Skip to main content
Log in

Are there different factors affecting walking speed and gait cycle variability between men and women in community-dwelling older adults?

  • Original Article
  • Published:
Aging Clinical and Experimental Research Aims and scope Submit manuscript

Abstract

Background

Few studies have examined the relationships between walking speed and gait cycle variability, and muscle strength and postural stability, with a focus on gender differences.

Aim

The aim of this study was to examine whether there are different factors affecting walking speed and gait cycle variability between men and women in community-dwelling older adults.

Methods

The subjects comprised 712 community-dwelling older adults (252 men, 460 women, aged 68.7 ± 4.8 years). Walking speed and coefficient of variation (CV) of step time at a comfortable walking pace were measured. The maximal isometric strength of six lower limb muscles and postural stability were evaluated. Stepwise regression analysis was performed, using lower limb muscle strength and postural stability as independent variables, to investigate the association with walking speed or CV.

Results

For older men, age, body mass index (BMI) and quadriceps setting (QS) strength were significant and independent determinants of walking speed. No variables were identified as significant determinants of CV. For older women, BMI and hip flexion, hip abduction, QS muscle strength were significant determinants of walking speed. Only hip abduction strength was a significant determinant of CV.

Discussion

The results of this study suggest that QS strength is related to walking speed in both men and women, whereas hip flexion and abduction muscle strength are related to walking speed, and hip abduction muscle strength is related to gait cycle variability in older women.

Conclusion

Gender differences exist in factors affecting walking speed and gait cycle variability in community-dwelling older adults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Vellas B, Cayla F, Bocquet H et al (1987) Prospective study of restriction of activity in old people after falls. Age Ageing 16:189–193. doi:10.1093/ageing/16.3.189

    Article  CAS  PubMed  Google Scholar 

  2. Kannus P, Sievänen H, Palvanen M et al (2005) Prevention of falls and consequent injuries in elderly people. Lancet 366:1885–1893. doi:10.1016/S0140-6736(05)67604-0

    Article  PubMed  Google Scholar 

  3. Talbot LA, Musiol RJ, Witham EK et al (2005) Falls in young, middle-aged and older community dwelling adults: perceived cause, environmental factors and injury. BMC Public Health 5:86. doi:10.1186/1471-2458-5-86

    Article  PubMed  PubMed Central  Google Scholar 

  4. Niino N, Tsuzuku S, Ando F et al (2000) Frequencies and circumstances of falls in the National Institute for Longevity Sciences, Longitudinal Study of Aging (NILS-LSA). J Epidemiol 10:S90–S94. doi:10.2188/jea.10.1sup_90

    Article  CAS  PubMed  Google Scholar 

  5. Verghese J, Holtzer R, Lipton RB et al (2009) Quantitative gait markers and incident fall risk in older adults. J Gerontol A Biol Sci Med Sci 64:896–901. doi:10.1093/gerona/glp033

    Article  PubMed  Google Scholar 

  6. Mortaza N, Abu Osman NA, Mehdikhani N (2014) Are the spatio-temporal parameters of gait capable of distinguishing a faller from a non-faller elderly? Eur J Phys Rehabil Med 50:677–691. http://www.ncbi.nlm.nih.gov/pubmed/24831570

  7. Hausdorff JM, Rios DA, Edelberg HK (2001) Gait variability and fall risk in community-living older adults: a 1-year prospective study. Arch Phys Med Rehabil 82:1050–1056. doi:10.1053/apmr.2001.24893

    Article  CAS  PubMed  Google Scholar 

  8. Bohannon RW (1997) Comfortable and maximum walking speed of adults aged 20–79 years: reference values and determinants. Age Ageing 26:15–19. doi:10.1093/ageing/26.1.15

    Article  CAS  PubMed  Google Scholar 

  9. Tiedemann A, Sherrington C, Lord SR (2005) Physiological and psychological predictors of walking speed in older community-dwelling people. Gerontology 51:390–395. doi:10.1159/000088703

    Article  PubMed  Google Scholar 

  10. Ringsberg K, Gerdhem P, Johansson J et al (1999) Is there a relationship between balance, gait performance and muscular strength in 75-year-old women? Age Ageing 28:289–293. doi:10.1093/ageing/28.3.289

