS response. In patients with
mild/moderate asthma, breath analysis by eNose
predicted response with greater accuracy than spu-
tum eosinophils or FeNO [16]. Studies are needed,
however, to validate the clinical relevance of volatile
organic compounds (VOCs), as well as longitudinal
assessment of VOC patterns, in a large population of
asthmatic patients.

A new concept: endotype-driven treatment of asthma

The hallmark characteristics of asthma, including inflammation, remodeling,
and airway hyperreactivity, are governed by a complex network of molecules,
sometimes repetitive across individuals with asthma. Although endotypes for
asthma have been proposed, to date, no asthma endotypes have been de-
finitively validated [17•, 18•]. The PRACTALL consensus report proposed
several parameters for defining an asthma endotype: consistent clinical
characteristics, biomarkers, lung physiology, genetic background, histopa-
thology, epidemiology, and treatment response [19•]. The identification of
corresponding molecular biomarkers for the individual pathogenic mecha-
nisms underlying phenotypes or subgroups within a phenotype is essential
(Fig. 1, Table 1). Longitudinal studies are necessary to validate whether newly
defined asthma endotypes predict the individual course of the disease [18•].
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Unfortunately, asthma endotyping has focused primarily on Th2-high in-
flammation, which accounts for only half of the cases, while airway smooth
muscle (ASM) and epithelial components and the Th2-low inflammation
have been neglected [17•].

The Th2-high asthma endotype

In one study, the Th2-high molecular phenotype of asthma was described
based on expression of periostin, human calcium-activated chloride channel
1 (CLCA1), and serpinB2, and characterized by increased expression of IL-5
and IL-13 in bronchial biopsies, airway hyperresponsiveness (AHR), serum
IgE, blood and airway eosinophilia, subepithelial fibrosis, and airway mucin
gene expression. The Th2 markers were reproducible on repeated evaluation.
Response to ICS in the study was restricted to Th2-high asthma [20]. In a
separate study, a qPCR-based assay of Th2 inflammation in bronchial bi-
opsies was designed to overcome the limitations of the microarray-based
method. The three-gene-mean of periostin, CLCA1, and serpinB2 correlated
with FeNO, blood eosinophils, and PC20 methacholine, with greater im-
provement in FEV1 under ICS, and was a better predictor of improvement of
lung function and symptoms than FeNO, blood eosinophils, IgE, or PC20
[21]. In induced sputum cell pellets, PCR was used to profile the gene ex-
pression of the epithelial cell signature of IL-13 activation and the Th2 genes
as a noninvasive measure of Th2 inflammation. Gene expression levels of
CLCA1 and periostin, but not SerpinB2, were significantly higher in sputum
cells from asthmatics. Expression of IL-4, IL-5, and IL-13 was also signifi-
cantly increased and highly correlated within individual subjects. By com-
bining the expression levels of Th2 genes in a single quantitative metric (Th2

Fig. 1. Essential steps to improve response to asthma treatment.
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gene mean), 70 % had Th2-high asthma, which was characterized by in-
creased asthma severity and blood and sputum eosinophilia [22].

Several subtypes of the Th2-high endotype can be described based on the
main operating molecular mechanism (Table 1).

IgE-driven Th2- high endotype
Omalizumab, an anti-IgE monoclonal antibody, has been found to have
significant benefits for patients with moderate-to-severe uncontrolled allergic
asthma, although predictors of response are limited. In the Inner City Asth-
ma Study (ICAS), both sensitivity and exposure were better predictors of
response [23]. A post hoc analysis of the EXTRA study confirmed the po-
tential of Th2 biomarkers (FeNO, blood eosinophils, and serum periostin) as
baseline predictors for the therapeutic benefit of omalizumab [24•].

IgE has been linked to asthma irrespective of atopic status. In patients
with refractory non-atopic asthma, omalizumab resulted in a statistically
significant reduction in FcεRI expression on basophils and plasmacytoid
dendritic cells (pDC2). The omalizumab group showed an overall increase in
FEV1 compared with baseline as well as a trend toward improvement in
global evaluation of treatment effectiveness and asthma exacerbation rate
[25•]. It is proposed that the mechanism is either targeting local IgE or
balancing the innate immune response to multiple triggers of an exacerba-
tion by decreasing FcεRI expression on pDC [26]. In the Inner City Asthma
Study, omalizumab nearly eliminated seasonal peaks (both spring and fall)
in exacerbations, with or without viral infection, by targeting the cell (pDC)
at the crossroads of asthma exacerbation triggers [23].

