
Vol.:(0123456789)1 3

Aging Clinical and Experimental Research (2021) 33:141–146 
https://doi.org/10.1007/s40520-020-01703-z

ORIGINAL ARTICLE

The effect of different test protocols and walking distances on gait 
speed in older persons

Sebastian Krumpoch1 · Ulrich Lindemann2 · Anja Rappl3 · Clemens Becker2 · Cornel C. Sieber1,4 · Ellen Freiberger1

Received: 23 August 2020 / Accepted: 28 August 2020 / Published online: 15 September 2020 
© The Author(s) 2020

Abstract
Background and aims Walking is the core physical activity of older persons. The assessment of walking capacity is increas-
ingly important for clinical purposes and clinical research. Differences between assessment tools and protocols for short 
walks to obtain gait characteristics can be responsible for changes, e.g., in gait speed from 0.1 to 0.2 m/s. The purpose of 
this study was to generate further knowledge for the harmonization and/or standardization of short walk-test protocols for 
assessing gait characteristics under supervised conditions.
Methods For this cross-sectional study, 150 community-dwelling older adults (mean age 80.5 ± 4.5 years) were recruited. 
Participants performed eight walks differing in the distance (8-versus 4-m), static versus dynamic trials and comparing dif-
ferent test speed instructions (usual versus maximal) on an electronic walkway.
Results A meaningful significant difference in mean usual gait speed was documented comparing the 4-m dynamic and 
static test protocol (0.12 m/s; p = 0.001). For the same comparison over an 8-m distance (dynamic versus static) and for 
the comparison between usual gait speed over 4-and 8-m, the differences in gait speed were smaller, but still statistically 
significant (p = 0.001).
Conclusions Gait speed was faster, if the test protocol did not include a static start or stop. The differences were greater for 
a shorter walking distance. This aspect should be considered for the comparison of study results and is particularly relevant 
for systematic reviews and meta-analyses.
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Introduction

Walking is a core activity of older persons and a relevant 
component to overall mobility. Evidence exists that a decline 
in gait speed of older persons is associated with many 

negative health outcomes, such as death [1], frailty [2] or 
hospital admission [3]. Gait speed is increasingly acknowl-
edged as a “vital sign” [4]. To be used in clinical practice, 
gait speed measurements should be standardized and for 
clinical research the results should be at least harmonized 
[5].

Assessing gait speed is not trivial. Gait characteristics can 
be measured supervised in a research laboratory or unsuper-
vised during daily activities by body-worn sensors [6]. It is 
increasingly recognized that supervised gait speed in con-
trolled environments differs significantly from real-life non-
supervised gait speed measured in the general older commu-
nity [7] and according to disease status [8–10]. Monitoring 
gait speed in real life is not yet established. This requires 
assessments by body-worn sensors over several days [6]. 
Gait speed is measured predominantly in the gait laboratory 
or similar clinical settings. Instruments like electronic walk-
ways or photoelectric barriers are established gold standards. 
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They eliminate reaction time errors, which can occur when 
measuring gait speed manually.

Provided the test methodology is fully reported at all [5], 
research groups often use walking protocols with different 
gait conditions to test their study participants [7, 8]. This 
includes walking distances of 4-m to 10-m. Most protocols 
include a normal/usual/habitual walking condition and a fast 
walking condition without or with additional cognitive tasks. 
Additionally, standardized measurement of steady-state gait 
via short tests is problematic, because the real-life walking 
includes acceleration and deceleration affecting mean gait 
speed [11, 12]. For clinical routines, this is impractical as 
time and resources are limited. Therefore, clinical routines 
have simplified the gait assessment using only one condition. 
This plethora of approaches result in a difficult position for 
clinicians leading to different protocols since the landmark 
JAMA study by Studenski [1]. Other studies show that dif-
ferences between assessment tools and protocols can be 
responsible for changes in supervised gait speed in a range 
of 0.1–0.2 m/s [13–15]. These are speed ranges that are con-
sidered as clinically meaningful [16].

The ongoing debate is now being influenced by regu-
latory agencies such as the European Medicines Agency 
(EMA) and US Food and Drug Administration. The EMA 
in a recent decision has adopted the Short Physical Perfor-
mance Battery (SPPB) [17] as their current gold standard to 
assess mobility. This includes a 4-m supervised gait assess-
ment from a standing start. It can be expected that this will 
establish a norm at least for clinical routines and additional 
testing will use this as a frame to discuss their findings.