    Article  CAS  PubMed  Google Scholar 

  11. Hayashida I, Tanimoto Y, Takahashi Y et al (2014) Correlation between muscle strength and muscle mass, and their association with walking speed, in community-dwelling elderly Japanese individuals. PLoS One 9:e111810. doi:10.1371/journal.pone.0111810

    Article  PubMed  PubMed Central  Google Scholar 

  12. Callisaya ML, Blizzard L, Schmidt MD et al (2009) A population-based study of sensorimotor factors affecting gait in older people. Age Ageing 38:290–295. doi:10.1093/ageing/afp017

    Article  PubMed  Google Scholar 

  13. Bendall MJ, Bassey EJ, Pearson MB (1989) Factors affecting walking speed of elderly people. Age Ageing 18:327–332. doi:10.1093/ageing/18.5.327

    Article  CAS  PubMed  Google Scholar 

  14. Callisaya ML, Blizzard L, McGinley JL et al (2010) Sensorimotor factors affecting gait variability in older people-a population-based study. J Gerontol A Biol Sci Med Sci 65A:386–392. doi:10.1093/gerona/glp184

    Article  Google Scholar 

  15. Hausdorff JM, Nelson ME, Kaliton D et al (2001) Etiology and modification of gait instability in older adults: a randomized controlled trial of exercise. J Appl Physiol 90:2117–2129

    CAS  PubMed  Google Scholar 

  16. Matsuda K, Ikeda S, Nakahara M et al (2015) Factors affecting the coefficient of variation of stride time of the elderly without falling history: a prospective study. J Phys Ther Sci 27:1087–1090. doi:10.1589/jpts.27.1087

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bohannon RW (1997) Reference values for extremity muscle strength obtained by hand-held dynamometry from adults aged 20 to 79 years. Arch Phys Med Rehabil 78:26–32. doi:10.1016/S0003-9993(97)90005-8

    Article  CAS  PubMed  Google Scholar 

  18. Stoll T, Huber E, Seifert B et al (2000) Maximal isometric muscle strength: normative values and gender-specific relation to age. Clin Rheumatol 19:105–113. doi:10.1007/s100670050026

    Article  CAS  PubMed  Google Scholar 

  19. Seino S, Shinkai S, Fujiwara Y et al (2014) Reference values and age and sex differences in physical performance measures for community-dwelling older Japanese: a pooled analysis of six cohort studies. PLoS One 9:e99487. doi:10.1371/journal.pone.0099487

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ostchega Y, Harris TB, Hirsch R et al (2000) Reliability and prevalence of physical performance examination assessing mobility and balance in older persons in the US: data from the Third National Health and Nutrition Examination Survey. J Am Geriatr Soc 48:1136–1141. doi:10.1111/j.1532-5415.2000.tb04792.x

    Article  CAS  PubMed  Google Scholar 

  21. Merrill SS, Seeman TE, Kasl SV et al (1997) Gender differences in the comparison of self-reported disability and performance measures. J Gerontol A Biol Sci Med Sci 52:M19–M26. doi:10.1093/gerona/52A.1.M19

    Article  CAS  PubMed  Google Scholar 

  22. Ishizaki T, Furuna T, Yoshida Y et al (2011) Declines in physical performance by sex and age among nondisabled community-dwelling older Japanese during a 6-year period. J Epidemiol 21:176–183. doi:10.2188/jea.JE20100138

    Article  PubMed  PubMed Central  Google Scholar 

  23. Deandrea S, Lucenteforte E, Bravi F et al (2010) Risk factors for falls in community-dwelling older people: a systematic review and meta-analysis. Epidemiology 21:658–668. doi:10.1097/EDE.0b013e3181e89905

    Article  PubMed  Google Scholar 

  24. Brito TA, Coqueiro RDS, Fernandes MH et al (2014) Determinants of falls in community-dwelling elderly: hierarchical analysis. Public Health Nurs 31:290–297. doi:10.1111/phn.12126