Sputum samples from patients with intrinsic asthma showed increased
levels of both total IgE and Der p-specific IgE, which may represent a spe-
cific biomarker for selecting patients with intrinsic asthma for anti-IgE-
targeted intervention [27]. In a randomized double-blind placebo-controlled
study of allergic and non-allergic patients with nasal polyps and comorbid
asthma, omalizumab had a beneficial effect on airway symptoms (nasal
congestion, anterior rhinorrhea, loss of sense of smell, wheezing, and dys-
pnea) and quality-of-life scores, irrespective of the presence of allergy [28].
The association with nasal polyps may also pinpoint responders to
omalizumab in non-atopic asthma.

IL-4/IL-13-driven Th2-high endotype
The study of Lebrikizumab in Adult Patients With Asthma Who Are Inade-
quately Controlled on Inhaled Corticosteroids (MILR1444A – MILLY trial)
was one the first monoclonal antibody trials in asthma to validate a bio-
marker consistent with the therapeutic intervention. In this double-blind
placebo-controlled 6-month trial in patients with inadequately controlled
asthma, the IL-13 blocking antibody lebrikizumab significantly improved
FEV1 at 12 weeks [15••]. A decrease in the rate of severe exacerbations at the
32-week follow-up period was also reported [29]. Patient subgroups were
prespecified according to baseline total IgE level, blood eosinophil count,
and serum periostin. The level of periostin was associated with a better re-
sponse in terms of FEV1 improvement. In a post hoc analysis, high baseline
FeNO was also associated with greater efficacy of lebrikizumab in improving
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lung function and decreasing severe exacerbations, although intrapatient
variability was higher in baseline FeNO than in periostin levels during the
run-in period. Adverse effects were similar to placebo, with the exception that
musculoskeletal side effects occurred slightly more often with lebrikizumab.
A dose-ranging study of lebrikizumab in adult patients not taking ICS
(MOLLY trial) demonstrated no effect on FEV1 in this category of patients,
including the periostin subgroup. However, lebrikizumab treatment was as-
sociated with a reduced risk of treatment failure at all doses, and results were
similar in the periostin subgroup [30]. In a separate mild asthma trial, the
late asthmatic response was reduced by 48 % in lebrikizumab subjects, al-
though this was not statistically significant. Exploratory analysis indicated a
greater reduction in late asthmatic response in subjects with elevated baseline
levels of peripheral blood eosinophils, serum IgE, or periostin [31].

Further studies are needed to explore the relationship between FeNO and
periostin. In the MILLY trial, both were separate predictors of response. In the
BOBCAT trial, serum periostin was strongly correlated with persistent spu-
tum and tissue eosinophilia despite steroid treatment; the correlation was
present regardless of sputum or tissue neutrophil counts. FeNO measure-
ment detected fewer subjects with tissue eosinophilia and exhibited greater
overlap between eosinophil-low and eosinophil-high subjects. While sputum
and blood eosinophil counts and FeNO levels are subject to significant
temporal variability based upon allergen exposure, exacerbations, and ste-
roid treatment, the BOBCAT trial showed relatively little intra-subject vari-
ability in serum periostin in 3 measurements over the course of up to
5 weeks. In a logistic regression model incorporating age, sex, body mass
index (BMI), blood eosinophils, serum IgE, FeNO, and serum periostin
levels, periostin was the most significant single predictor of composite airway
eosinophil status [32•].

Tralokinumab (CAT-354) is a human IgG4 monoclonal antibody that po-
tently and specifically neutralizes IL-13. In a phase IIa study enrolling 194
patients with moderate-to-severe uncontrolled asthma despite controller
therapies, tralokinumab significantly improved lung function and decreased
rescue medication use, but did not affect the Asthma Control Questionnaire
(ACQ)-6 score (primary outcome) or asthma exacerbations. The incidence of
treatment-emergent AEs was higher in the tralokinumab groups than in the
placebo group. Neither atopy nor blood eosinophils were better predictors
for response. However, there was a trend for better response in FEV1 and
ACQ-6 score the in the sputum IL-13-positive subjects [33].

