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Abstract
Background  White matter hyperintensities (WMH) are a common cerebral finding in older people. WMH are usually asymp-
tomatic, but excessive WMH are associated with cognitive decline and dementia. WMH are also among the neurological 
findings most consistently associated with declining motor performance in healthy ageing.
Aims  To determine if WMH load is associated with simple and complex motor movements in dominant and non-dominant 
hands in cognitively intact older subjects.
Methods  Hand motor performance was assessed with the Purdue Pegboard and Finger-tapping tests on 44 healthy right-
handed participants, mean age 70.9 years (range 59–84 years). Participants also underwent magnetic resonance (MR) imag-
ing, which were used to quantify WMH volume. The effect of WMH on the motor parameters was assessed via mediation 
analyses.
Results  WMH load increased significantly with age, while the motor scores decreased significantly with age. WMH load 
mediated only the relationship between age and left-hand pegboard scores.
Discussion  WMH mediated only the more complex Purdue Pegboard task for the non-dominant hand. This is likely because 
complex movements in the non-dominant hand recruit a larger cerebral network, which is more vulnerable to WMH.
Conclusions  Complex hand movements in the non-dominant hand are mediated by WMH. Subtle loss of motor movements 
of non-dominant hand might predict future excessive white matter atrophy.
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Introduction

Late-life motor decline is common in the aging population 
and is associated with various adverse health outcomes 
such as gait dysfunction, increased risk of falls, demen-
tia, cognitive decline, and disability [1–3]. Motor decline 

is multifactorial since it can be caused by neurological or 
musculoskeletal conditions (e.g., arthritis), or a combination 
of these factors. These late-life motor deficits interfere with 
the activities of daily independent living and can lead to 
functional decline and reduced quality of life in older people.

White matter hyperintensities (WMH) are typically seen 
as hyperintense lesions in cerebral white matter on fluid-
attenuated inversion recovery (FLAIR) MR images and 
represent atrophy in cerebral white matter [4]. WMH are 
considered an inevitable consequence of old age, but exces-
sive WMH are seen as an indicator of cerebral small vessel 
disease [4]. Excessive WMH are also associated with motor 
impairment and physical disability [5], loss of cognitive 
functions [6], and increased risk of stroke [7]. Studies find 
that WMH increase the reaction time on several motor tasks 
[8, 9], which might explain why WMH are associated with a 
decline in motor performance, particularly gait and walking 
speed [10, 11].
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Several studies have examined the effect of WMH on both 
lower [3, 10, 12] and upper extremity motor function [5, 12, 
13], but little attention has been paid to whether WMH affect 
the dominant or non-dominant motor movement the most. 
Results from fMRI studies suggest that the non-dominant 
hand may be more vulnerable to WMH than the dominant 
hand since non-dominant hand movements activate a larger 
and more distributed brain network than similar movements 
in the dominant hand [12–14]. Although a functional decline 
in the non-dominant hand might be less disabling than a 
similar decline in the dominant hand, it may still degrade the 
quality of life for those affected. Further, knowledge about 
how WMH severity relate to motor functioning in the domi-
nant- and non-dominant hands may provide greater insight 
into the role of WMH in connection with age-related loss 
of hand motor functioning and could possibly be an early 
marker of cognitive decline and mobility impairment in the 
future.

In the present study, we examined how WMH affected 
simple and complex hand motor function in the dominant 
and non-dominant hand in cognitively intact elderly par-
ticipants. Since motor function has been associated with 
both age and WMH, and WMH is also associated with age 
[4], we used a mediation model to investigate how WMH 
might mediate the association between age and upper 
extremity motor performance.

Methods

All participants signed written informed consent before 
participating in the study. The study was approved by the 
regional ethics committee (REK 2009/1427).