The purpose of this study was to generate further knowl-
edge for the harmonization (standardization) of supervised 
short walk-test protocols as well as data generalization. 
Additional methodological findings could increase and 
specify the significance of gait speed measurements, reduce 
the risk of errors in group- and sample comparisons and 
facilitate the constitution of standardized protocols in the 
scientific community [5]. It was hypothesized that usual gait 
speed is faster, if the test protocol does not include a static 
start or stop at the end. Furthermore, this study also exam-
ined whether this effect could be reproduced with maximal 
gait speed and if a difference between protocols would be 
greater for a shorter walking distance.

Methods

Subjects and design

For this cross-sectional study, community-dwelling older 
adults were recruited between May and December 2019 
from an existing data pool and by flyers distributed in the 
greater area of a south-east German city. Participants had 

to be at least 70 years old, able to walk without a wheeled 
walker for 10-m and to understand and follow instructions. 
Exclusion criteria were orthopedic and/or neurologic prob-
lems, which caused walking problems (self-report). The 
study protocol was approved by the ethical committee of 
FAU Ethical Committee (43_19B) and all participants had 
to give written informed consent.

Primary outcome measures

Gait analysis was performed on an instrumented 10-m-long 
walkway with embedded pressure sensors (Gold walkway, 
972 cm long, active electronic surface area 792 × 610 cm, 
total 29,952 pressure sensors, scanning frequency 60 Hz, 
GAITRite, CIR Systems Inc., Franklin, USA) in a well-lit 
hallway. The validity and reliability of the GAITRite system 
has been shown in previous studies [18, 19]. The GAITRite 
system calculated gait speed as the ratio of the parameters 
Distance Travelled and Ambulation Time. Distance Trav-
elled was measured on the horizontal axis from the heel 
center of the first footprint to the heel center of the last 
footprint, while Ambulation Time was recorded as the time 
elapsed between first contact of the first and the last footfalls. 
The protocol consisted of eight walks differing with respect 
to distance (7.9-versus 4.3-m; in the following indicated as 
8-and 4-m, respectively), start/end protocols (static versus 
dynamic) and speed (usual versus maximal) (Table 1). The 
8-m-long active sensor area of the instrumented walkway 
can be modified using the GAITRite software. The 4-m 
measurements were realized by computer-based reduction 
of the not required carpet length. Cones were placed on the 
side of the walkway to visualize the start and finish area 
for each test condition. The rationale for comparing a 4-m 
distance with an 8-m distance was the widely used 4-m dis-
tance as part of the SPPB [17] and another short, but some-
what longer distance which is also described in the literature 
[15]. Static walks involved exclusively the active carpet area. 
Dynamic and semi-dynamic walks included acceleration and 
deceleration phases of 2-m, which were partly outside the 

Table 1  Test conditions of all walks with regard to gait speed, start/
end and distance

Gait speed Start condition End condition Distance (m)

Usual gait speed Static Static 4
Usual gait speed Dynamic Dynamic 4
Usual gait speed Static Dynamic 4
Usual gait speed Dynamic Static 4
Usual gait speed Static Static 8
Usual gait speed Dynamic Dynamic 8
Maximal gait speed Static Static 8
Maximal gait speed Dynamic Dynamic 8
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active carpet area (Fig. 1). The instruction for a static walk 
at usual pace was: “Please walk in your usual gait speed and 
come to a sudden stop when you have reached the cone.” 
The instruction for a dynamic walk at maximum pace was: 
“Please walk as quickly and safe as possible without run-
ning until you reach the indicated cone.” Participants were 
allowed to rest between walks as needed. The walks were 
carried out in randomized order. 

Descriptive measures/covariates

Demographic and anthropometric data, such as age, sex, 
body weight and height were recorded. Functional comor-
bidity [20] was obtained by questionnaires in a standard-
ized interview. Cognitive function was assessed with the 
Montreal Cognitive Assessment [21]. The SPPB sum score 
[17] was used to describe the global physical function of 
the participants.

Data analysis

Paired t tests analyzed the differences with regard to the 
inclusion or exclusion of the acceleration and deceleration 
on the 8-m walks in usual, as well as in maximal gait speed.

A one-way repeated measure analysis of variance 
(ANOVA) was used to examine the effect of four different 
combinations of acceleration and deceleration on gait speed 
over 4-m.