The IL-4 receptor α amino acid variations may be another predictor of re-
sponse to anti–IL-4/IL-13 pathway inhibitors. Subjects homozygous for the
rs8832 common G allele responded to pitrakinra administration with a de-
crease in exacerbations, nocturnal awakenings, and limitation of activities by
asthma. Both rs8832 and rs1029489, in addition to several other intronic
SNPs (rs3024585, rs3024622, and rs4787956), demonstrated a significant
pitrakinra dose–response association with reduced asthma exacerbations.
These SNPs were not associated with asthma exacerbations in the placebo
group. The predictive power of SNPs, however, was present only in the low-
eosinophil-count group [34].

The efficacy and safety of dupilumab, a fully human monoclonal anti-
body to the α-subunit of the interleukin-4 receptor, was evaluated in pa-
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tients with uncontrolled persistent moderate-to-severe asthma who were
preselected based on elevated blood or sputum eosinophil levels. The study
evaluated the effects of dupilumab when added to background therapy, after
long-acting acting beta-2 agonists (LABA) discontinuation, during the ta-
pering of ICS, and as monotherapy. Dupilumab was associated with fewer
asthma exacerbations when LABAs and ICS were withdrawn and with im-
proved lung function and reduced levels of Th2-associated inflammatory
markers (FeNO, IgE, plasma eotaxin-3) [35•].

IL-5 driven Th2-high endotype
Mepolizumab, a humanized monoclonal antibody against IL-5, reduced
the risk of asthma exacerbations in two small proof-of-concept studies.
Patients with severe corticosteroid-resistant asthma were selected based
on sputum eosinophilia and history of severe asthma exacerbations [36,
37]. The Dose Ranging Efficacy And safety with Mepolizumab in severe
asthma (DREAM) trial tested the efficacy of mepolizumab for reducing
the frequency of asthma exacerbations in severely asthmatic adults. The
621 adult subjects were selected based on history of severe exacerbations
and evidence of eosinophilic inflammation, defined as either increased
sputum or blood eosinophils, FeNO of 50 ppb or more, or prompt
deterioration of asthma control after a reduction of 25 % or less in
regular maintenance inhaled or oral corticosteroids [14••]. All three
doses of intravenous mepolizumab significantly reduced exacerbations,
delayed time to first exacerbation, and decreased exacerbations requiring
hospitalization or ER visit. Both sputum and blood eosinophils were
significantly reduced, although there was no change in lung function or
quality-of-life (QoL) measures. Efficacy of mepolizumab increased with
increased baseline eosinophil count and number of exacerbations in the
previous year. Baseline FeNO proved to be less predictive than blood
eosinophil count of response to treatment. The overall frequency of se-
rious adverse events was similar across treatment groups.

Different results were obtained with reslizumab, another humanized
monoclonal antibody anti-IL-5. In 53 subjects with persistent sputum
eosinophilia and poorly controlled with ICS, reslizumab improved ACQ
score only in patients with baseline ACQ scores 92 and those with nasal
polyps. All patients in the reslizumab group showed a significant im-
provement in lung function, and sputum and blood eosinophils were
reduced significantly. There was no effect on asthma exacerbations, likely
due to the short duration of the study (15 weeks). Adverse events were
similar to placebo [38].

The Th2- low asthma endotype

Based on data from Th2-high/low molecular signature studies, the incidence
of Th2-low asthma accounts for 30–50 % of adult asthma cases [20–22].
Moderate or low response to ICS is characteristic, and a broad spectrum of
asthma severity is included. Similar to the Th2-high endotype, several distinct
subendotypes can be described (Table 1).
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Neutrophilic asthma
Historically, anti-neutrophil agents such as anti-IL-8 have not met with much
success. An orally active small-molecule antagonist of CXCR2 (SCH-527123)
was recently tested in patients with severe asthma and sputum total cell
count G10×10(6) /g and neutrophils 940 %. SCH-527123 proved successful
in reducing sputum neutrophil numbers, suggesting improvement in clinical
outcomes such as mild exacerbations and ACQ scores. There was no effect on
lung function or sputum neutrophil activation markers (myeloperoxidase,
IL-8, or elastase). In terms of safety, the mean absolute neutrophil count in
blood was reduced by 14 % at the end of 4 weeks, but recovered by the 5th
week, and there were no differences in the overall rates of adverse events
compared to placebo [39].