Participants

The participants were from an ongoing project of motor 
functions and cognition at the Psychology department of 
UiT the Arctic University, Norway. Forty-four healthy right-
handed elderly people (mean age 70.5 years, 20 females) 
participated in this study. Participants were screened for 
cognitive status and depression using the Mini-Mental State 
Examination (MMSE) [15] and Beck Depression Inventory 
(BDI) [16], respectively. The participants were recruited via 
advertisements and flyers at local senior citizens’ centers 
with the following inclusion criteria: Norwegian as a first 
language, age greater than 59 years, and right-handed, i.e. 
a score of 9 or greater on the Briggs–Nebes Handedness 
Inventory [17]. Exclusion criteria were MRI contraindica-
tions, self-reported history of stroke, head trauma, head 
injury or use of medication known to affect the central nerv-
ous system, a diagnosis or pathology that directly affects 
the musculoskeletal system, recent surgery, acute illness, 

cardiac/movement disorders, and MMSE < 27. Participants 
were screened for depression with the Beck Depression 
Inventory II [18] and none of the participants scored within 
the depression range. A neuroradiologist screened the MR 
images and found no major pathologies such as infarctions 
or tumors.

Neuropsychological assessment

First, an initial interview was conducted, followed by ques-
tionnaires, and the neuropsychological test battery. The neu-
ropsychological assessment for the participants is detailed 
in [19]. Even though the participants declared themselves as 
right-handed in the initial interview, the Handedness Ques-
tionnaire [17] was used to quantify handedness. The Nor-
wegian version of the SF-36 questionnaire [20] was used to 
assess physical health.

Tests of hand motor functions

Purdue Pegboard test

The Purdue Pegboard test (PPT) was employed to assess 
complex hand function in our study. The test apparatus was 
a board of 22.7 cm × 44.9 cm (Lafayette Instrument Model 
32020) with two parallel rows in the middle and four cups 
at the upper edge. These cups contained pins, washers, col-
lars, and pins from left to right as shown in Fig. 4. The test 
includes four trials for dominant (right), non-dominant (left), 
and both hands (simultaneously and alternatively); however, 
only the first two trails were used in the present study. In the 
first trial, participants were asked to begin with their domi-
nant (right) hand and to pick up pins from the right-hand 
cup and insert them into the holes on the right side, start-
ing with the holes farthest from the subject. In the second 
trial, participants used the non-dominant hand (left) to pick 
up pins from the left-side cup and insert them into the left 
column. The pegboard test was modified to accommodate 
detailed kinematic analysis (used in other parts of the project 
e.g. [22]). First, the pegboard was colored black, and the 
pegs and pins were colored red, to ensure adequate contrast 
between image and the markers attached to the hand. Sec-
ond, instead of counting inserted pins during a fixed time 
as in the standard test, participants were asked to put ten 
pins in the holes (pair of pins in the third task), regardless 
of the time spent. The reason for modifying the test in this 
manner was to get an equal number of movement sequences 
for all participants in the kinematic analysis. The number of 
trials was ten according to the standardized version of the 
Purdue Pegboard test [21]. Further details of the procedure 
are given in [22].
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Finger tap test

Participants were asked to tap as fast as possible on a lever 
with the index finger and the lever is attached to a counting 
device. Finger-tapping score was used in this study because 
it is a common measure for assessing fine motor control of 
the upper extremities in a simple motor movement.

Grip strength

A hand dynamometer was used to measure grip strength. 
Since muscular strength declines as a normal process of 
aging and it is a prerequisite for hand dexterity [23], the 
grip strength was used to correct for variations in muscle 
strength in the mediation models.

MRI scanning

Participants were scanned in a 3  T Siemens Skyra 
MRI scanner at the University Hospital North Nor-
way. T1-weighted (T1w) images were acquired with a 
3D magnetization prepared rapid acquisition gradient-
echo (MPRAGE) sequence (flip angle = 9°, TR/TE/
TI = 2300 ms/2.98 ms/900 ms). T2-weighted fluid-attenuated 
inversion recovery (FLAIR) images were acquired with a 3D 
turbo spin-echo sequence with a variable flip angle (TR/TE/
TI = 5000 ms/394 ms/1800 ms, partial Fourier = 6/8). The 
T1w and FLAIR scans were acquired sagittally with 1 mm 
in-plane resolution, GRAPPA parallel imaging acceleration 
factor 2, 80% phase resolution, FOV = 250 mm, 176 slices, 
1.2 mm slice thickness, and 256 × 256 image matrix.