The effect of the walking distances (4-and 8-m), along 
with the effects of including or excluding the acceleration 
and deceleration and their interaction was analyzed by a 
two-way repeated-measure ANOVA. For all calculations, a 
significance level at α = 0.05 was used. Post hoc paired t tests 
with Bonferroni correction were applied. All analyses were 
performed using  SPSS® version 24.0 (SPSS, Inc., Chicago, 
IL, USA).

Results

The data of 150 participants with a mean age of 
80.5 ± 4.5 years (61% women) were included in the analy-
sis. The description of the cohort in detail is presented in 
Table 2.

A clinically meaningful difference in mean usual gait 
speed was documented for the comparisons between the 4-m 
dynamic test protocol and 4-m static test protocol (0.12 m/s) 
and between the 4-m dynamic test protocol and 8-m static 
test protocol (0.1 m/s). All mean gait speeds at different test 
conditions are presented in Table 3.

Differences between dynamic and static test protocols for 
both usual (t (df = 149) = 6.96, p = 0.001) and maximal (t 
(df = 149) = 4.85, p = 0.001) gait speed over 8-m were sta-
tistically highly significant.

Comparing the 4-m walks concerning four different test 
protocols, a repeated measures ANOVA with a Huynh–Feldt 

Fig. 1  Description of the test 
conditions with regard to 
acceleration and deceleration. 
4-m , 4-meter; 8-m, 8-meter
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correction revealed that mean performance levels showed a 
statistically significant difference between measurements (F 
(2.83, 420.86) = 92.67, p < 0.001, partial η2 = 0.38). Bonfer-
roni-adjusted post hoc analysis presented significant differ-
ences between all 4-m walks (Table 4).

The two-way repeated measures ANOVA considering 
distance, test protocol (dynamic and static) and the interac-
tion thereof displayed a statistically significant interaction 
between the effects of walking distance (4-m vs. 8-m) and 
test protocol (dynamic vs. static). Simple main effect analy-
sis showed that test protocols had a significant impact on gait 
speed, but there was no overall distance-related difference 
between 4-m and 8-m walking speed (Table 5). Only when 
combined, there was a significant effect (interaction A × B).

Discussion

As expected, we observed in our study a significant effect 
of the inclusion or exclusion of acceleration and decelera-
tion phases on gait speed measurements over 4-and 8-m. 
This effect confirmed our hypothesis and was strongest, i.e., 
clinically meaningful and statistically significant, between 

4-m walks with uniform test protocols in usual gait speed. 
Statistically significant differences were attained for 4-m 
walks with mixed test protocols in usual gait speed and for 
both 8-m walks with uniform test protocols in maximal and 
usual gait speed. While the overall distance of walks had 
no significant effect on usual gait speed, the test protocol as 
well as the interaction of test protocol and distance did so.

In general, our results are in line with other findings and 
emphasize the importance of standardized test protocols for 
supervised gait speed measurements in research and clinical 
practice. Sustakoski et al., and Wang et al., found clinically 
meaningful and statistically significant effects of test proto-
cols in similar populations, but with different instrumenta-
tion [13, 14]. Warden et al. [15] showed differences for usual 

Table 2  Description of all (n = 150) participating older adults

SD standard deviation; Note: better score values are underlined

Characteristic Mean ± SD (range) or n (%)

Sex, female/male 92 (61)/58 (39)
Age [years] 80.5 ± 4.5 (71–93)
Body height [cm] 163.8 ± 10.5 (142–198)
Body weight [kg] 74.9 ± 16.2 (43.9–121.9)
Education [years] 13.7 ± 3.3 (8–28)
Body mass index [kg/m2] 27.8 ± 4.8 (17.6–43.3)
Short Physical Performance Battery 

(0–12)
10.9 ± 1.7 (4–12)

Montreal Cognitive Assessment (0–30) 25.4 ± 2.9 (13–30)
Functional Comorbidity Index (0–18) 3.6 ± 2.2 (0–9)

Table 3  Mean gait speeds of 
different test conditions of 
all participating older adults 
(n = 150)

SD standard deviation; 4-m = 4-meter, 8-m =8-meter

Distance/speed Test protocol
Start

Test protocol
End

Mean ± SD (range) [m/s]