The efficacy and safety of brodalumab, a human anti–IL-17 receptor A
monoclonal antibody, was recently evaluated in subjects with inadequately
controlled moderate-to-severe asthma taking regular ICS. The primary end-
point was change in ACQ, and secondary endpoints included FEV1, symp-
tom scores, and symptom-free days. Although there was no evidence of
treatment of brodalumab in the overall study population, a high bron-
chodilator reversibility criteria (920 %) identified a potential subpopu-
lation for clinically meaningful response. Other prespecified subgroups
(baseline FEV1% predicted, ACQ, ICS dose, FeNO, peripheral eosino-
phils, sex, race and weight) did not predict response [40•]. Unfortu-
nately, patients were not evaluated for their sputum inflammatory
phenotype (eosinophilic or neutrophilic).

Paucigranulocytic asthma (EMTU-driven endotype)
A combination of studies on airway biopsies and primary cell cultures sug-
gests that asthma is primarily an epithelial disease driven by increased en-
vironmental susceptibility to injury and an altered repair response as
depicted by sustained activation of the epithelial mesenchymal trophic unit
(EMTU) [41].

Significant advances in understanding the cell and molecular biology of
inflammation and ASM contractility suggest an ASM asthmatic endotype
and have identified several potential novel therapeutic targets [42]. Targeting
G-protein-coupled receptors such as bitter taste receptors (TAS2R) may be an
area of interest. In addition to the recently described bronchodilator and
anti-inflammatory properties [43], their increased expression was shown in
peripheral blood leucocytes of asthmatic children and in the airways of se-
vere asthma patients [44, 45]. TAS2R agonists were effective in relaxing ASM
even when β2-adrenergic receptors were subject to tachyphylaxis. In addi-
tion, IL-13 caused a decrease in β-agonist-mediated relaxation, while TAS2R-
mediated relaxation was unaffected [46]. The cAMP/PKA pathway continues
to be a promising drug target with the emergence of new phosphodiesterase-
E inhibitors and a novel PKA target protein, HSP20, which mediates ASM
relaxation via actin depolymerization. Inhibitors of the RhoA/Rho kinase
pathway can also elicit ASM relaxation. Targeting epigenetic processes that
control chromatin remodeling and RNA-induced gene silencing also holds
great potential for “switching” of the ASM asthmatic endotype [42].
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Ciliary dysfunction has been documented in moderate and severe asthma.
The lack of correlation with eosinophilic inflammation indicates a distinct
endotype associated with aberrant epithelial repair and infection [47]. Both
short- and long-acting β2-agonists are reported to increase ciliary beat fre-
quency [48]. Therapy directed at ciliary dysfunction may represent a new
treatment approach for this asthma endotype.

Lung epithelial cells can influence immune responses to allergens, vi-
ruses, and other triggers, as well as subsequent inflammation and repair.
Barrier epithelial cells sense exposure via pattern recognition receptors
and activate innate immune cells through the secretion of thymic stro-
mal lymphopoietin (TSLP), GM-CSF, IL-1, IL-33, and IL-25 [41].
Inhibiting the IL-33/ST-2 axis may reduce the epithelial potential to in-
duce a local Th2 orientation. TSLP is a potential noninvasive biomarker
released from activated epithelial cells [49]. Specific humanized antibody
that blocks interaction between TSLP and TSLP receptor or OX40 and
OX40 ligand are currently being developed [50].

Airway epithelial cells are important initiators of the local antiviral
immune response through the production of chemokines, proinflam-
matory cytokines, and interferons (IFN). An in vitro study showed that
budesonide and formoterol can inhibit cell inflammatory responses in
HBECs without interfering with viral replication or production of inter-
ferons [51]. Defective rhinovirus (RV)-induced IFN-β and IFN-λ pro-
duction and increased RV replication have been reported in primary
human bronchial epithelial cells (HBECs) from subjects with asthma
[52]. In vitro addition of IFN-β to HBEC restores the normal antiviral
response [53]. Delivery of IFN-β to the lungs of asthmatics may limit the
spread of the virus to the lungs and consequent exacerbation. The phase
II trial of inhaled IFN-β (SNG 001) enrolled 134 adult asthmatics re-
cruited during a cold episode. Patients taking IFN-β showed lower
asthma symptoms, a 65 % reduction in exacerbations, and quicker lung
function recovery. The response was significant only in patients with
difficult-to-treat asthma [54].