WMH volume measurements

Segmentation of WMH on the FLAIR images was done 
using the LPA algorithm (https​://www.appli​ed-stati​stics​
.de/lst.html). Since the accuracy of such algorithms may 
depend on scanner model and acquisition parameters, the 
accuracy of the LPA algorithm was validated using an inde-
pendent sample of 30 subjects (15 males and 15 females 
aged 61–74 years) from a different study but scanned on the 
same scanner and with the same image parameters. These 
images were manually segmented, the gold standard, by M. 
R. and overseen by T. R. V., and also segmented with the 
LPA algorithm. The automatic segmentations were visually 
compared to the manual segmentation and deemed satisfac-
tory. In addition, we computed the Dice score (a measure of 
the overlap between the manual and automatic segmentation, 
ranging from 0—no overlap, to 1—perfect overlap). The 
mean Dice score was 0.6, which is similar to the accuracy 
of other recent WMH segmentation algorithms [24].

The WMH volume has a known right-skewed distribution 
[25], which may affect the assumption of normal distribution 

of the error term and of a linear relationship between the 
dependent and independent variables for linear regression 
models. There is also a slight correlation between WMH 
volume and total brain volume [26], i.e. people with larger 
brains tend to have slightly larger WMH volume. To make 
the WMH measure more similar to a normal distribution, 
and correct for the correlation with the total brain volume, 
we computed a “WMH load” parameter:

where WMH is the WMH volume and ICV is the intracra-
nial volume, a measure of premorbid brain volume calcu-
lated from the T1w images using a method described in [27]. 
The WMH load was used in the mediation models instead of 
the raw WMH volumes.

Statistical analysis

All statistical analyses were performed in R (ver. 4.0.2) 
using the “lavaan” package (ver. 0.6) for mediation analyses, 
“ggplot2” (ver. 3.3.2) for plotting, and the “arsenal” pack-
age (ver. 3.5.0) for generating tables of descriptive statistics.

We examined the associations between the independ-
ent variable (age), the mediator variable (WMH load), and 
the dependent variables (finger tapping and pegboard test 
scores) using Pearson correlation. Mediation was used to 
examine how WMH load might mediate the association 
between age and hand motor function (Fig. 1). We used the 
three-step framework for assessing the mediation [28]. The 
effect of gender, grip strength, smoking, alcohol consump-
tion and body mass index (BMI) was regressed out of this 
model to avoid confounding by these factors, and the signifi-
cance of the indirect effect was estimated by bootstrapping 
with 5000 iterations. There were two missing measurements 
for BMI, which were replaced by the mean BMI values in 
the mediation analyses. A p value of p < 0.05 was considered 
significant in all analyses.

WMH load = ln

(

WMHvolume

ICV

)

,

WMH load

Age Hand motor score

c

ba

c'

Fig. 1   The model used to examine the mediation effect of WMH 
load on hand motor scores. Here, a is the correlation between age and 
WMH load, b the relation between WMH load and hand motor score, 
ab the indirect effect, c is the total effect, and c′ the direct effect of 
age on motor score

https://www.applied-statistics.de/lst.html
https://www.applied-statistics.de/lst.html
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Results

Demographics, motor scores and 
 neuropsychological tests

Descriptive characteristics of the participants in the study 
are given in Table 1. Summary of the data on motor vari-
ables is given in Table 2.

White matter hyperintensities

WMH were present in all our subjects, but their extent 
and distribution varied considerably. The median WMH 
volume was 0.97 ml, range 0.05–17.93 ml (mean 2.32 ml, 
SD = 3.34) (Table 2). The varying severity of WMH in the 
participants is illustrated in Fig. 2, with an example of mild 
(0.55 ml), moderate (2.91 ml), and severe (17.93 ml) WMH. 

