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Abstract
Background Skeletal muscles undergo changes with ageing which can cause sarcopenia that can result in frailty. Quantita-
tive MRI may detect the muscle-deficit component of frailty which could help improve the understanding of ageing muscles.
Aims To investigate whether quantitative MRI measures of T2, fat fraction (FF), diffusion tensor imaging and muscle volume 
can detect differences within the muscles between three age groups, and to assess how these measures compare with frailty 
index, gait speed and muscle power.
Methods 18 ‘young’ (18–30 years), 18 ‘middle-aged’ (31–68 years) and 18 ‘older’ (> 69 years) healthy participants were 
recruited. Participants had an MRI of their dominant thigh. Knee extension and flexion power and handgrip strength were 
measured. Frailty (English Longitudinal Study of Ageing frailty index) and gait speed were measured in the older participants.
Results Young participants had a lower muscle MRI T2, FF and mean diffusivity than middle-aged and older participants; 
middle-aged participants had lower values than older participants. Young participants had greater muscle flexion and exten-
sion power, muscle volume and stronger hand grip than middle-aged and older participants; middle-aged participants had 
greater values than the older participants. Quantitative MRI measurements correlated with frailty index, gait speed, grip 
strength and muscle power.
Discussion Quantitative MRI and strength measurements can detect muscle differences due to ageing. Older participants 
had raised T2, FF and mean diffusivity and lower muscle volume, grip strength and muscle power.
Conclusions Quantitative MRI measurements correlate with frailty and muscle function and could be used for identifying 
differences across age groups within muscle.

Keywords Muscle · Frailty · T2 · MRI · Sarcopenia · Ageing

Introduction

The increasing proportion of older people in the population 
(461 million above 65 in 2004 to an estimated 2 billion by 
2050 [1]) has significant implications for the planning and 
delivery of health and social care. Muscle health deteriorates 
with age, resulting in sarcopenia, reduced muscle mass and 
strength [2]. It can increase the risk of serious injury from 
sudden falls and subsequent fractures, especially if the thigh 
muscles are compromised [3].

The criteria for sarcopenia include low muscle mass, 
low physical function (such as gait speed) and low muscle 
strength (such as grip strength). Alongside decreased mus-
cle mass, there is an impairment in muscle quality associ-
ated with ageing [4]. Possible explanations for decreases 
in muscle quality include infiltration of fat into muscle or 
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myosteatosis [3], infiltration of collagen and other non-con-
tractile tissue into muscle [5], progressive atrophy and loss 
of individual muscle fibres [6], including a decrease in the 
proportion of fast twitch type II muscle fibres [7], which is 
associated with a decrease in physical performance [8].

Sarcopenia occurs in up to 13% of those aged above 
60 years [9] and is known to cause frailty [10]. Frailty devel-
ops because of age-related declines in physiological systems, 
including muscles, which collectively result in vulnerability 
to sudden health status changes triggered by minor events, 
such as a change in medication or minor infection [11]. Up 
to 50% of people older than 85 years are estimated to be 
frail, and these people have a substantially increased risk of 
falls, disability and lower quality of life [12]. Reducing the 
prevalence or the severity of frailty is likely to have large 
benefits for individuals and society [13].

Magnetic resonance imaging (MRI) has the potential 
to enable better targeting of interventions based on well-
defined quantitative measures of sub-clinical muscle dif-
ferences that are associated with frailty [14]. Quantitative 
MRI (qMRI) measurements have shown promising results 
for evaluating skeletal muscles by overcoming limitations 
in visual assessment based on gross morphologic and signal 
intensity changes. Transverse relaxation time (T2) measure-
ments, fat fraction (FF), diffusion tensor imaging (DTI) and 
muscle volume have all shown sensitivity to muscle differ-
ences in response to disease, and have excellent inter-scan 
variability [15]. T2 measurements are sensitive to fluid lev-
els within the muscle and can identify muscle oedema [16]. 
Metabolic fat changes is associated with bone changes such 
as osteoarthritis and osteoporosis that tend to occur in older 
people [17]; MR-based FF measurements are able to quan-
tify the degree of steatosis in organs [18], and specifically 
myosteatosis in the muscle which is regarded as a measure of 
muscle quality [19]. DTI is sensitive to muscle tissue micro-
structure, and may be useful in the assessment of changes 
of muscle fibres [20] and have been shown to be sensitive 
to differences due to age [21]. MRI-based muscle volume 
measurements can be used to quantify the loss of muscle 
mass. Muscle mass has been shown to be associated with 
fractures [22], and loss of muscle mass is a main diagnostic 
criterion for sarcopenia [23].