Microbiome-driven Th2-low asthma phenotype
Several studies have reported the distortion in airway bacterial community
structure and composition in asthma, with greater abundance of members of
the Proteobacteria, particularly Haemophilus species, and lesser abundance of
members of the Bacteroidetes, particularly Prevotellaceae [55, 56]. Disordered
microbiome was related to greater AHR and corticosteroid resistance [57,
58•].

Two approaches that may be considered to restore the normal bronchial
microbiota are low-dose long-term antibiotic treatment and bacteriotherapy
using the model promoted for gut microbiota.

Long-term macrolide antibiotics may be helpful due to their ability to reg-
ulate the altered microbiome, due to their antineutrophilic potential (de-
creased IL-8 production, neutrophil migration and/or function), or due to
antiviral actions and the ability to restore corticosteroid sensitivity [59].
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Predicting response to macrolides is still difficult. In one trial, responders
were older and had a longer duration of asthma [60]. Other studies have
suggested that PCR identification of Mycoplasma and Chlamydophila
pneumoniae or neutrophilic inflammation best identifies the macrolide re-
sponsive phenotype [61, 62]. In the AZISAST study, subjects with exacerba-
tion-prone severe asthma received low-dose azithromycin or placebo as add-
on treatment to combination therapy of ICS and LABA for 6 months. While
there was no difference between groups in the rate of severe exacerbations
and lower respiratory tract infections requiring treatment with antibiotics,
there was a significant difference in the predefined subgroup of subjects with
non-eosinophilic severe asthma. There were no significant effects on lung
function. Azithromycin was well-tolerated but was associated with increased
oropharyngeal carriage of macrolide-resistant streptococci [63•].

Obese asthma phenotype

Analysis of the British Thoracic Society Difficult Asthma Registry Patient
cohort according to BMI suggests that obesity-associated severe asthma rep-
resents a distinct clinical phenotype with greater requirements for mainte-
nance corticosteroid, steroid burst therapy, and reliever use per day. These
patients have shown reduced FVC and elevated carbon monoxide transfer
coefficient. Serum IgE levels decreased with increasing BMI, and the obese
group was more likely to report eczema but less likely to have a history of
nasal polyps [64].

Excess BMI is an established risk factor for asthma, particularly in women.
While it has been hypothesized that the metabolic syndrome mediates the
BMI–asthma association, the CARDIA study found that BMI was a stronger
predictor than metabolic syndrome for incident asthma in women. These
results suggest that the BMI–asthma association is attributable to biome-
chanical, metabolic, or inflammatory abnormalities associated with obesity
that are not part of the metabolic syndrome [65•]. In a cross-sectional
comparison between early- and late-onset asthma phenotypes in the Severe
Asthma Research Program, subjects with late-onset asthma had a higher
median plasma asymmetric dimethyl arginine (ADMA) level and lower
median plasma L-arginine. The log of plasma L-arginine/ADMA was inversely
correlated with BMI and was associated with less IgE, increased respiratory
symptoms, lower lung volumes, and worse QoL. The authors suggest ab-
normal metabolic pathways in obese asthma featuring an ADMA-driven
impairment in protective NO synthesis. This obese asthma endotype is par-
ticularly relevant for patients in whom inflammation is not predominant and
who are less responsive to anti-inflammatory strategies [66•]. In 131 subjects
with severe asthma categorized into lean, overweight, and obese groups de-
fined by their BMI, sputum IL-5 geometric mean was elevated in the obese
compared with overweight and lean subjects and was correlated with BMI. In
the bronchoscopy group, the submucosal eosinophil number was correlated
with BMI, and the median number of submucosal eosinophils was higher in
obese versus lean subjects. As this was a single-center study, further studies
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replicating these results are needed, but this may suggest a subset of obese
asthmatics where specific antieosinophilic therapy is beneficial [67].
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