Table 1   Summary of 
participant’s demographics, 
health and cognitive profile

a BMI: 2 missing, 36 items: 5 missing, BDI-II: 2 missing, FES-I: 2 missing, handedness score: 2 missing

Demographics and risk factors N = 44

Age [mean (SD), range] 70.5 (5.60), 59–84
Education in years [mean (SD), range] 13.8 (3.50), 7–25
Retired [N, (%)]
 Yes 31 (72.1%)
 No 12 (27.9%)
 Missing 1

Diabetes
 Yes 2 (4.5%)
 No 42 (95.5%)

Body mass index (BMI) [mean (SD), range]a 26.9 (3.23), 19.4–35.4
Smoking [N (%)]
 Never 11 (25.0%)
 Previous 28 (63.6%)
 Now 5 (11.4%)

Alcohol units pr. week [mean, (SD), range] 4.09 (2.66), 0.25–14.00
MMSE [mean, (SD), range] 29.4 (0.87), 27–30
Trail making test A in seconds [mean, (SD), range] 34.1 (11.27), 18.0–78.0
Trail making test B in seconds [mean, (SD), range] 86.3 (29.51), 42.5–198.0
36-item Short-Form Health Survey [mean, (SD), range]a 112.7 (49.13), 85–407
BDI-II [mean, (SD), range]a 3.7 (3.40), 0–13
Falls Efficacy Scale International, FES-I [mean, (SD), range]a 112.74 (49.13), 85–407
Stroop word [mean, (SD), range] 88.4 (14.04), 47–110
Stroop word–color [mean, (SD), range] 31.52 (7.46), 18–46
Handedness score [mean, (SD), range]a 20.00 (4.12), 4–24
Grip strength right hand in kg [mean, (SD), range] 38.5 (10.48), 19.3–60.0
Grip strength left hand in kg [mean, (SD), range] 37.0 (10.44), 18.3–64.3

Table 2   Summary of the data 
on motor performance and 
WMH load

Total (N = 44)

Mean (SD) Range

Pegboard right hand (s) 26.31 (5.48) 17.02–38.78
Pegboard left hand (s) 27.14 (4.73) 17.44–38.72
Finger tapping right hand (number of taps) 41.23 (8.77) 20.33–54.67
Finger tapping left hand (number of taps) 38.17 (7.96) 20.33–55.33
WMH load − 7.30 (1.40) − 10.34 to − 4.54
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Correlation analyses

From the pairwise correlations (Fig. 3), we observed that the 
pegboard scores were significantly correlated with age (right 
hand: r = 0.49, p = 0.0008, left hand: r = 0.55, p = 0.0001) and 
WMH load (right hand: r = 0.30, p = 0.048, left hand: r = 0.44, 
p = 0.003). The finger tapping scores were only significantly 
correlated with age for the right hand (r = 0.31, p = 0.0411), 
demonstrating that the finger tapping scores were less asso-
ciated with both age and WMH compared to the pegboard 
scores.

Mediation analysis

The results from the mediation analyses are summarized in 
Table 3. For finger tapping scores, the associations between 
age and the right and the left-hand finger tapping scores, i.e. 
the total effect c, were not significant (β = − 0.03, p = 0.9 and 
β = − 0.23, p = 0.2 respectively), thus excluding a mediating 
effect of WMH.

For the mediation analysis of the right-hand pegboard 
scores, the total effect was not significant (β = 0.15, p = 0.24), 
and hence no mediation either. However, the association 
between age and left-hand pegboard scores was significant 
(β = 0.35, p = 0.03), which was fully mediated by WMH load 
(β = 0.18, p = 0.02). As shown in path diagram, the regres-
sion coefficient between age and WMH load was statistically 
significant (β = 0.57, p = 0.001), as was the regression coef-
ficient between WMH load and left-hand pegboard scores 
(β = 0.31, p = 0.01), as illustrated in Fig. 4. The indirect 
effect was also statistically significant (β = 0.18, p = 0.02).

Discussion

The results show that independent of age, gender, grip 
strength, and WMH risk factors, WMH load mediated the 
hand motor performance in the non-dominant hand, but only 
for complex motor movements. These findings are consist-
ent with previous studies showing that WMH are related to 
poorer motor function [5, 29, 30]. To our knowledge, how-
ever, previous studies have not examined whether WMH are 
associated with complex motor movements differently than 
simple movements, or whether WMH correlates preferen-
tially with the dominant or non-dominant hands.