Whilst these measures have been demonstrated to be 
sensitive to age-related differences in muscle, they have not 
been compared with formal measurements of frailty or with 
quantitative muscle power measurements. These relation-
ships need to be understood if qMRI measurements are to 
be used clinically as diagnostic or monitoring biomarkers. 
Therefore, the aim of this study was to investigate whether 
qMRI techniques are sufficiently sensitive to detect differ-
ences in muscle properties between young, middle-aged and 
older participants and to show how qMRI parameters relate 
to muscle function and frailty.

Methods

Study design

This prospective, cross-sectional study was conducted 
at Leeds Teaching Hospitals NHS Trust (LTHT). It was 
approved by the local research ethics committee (17/
EM/0079) and all participants provided written informed 
consent. Participants were recruited between May 2017 
and December 2018 into three sex-matched age groups: 
‘young’ (18–30 years), ‘middle-aged’ (31–68 years), and 
‘older’ (≥ 69 years). The age classifications for the young 
and older participant groups were chosen based on the 
European MyoAge study [24]. Sample size was based on 
published guidelines recommending between 12 and 30 
participants per group to estimate parameters for power-
ing future trials [25]. The older participants included par-
ticipants from a longitudinal research cohort [The Com-
munity Ageing Research 75 + (CARE-75 +) Study] (Trial 
registration number ISRCTN16588124) [26]. The English 
Longitudinal Study of Ageing (ELSA) frailty index (FI) 
scores (0–10 = very fit, 11–14 = well, 15–24 = vulnerable, 
25 + frail [27]) were obtained for the older participants to 
investigate correlation between MRI and muscle function 
with FI.

Inclusion criteria included (1) being asymptomatic of 
muscle disease, (2) no previous history of musculoskeletal 
disorders, (3) no corticosteroid treatment within the past 3 
years with doses > 5 mg/day, (4) no HMG-CoA reductase 
inhibitors for the past 3 years. These criteria were ascer-
tained by self-reporting from the participant.

Exclusion criteria for participants were age < 18 years, 
contraindications to MRI, previous history of muscle 
disorder, spinal disease and neuropathy, an ELSA frailty 
index score of ≤ 14 to ensure participants could carry out 
the study. Osteoarthritis was not an exclusion criterion due 
to its high prevalence in the older population.

Magnetic resonance imaging measurements

MR data were acquired using a MAGNETOM Verio 3T 
MR scanner (Siemens Healthcare, Erlangen, Germany). 
The imaging protocol has been previously described [15]. 
Images of the dominant thigh (the right if the participant 
was unsure) were acquired using two small four-channel 
flex coils.

All quantitative images were aligned to each other and 
acquired with the same field of view to enable cross-
propagation of regions of interest (ROI)s. For fat quan-
titation, a 40-slice, volume-interpolated breath-hold 
examination (VIBE), 2-point Dixon sequence was used 
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[15]. Diffusion-weighted images were acquired using a 
STimulated Echo Acquisition Mode (STEAM) prototype 
sequence, with an echo-planar imaging (EPI) readout [28] 
and spectral adiabatic inversion recovery (SPAIR) fat sup-
pression [15].

For T2 measurements, axial images were obtained 
using a T2-weighted, multi-echo, spin-echo (MESE) 
sequence with SPAIR fat suppression with an echo train 
length 16, and echo times (TE) of 9.6, 19.2, 28.8, 38.4, 
48.0, 57.6, 67.2, 76.8, 86.4, 96.0, 105.6, 115.2, 124.8, 
134.4, 144.0, 153.6 ms, repetition time (TR) of 1500 ms, 
slice thickness 5 mm, matrix 256 × 256, number of aver-
ages = 1, with a field of view of 300 × 300 mm.