4-m usual gait speed Dynamic Dynamic 1.23 ± 0.28 (0.25–2.01)
4-m usual gait speed Static Static 1.11 ± 0.26 (0.24–1.92)
4-m usual gait speed Static Dynamic 1.17 ± 0.26 (0.26–1.75)
4-m usual gait speed Dynamic Static 1.19 ± 0.28 (0.27–1.94)
8-m usual gait speed Dynamic Dynamic 1.20 ± 0.26 (0.33–1.80)
8-m usual gait speed Static Static 1.13 ± 0.27 (0.29–1.83)
8-m maximal gait speed Dynamic Dynamic 1.52 ± 0.35 (0.34–2.39)
8-m maximal gait speed Static Static 1.47 ± 0.34 (0.31–2.31)

Table 4  Levels of statistical significance (p values) of differences 
between test conditions for 4-m walks at usual gait speed analyzed by 
one-way repeated measures analysis of variance

S static; D dynamic
*Statistically significant difference in mean walking speed among 
four conditions with different test protocols; p < 0.05*, p < 0.001**

D/D S/S D/S S/D

D/D 0.001** 0.001** 0.001**
S/S 0.001** 0.001** 0.001**
D/S 0.001** 0.001** 0.016*
S/D 0.001** 0.001** 0.016*

Table 5  Two-way repeated measures analysis of variance on: main 
effects A and B, interaction effect A × B

A main effect of 4-m or 8-m walking distance; B main effect of accel-
eration/deceleration inclusion 
*p < 0.001

Effect F df Partial η2 p

Distance (A) 0.32 1 0.002 0.572
Test protocol (B) 194.27 1 0.566 0.001*
A × B 17.86 1 0.107 0.001*
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(mean difference 0.05 m/s) and maximum (mean difference 
0.16 m/s) gait speed in younger participants. Furthermore, 
Wang et al. revealed that gait speeds with dynamic proto-
cols were comparable over shorter (4-m) and longer (10-m) 
distances [14]. In the present study, these findings could not 
be replicated over 4-and 8-m.

Although all aforementioned studies examined slightly 
different protocols, they showed a significant effect of the 
inclusion or exclusion of acceleration and deceleration 
phases on gait speed measurements. Correspondingly, the 
comparison of our, seemingly identical, 4-m walk tests with 
mixed setup conditions (i.e., static-dynamic with dynamic-
static) already yielded significant differences, suggesting a 
sizeable impact of even marginal test protocol variations. 
Therefore, the influence of test protocols on gait speed meas-
urements should be considered in future inter-study com-
parisons and be weighted as potential exclusion criterion 
in meta-analysis. Alternatively, results must be adjusted. 
In general, our results indicate that short walk tests, e.g., 
4-m, might be more vulnerable to a change in the protocol 
compared to a longer walk, e.g., 8-m. Due to the regulatory 
norms propagating the SPPB as a standard measure, it can be 
expected that many clinicians will adopt the 4-m walk from a 
standing position as their “gold” standard. This is also likely 
based on the limited space often available in outpatient set-
tings and general practitioner offices. Consequently, the use 
of short walk assessments may have a dilutive effect in a 
meta-analysis.

It is noteworthy that usual gait speed ranged up to 
2.01 m/s in our cohort of older persons, which could be 
indicative for the influence of an observer effect. An emerg-
ing discussion is the need and possibility to use supervised 
and non-supervised gait speed in real-world environments 
as a standard measure. This development is also pushed by 
the universal deployment of sensors in smartphones and 
other wearable sensor technology such as wristband sens-
ing. Recent findings show that measurements of supervised 
usual gait speed in controlled conditions such as outpatient 
and inpatient clinics are significantly faster than in gait speed 
measurements in daily life [7]. It is likely that the setting, the 
observer and contextual circumstances have a major influ-
ence on “normal”, “usual” or “habitual” walking and gait 
speed in particular.

Limitations

To keep the physical burden for participants within toler-
able limits and to avoid fatigue effects, the gait analysis 
was restricted to only eight walks and to only the gait speed 
parameter. As a result, not every possible test protocol com-
bination over 4-and 8-m was examined. Furthermore, every 
condition was only assessed once, increasing the variance 

of the gait speed measurements compared to the mean of 
multiple trials. Future research could investigate the effect 
on other kinematic parameters.

The inclusion criteria might have produced a selection 
effect toward a participation of mainly physical healthy 
older persons. Additionally, some participants could have 
distorted the results due to over-motivation. Therefore, our 
results cannot be considered as a representation of the gen-
eral population in the age range of ≥ 70 years, affecting the 
generalizability of the study.

Conclusion

Gait speed was faster, if the test protocol did not include 
a static start or stop and this difference was greater for a 
shorter walking distance. This aspect must be regarded for 
comparison of study results and for future meta-analyses.
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