Even though pegboard scores of the right and the left 
hand were highly correlated (r = 0.8, Fig. 3), WMH had a 
mediating effect only on the left-hand. Previous research 
suggests that non-dominant motor activity depends on 
a more distributed functional brain network, with inter-
hemispheric and cortical—cerebellar communication com-
pared to the movement of the dominant hand [12, 31, 32]. 
Since WMH disrupt the signaling in cerebral white matter 
leading to cortical disconnection [33, 34], it is likely that a 
more extensive functional network (left-hand motor func-
tioning) is more vulnerable to WMH than a more localized 
network (right-hand motor functioning). The reason WMH 
only mediated the complex hand motor movement, can be 
explained by a similar argument since complex hand move-
ments activate a more extensive bilateral functional network 
compared to simple hand movements [12, 31].

Our findings suggest that WMH strongly correlate with 
complex motor movements of the non-dominant hand in 
the absence of any functional decline in the dominant hand. 

Fig. 2   WMH volume for three 
participants with differing 
volumes ranging from mild 
to severe (four slices for each 
subject are shown)
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Hence, the motor changes in the non-dominant hand in 
apparently healthy elderly should be further assessed as to 
whether these changes predict major motor loss or patholog-
ical cognitive impairment. We also note that of the cognitive 
tests, the TMT A and Stroop word-color tests showed the 
strongest associations with WMH load (r = 0.48, p = 0.001 
and r = − 0.29, p = 0.057, respectively), in agreement with 
previous studies [34–37], and showed also the strong-
est associations with left-hand pegboard scores (r = 0.52, 
p = 3e−4 and r = − 0.56, p = 9e−5). This suggests that the 
left-hand pegboard test, the TMT A and Stroop word–color 
are particularly sensitive to WMH load. In a clinical setting, 
administering these three tests might be a sensitive predictor 

of subclinical WMH and future motor and cognitive decline. 
However, future longitudinal studies are necessary to cor-
roborate the present data, as our cross-sectional study cannot 
prove such causal connection.

A notable limitation of the present study is the cross-
sectional design making it impossible to determine causal 
effects. In addition, a relatively small sample was evaluated 
(n = 44) and the age range for the participants was wide 
(59–84 years). The interpretation of our results is further 
limited to healthy, cognitively intact, community-dwelling 
older people, and the findings might be different for subjects 
with cognitive decline for example.

Fig. 3   Plot showing correlations 
between grip strength, motor 
scores, age, smoking, BMI, 
alcohol consumption and WMH 
load. The numbers in each box 
are Pearson’s r, and the circles 
indicate significant correlations 
(p < 0.05)
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Table 3   Mediation effect of 
WMH load on the association 
between age and motor scores 
(standardized regression 
coefficients)

Values for paths a and b represent the association between age and WMH load, and the associations 
between the WMH load and motor scores respectively. Path c is the total effect of age on motor scores, and 
path c′ the direct effect of age on motor scores after controlling for the WMH load as a mediating variable
p < 0.05*; p < 0.01**; p < 0.001***

Path a Path b Indirect effect ‘ab’ Total effect (c) Direct effect (c′)

Pegboard right hand 0.56** 0.17 0.09 0.15 0.06
Pegboard left hand 0.57** 0.31* 0.18* 0.35* 0.17
Finger tap right hand 0.56** − 0.23 − 0.13 − 0.03 0.10
Finger tap left hand 0.57** − 0.30 − 0.17 − 0.23 − 0.06
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In conclusion, WMH load mediated only the pegboard 
scores of non-dominant (left) hand in a healthy cognitively 
intact elderly cohort. Complex motor movements in the 
non-dominant hand likely require a more extensive cer-
ebral network, than the other tasks considered, which in 
turn might be more susceptible to interference by WMH. 
The results also suggest that complex motor movements 
of the non-dominant hand might be a predictive marker 
for excessive WMH.
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