Regions of interest (ROIs) were contoured using Osi-
rix imaging software (version 4.0; open-source DICOM 
viewer, https ://osiri x-viewe r.com). Regions depicting 
the individual hamstring and quadriceps muscles were 
drawn on the middle slice of the in-phase VIBE Dixon 
volume for each participant, avoiding fascial tissue and 
subcutaneous fat. ROIs were copied to the corresponding 
diffusion parameter maps, accounting for differences in 
image resolution, and the mean value within each ROI 
was measured. The quantitative MRI slice analysed corre-
sponded to the central slice (slice 20) of the VIBE Dixon 
muscle volume.

Fat fraction values were calculated from the fat and 
water images generated from the VIBE Dixon images 
for each ROI. To calculate T2 values the signal intensity 
versus echo time decay curves from each ROI were fitted 
using a mono-exponential decay function. To reduce the 
effect of additional signal from stimulated echoes, the 
signal from the earliest time point was excluded from 
the fit [29].

Muscle volume estimates were obtained using a semi-
automated algorithm that used fat fraction maps gener-
ated from the VIBE Dixon volume data. The algorithm 
only assigned a voxel as being muscle provided it did 
not correspond to regions of bone and had a fat frac-
tion of less than 50%. Muscle from the contralateral leg 
was excluded using a bounding box. Bone was excluded 
using a 3D-connected components algorithm (bwcon-
ncomp, MATLAB) from a seed point manually placed 
within the bone on the central slice of the VIBE Dixon 
volume. Finally, a mask defining the muscle was obtained 
by thresholding, using a fat fraction threshold of < 50% 
for muscle. This threshold has been previously used in 
muscle volume measurements in the erector spinae mus-
cles [30]. Muscle masks were only defined between slice 
5 and 35 of the 40-slice volume to avoid errors due to 
signal drop-off at the outer extremities of the receive coil. 
The volume was defined as the number of voxels in the 
muscle mask multiplied by the voxel size, multiplied by 
the slice width.

Muscle strength assessments

Knee extension and flexion isokinetic assessment of the 
dominant thigh were performed following MRI at a con-
trolled room temperature of 20 °C using an isokinetic bio-
dex system 4 muscle testing and rehabilitation isokinetic 
dynamometer (IPRS Mediquipe Limited, UK). Partici-
pants were instructed to refrain from strenuous physical 
activity for 24 h prior to assessment. After a standard-
ised warm-up, participants were positioned according to 
the manufacturer’s instructions. Gravitational correction 
was performed at 180°. Isokinetic knee extension–flexion 
(concentric–concentric) at 60°/s was used to collect data. 
Participants performed three maximum effort repetitions 
for three sets, separated by a 30 s rest interval. Standard-
ized verbal stimuli were provided throughout the evalua-
tion. Power (Watts) was the assessed variable. Handgrip 
strength was also measured using a Jamar plus isokinetic 
dynamometer. Participants had their grip strength meas-
ured in their dominant hand for three sets and the mean 
value was recorded. In older people only, gait speed was 
measured by conducting a 4 m walk test [23].

Statistical analyses

Offline image analysis was performed using MATLAB soft-
ware (R2018b, Mathworks, Nattick, MA, USA). Statistical 
analyses were performed using SPSS (IBM SPSS Statis-
tics for Windows, Version 25.0. Armonk, NY: IBM Corp). 
One-Way ANOVA with a Bonferroni post hoc analysis was 
used to test for significant differences in quantitative MR, 
handgrip strength and muscle power measurements between 
all groups.

Spearman’s rank correlation was used to measure cor-
relation. rs Values ≥ 0.3 were considered as indicative of 
potential correlation. Correlations between participants with 
handgrip and frailty were only calculated in older partici-
pants who had undergone an ELSA frailty index assessment.

Results

18 young (mean age 26 ± 8), 18 middle-aged (mean age 
49 ± 19), and 18 older (mean age 79 ± 5 and mean ELSA 
frailty index score 10 ± 5) participants took part in this study. 
None of the older participants had sarcopenia as determined 
by the EWGSOP sarcopenia classification criteria [23]. Each 
group consisted of nine males and nine females. There were 
differences in quantitative MRI and muscle strength between 
all groups. Descriptive data for quantitative MRI and muscle 
power/volume measurements are shown in Tables 1and 2.

https://osirix-viewer.com
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Muscle T2

T2 increased with age (Table 1). Within the hamstrings, dif-
ferences between young and old, young and middle-aged, 
middle-aged and older participants were 3.6 ms (95% CI 
1.8, 5.2; p < 0.001), 1.5 ms (95% CI 0.4, 2.7; p = 0.01) and 
2.1 ms (95% CI 0.3, 3.7; p = 0.02), respectively. Within the 
quadriceps these differences were 4.4 ms (95% CI 2.8, 5.9; 
p < 0.001), 2.2 ms (95% CI 1, 3.4; p = 0.001), and 2.2 ms 
(95% CI 0.6, 3.7; p = 0.005), respectively (Fig. 1).

Muscle fat fraction

Fat fraction increased within each age group increment 
(Table  1). Within the hamstrings, differences between 
young and old, young and middle-aged, middle-aged and 
older participants were 6.1% (95% CI 4.0, 8.2; p < 0.001), 
2.2% (95% CI 0.8, 3; p = 0.003) and 3.9% (95% CI 2, 6; 
p < 0.001), respectively. Within the quadriceps, the differ-
ences were 4.2% (95% CI 3, 5; p < 0.001) 1.0% (95% CI 0.2, 
3; p = 0.02) and 3.2% (95% CI 1, 4; p < 0.001), respectively 
(Fig. 1).

Muscle diffusion tensor imaging

Mean diffusivity (MD) increased with age (Table  1). 
Within the hamstrings, differences between young and 
old, young and middle-aged, middle-aged and older par-
ticipants for MD were 0.14 × 10−3 mm2 s (95% CI 0.06, 
0.21; p < 0.001), 0.08 × 10−3 mm2  s (95% CI 0.01, 0.1; 
p = 0.01) and 0.06 × 10−3  mm2  s (95% CI 0.11, 0.13; 
p = 0.1), respectively. Within the quadriceps, the dif-
ferences were 0.11 × 10−3  mm2  s (95% CI 0.03, 0.16; 
p = 0.002), 0.05 × 10−3 mm2 s (95% CI 0.01, 0.1; p = 0.1) 
and 0.06 × 10−3 mm2 s (95% CI 0.03, 0.11; p = 0.2), respec-
tively (Fig. 1), demonstrating higher MD in older participant 
groups.

There were no substantial differences in fractional ani-
sotropy (FA) between age groups (Table 1). Within the 
hamstrings, differences between young and old, young and 
middle-aged, middle-aged and older participants for were 
0.03 (95% CI 0.01, 0.06; p = 0.3), 0.02 (95% CI 0.01, 0.06; 
p = 0.3) and 0.01 (95% CI 0.01, 0.02; p = 0.9), respectively. 
Within the quadriceps, these were 0.02 (95% CI 0.01, 0.03; 
p = 0.9), 0.01 (95% CI 0.01, 0.02; p = 0.5), and 0.01 (95% CI 
0.01, 0.03; p = 0.9), respectively (Fig. 1).

Fig. 1  Quantitative MRI measurements of young, middle-aged and older participant groups. a T2, b fat fraction, c mean diffusivity, d fractional 
anisotropy
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Muscle volume

Muscle volume decreased with age (Table 2). There were 
differences in muscle volume between young and old, 
young and middle-aged, middle-aged and older participants 
of  412cm3 (95% CI 106, 690; p = 0.006),  198cm3 (95% CI 
0, 500; p = 0.1) and 214  cm3 (95% CI 62, 493; p = 0.1), 
respectively.

Muscle power and grip strength

Muscle power measurements for knee flexion were related 
to the hamstrings, and for knee extension to the quadriceps, 
which are the primary muscles for the forms of movement, 
respectively. Muscle power and grip strength decreased 
between each age group increment (Table 2). There was a 
difference in hamstring flexion power between young and 
old, young and middle-aged, middle-aged and older par-
ticipants of 27 W (95% CI 15, 39; p < 0.001), 12 W (95% 
CI 1, 25; p = 0.03) and 15 W (95% CI 2.2, 27.4; p = 0.01), 
respectively.

Within the quadriceps, there was a difference in exten-
sion power between young and old, young and middle-aged, 
middle-aged and older participants of 56 W (95% CI 33, 79; 
p < 0.001), 33 W (95% CI 11, 58; p = 0.005) and 23 W (95% 

CI 1, 45; p = 0.07), respectively, demonstrating lower muscle 
power in the older groups.

There was a difference in handgrip strength between 
young and old, young and middle-aged, middle-aged and 
older participants of 13.7 kg (95% CI 6.6, 20.8; p < 0.001), 
5.3 kg (95% CI 1, 11; p = 0.07) and 8.4 kg (95% CI 3.1, 13.9; 
p = 0.003), respectively.

MRI and muscle function in all participants

Considering the entire 54 participant dataset: (Figs. 2, 3), 
T2 correlated with flexion (rs = −0.7; p < 0.001), exten-
sion (rs = −0.7; p < 0.001) and handgrip strength (rs = −0.6; 
p < 0.001). FF correlated with flexion (rs = −0.6; p < 0.001), 
extension (rs = −0.7; p < 0.001) and handgrip strength 
(rs = −0.6; p < 0.001). MD correlated with flexion (rs = −0.4; 
p = 0.04), extension (rs = −0.3; p = 0.05) but did not correlate 
with handgrip strength (rs = −0.1; p = 0.9). FA did not corre-
late with any of the muscle functions: FA with flexion power 
(rs = 0.1; p = 0.9), extension power (rs = −0.1; p = 0.1), and 
handgrip strength (rs = 0.01; p = −0.9). Handgrip strength 
was also found to be correlated with flexion power (rs = 0.7; 
p < 0.001) and extension power (rs = 0.7; p < 0.001).

Fig. 2  Quantitative MRI of the quadriceps and correlation versus extension power for all participants (young, middle-aged and older participants 
combined as one). a T2, b fat fraction, c mean diffusivity, d fractional anisotropy
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MRI, muscle function and frailty index in older 
participants

As only participants in the older group were scored with the 
ELSA frailty index (FI) [31], the association between muscle 
function parameters with the ELSA frailty index could only 
be assessed in this group.

Quantitative MRI and muscle volume and knee flexion 
and extension correlated with FI and gait speed in older par-
ticipants (Fig. 4).

In the hamstrings, T2 correlated with FI rs = 0.8; 
p < 0.001, gait speed rs = −0.4, p = 0.05, knee flexion 
rs = −0.7, p = 0.01, and in the quadriceps with FI rs = 0.7, 
p < 0.001, gait speed rs = −0.5; p = 0.007, knee extension 
rs = −0.6; p < 0.001.

In the hamstrings FF correlated with FI rs = 0.7, p < 0.001, 
gait speed rs = −0.4; p = 0.02, knee flexion rs = −0.6; 
p = 0.001 and in the quadriceps with FI rs = 0.7; p < 0.001, 
gait speed rs = −0.6, p = 0.001, knee extension rs = −0.7; 
p < 0.001.

In the hamstrings MD was weakly correlated with FI 
rs = 0.3; p = 0.2, gait speed rs = −0.3, p = 0.1, knee flexion 
rs = −0.4, p = 0.004 and in the quadriceps with FI rs = 0.4, 
p = 0.1, gait speed rs = −0.3, p = 0.2, knee extension 
rs = −0.4; p = 0.007.

Muscle volume (Fig. 5) correlated with FI rs = −0.6; 
p < 0.001, gait speed rs = 0.6; p = 0.01, knee flexion rs = 0.6; 
p < 0.001, knee extension rs = 0.6; p < 0.001.

Knee flexion (Fig.  5) correlated with FI (rs = −0.7, 
p = 0.002), gait speed (rs = −0.4, p = 0.05) and grip strength 
(rs = 0.7; p < 0.001). Knee extension (Fig. 5) correlated with 
FI (rs = −0.7; p = 0.001), gait speed (rs = 0.5; p = 0.01) and 
grip strength (rs = 0.7; p < 0.001).

Handgrip strength correlated with frailty index and gait 
speed (FI rs = −0.7, p = 0.001, gait speed rs = 0.5, p = 0.06).

Discussion

This study has shown that MRI T2, FF, MD, muscle vol-
ume differs across age groups. Furthermore, these meas-
urements also correlated with muscle power and strength 
measurements and with an independent measure of frailty. 
This suggests that, not only is MRI an independent measure 
of muscle strength, but also shows potential as a quantita-
tive adjunct assessment of muscle strength and frailty. As 
current measures of frailty can be subjective or qualitative, 
MRI-based measures could be the basis of a more robust 
measure of frailty. Finally, we have shown that grip strength 
correlates with lower limb function and frailty index and, 

Fig. 3  Quantitative MRI of the hamstrings and correlation versus flexion power for all participants (young, middle-aged and older participants 
combined as one). a T2, b fat fraction, c mean diffusivity, d fractional anisotropy
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therefore, has some utility as an indicative measure of over-
all muscle function status.

The increase of muscle T2 with age agrees with previous 
work [32]. Ageing is known to be associated with increased 
systemic inflammatory markers, such as CRP, IL-1RA and 
IL-6 [33]. There is evidence to suggest that T2 is raised 
in muscle inflammation [34]. However, this may be due to 
inadequate fat suppression increasing the T2 values [35]. 
We found that the FF was higher in the older participants, 
suggesting that fat is also increased with age, therefore, this 
effect cannot be ruled out as contributing to the raised T2 
in our study.

Muscle volume correlated with muscle power and there 
were differences in muscle volume between the age groups. 
As muscle mass is a primary component in the diagnosis 
of sarcopenia, the more accurate muscle volume measure-
ments available with quantitative MRI may be useful in the 
diagnosis of sarcopenia, which currently has no accepted 
diagnostic classification criteria.

Mean diffusivity was greater with age and there were 
small, non-significant, differences in fractional anisotropy, 
with lower measurements in older participants. Previous 
studies reporting the relationship between age and muscle 
water MD have shown results that differ from those pre-
sented here [21]. This discrepancy has arisen due to the 

differing experimental methods employed to measure dif-
fusion. This is a consequence of our use of a long diffusion 
time (1000 ms), compared to a spin-echo sequence, that 
can be utilised when carrying out measurements in muscle 
using the STEAM technique to allow for increased water 
diffusion across the width of the muscle fibre. Our observed 
trend of increasing MD with age agrees with a number of 
previous studies including that of Sinha et al. [14] who also 
used DTI to acquire MD. This increase in MD can be inter-
preted using a model of muscle ageing in which differences 
in these diffusion metrics occur due to fibre atrophy and a 
relative increase in fibre cross-sectional asymmetry. Thus, 
the increase in MD could be due to the increased amount of 
intramuscular extracellular connective tissue.

Handgrip tests are frequently used as a proxy measure 
of global muscle strength [36]. Whilst it is not correct to 
equate forearm strength with muscle parameters of the thigh, 
handgrip strength is a frequently used assessment of frailty 
and sarcopenia [72, 80]. As far as the authors are aware, 
this is the first study to demonstrate an association of hand-
grip strength with qMRI measurements in the thigh. This 
validates handgrip strength as a useful indicator of overall 
muscle strength, although it does not provide information on 
muscle quality, such as fatty infiltration and inflammation.

Fig. 4  Quantitative T2 and FF MRI and frailty index correlation of older participants in the hamstrings and quadriceps. a T2 hamstrings, b T2 
quadriceps, c fat fraction hamstrings, d fat fraction quadriceps
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Our study is subject to limitations. We acknowledge that 
this is a pilot study, and therefore, the study has a relatively 
small sample size. Multi-echo sequences over-estimate T2 
due to the formation of stimulated echoes [29], but are com-
monly used in clinical practice to keep scan times tolerably 
short for participants. More elegant analysis methods that 
take the full extended phase graph into account have been 
used [37], however, these methods are complex and not eas-
ily available in clinical settings. The two-point Dixon imag-
ing technique did not correct for T2* effects, eddy currents, 
noise related bias, or the spectral complexity of fat, although 
they correlate with confounder-corrected fat quantitation 
methods and with spectroscopy [38]. Only 6 diffusion direc-
tions were used to decrease the scan times, when 12 are rec-
ommended to reduce bias between the encoding and under-
lying tissue, which could have limited the sensitivity of our 
measurements to differences in diffusion [39]. Our muscle 
volume measurements did not consider differences in shape 
and length of thigh muscles between patients, although we 
attempted to control for these differences by positioning rela-
tive to an anatomical reference marker, similar to previous 
studies [40]. However, work has also been published demon-
strating the validity of measuring total muscle volume using 
one slice as it is frequently reported [41].

In conclusion, ageing is associated with greater MRI T2, 
FF, mean diffusivity and lower muscle volume, grip strength 
and muscle power. Quantitative MRI parameters correlated 
with grip strength, muscle power and the ELSA frailty 
index. Quantitative MRI measurements have the potential 
to be useful markers of age and muscle health and could be 
used in the management of sarcopenia and frailty.
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