    Article  PubMed  Google Scholar 

  25. Stevens JA, Sogolow ED (2005) Gender differences for non-fatal unintentional fall related injuries among older adults. Inj Prev 11:115–119. doi:10.1136/ip.2004.005835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nakayama T (2010) Implementation of a genomic epidemiology and public health activities in a community: establishing a “rule” for the protection and utilization of individual information. Jap J Genet Couns 31:117–121. http://mol.medicalonline.jp/library/journal/download?GoodsID=dg8genco/2010/003103/001&name=0117-0121j&UserID=130.54.130.244

  27. Lacour M, Barthelemy J, Borel L et al (1997) Sensory strategies in human postural control before and after unilateral vestibular neurotomy. Exp Brain Res 115:300–310. doi:10.1007/PL00005698

    Article  CAS  PubMed  Google Scholar 

  28. Isableu B, Ohlmann T, Crémieux J et al (2003) Differential approach to strategies of segmental stabilisation in postural control. Exp Brain Res 150:208–221. doi:10.1007/s00221-003-1446-0

    Article  PubMed  Google Scholar 

  29. Cooper R, Hardy R, Sayer A et al (2011) Age and gender differences in physical capability levels from mid-life onwards: the harmonisation and meta-analysis of data from eight UK cohort studies. PLoS One 6:e27899. doi:10.1371/journal.pone.0027899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Callisaya ML, Blizzard L, Schmidt MD et al (2010) Ageing and gait variability—a population-based study of older people. Age Ageing 39:191–197. doi:10.1093/ageing/afp250

    Article  PubMed  Google Scholar 

  31. Gallagher D, Visser M, Meersman REDE et al (1997) Appendicular skeletal muscle mass: effects of age, gender, and ethnicity. J Appl Physiol 83:229–239

    CAS  PubMed  Google Scholar 

  32. Baumgartner RN, Waters DL, Gallagher D et al (1999) Predictors of skeletal muscle mass in elderly men and women. Mech Ageing Dev 107:123–136. doi:10.1016/S0047-6374(98)00130-4

    Article  CAS  PubMed  Google Scholar 

  33. Simoneau JA, Bouchard C (1989) Human variation in skeletal muscle fiber-type proportion and enzyme activities. Am J Physiol 257:E567–E572

    CAS  PubMed  Google Scholar 

  34. Costill DL, Daniels J, Evans W et al (1976) Skeletal muscle enzymes and fiber composition in male and female track athletes. J Appl Physiol 40:149–154

    CAS  PubMed  Google Scholar 

  35. Era P, Sainio P, Koskinen S et al (2006) Postural balance in a random sample of 7979 subjects aged 30 years and over. Gerontology 52:204–213. doi:10.1159/000093652

    Article  CAS  PubMed  Google Scholar 

  36. Omori G, Koga Y, Tanaka M et al (2013) Quadriceps muscle strength and its relationship to radiographic knee osteoarthritis in Japanese elderly. J Orthop Sci 18:536–542. doi:10.1007/s00776-013-0383-4

    Article  CAS  PubMed  Google Scholar 

  37. Andersen LL, Magnusson SP, Nielsen M et al (2006) Neuromuscular activation in conventional therapeutic exercises and heavy resistance exercises: implications for rehabilitation. Phys Ther 86:683–697. http://www.ncbi.nlm.nih.gov/pubmed/16649892

  38. Perry J (2010) Gait analysis: normal and pathological function. SLACK, Thorofare

    Google Scholar 

  39. Judge JO, Davis RB, Ounpuu S (1996) Step length reductions in advanced age: the role of ankle and hip kinetics. J Gerontol A Biol Sci Med Sci 51:M303–M312

    Article  CAS  PubMed  Google Scholar 

  40. MacKinnon CD, Winter DA (1993) Control of whole body balance in the frontal plane during human walking. J Biomech 26:633–644. doi:10.1016/0021-9290(93)90027-C

    Article  CAS  PubMed  Google Scholar 

  41. Neptune RR, Kautz SA, Zajac FE (2001) Contributions of the individual ankle plantar flexors to support, forward progression and swing initiation during walking. J Biomech 34:1387–1398. doi:10.1016/S0021-9290(01)00105-1

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tome Ikezoe.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. All study procedures were approved by the ethics committee of Kyoto University Graduate School of Medicine and by the Nagahama Municipal Review Board.

Informed consent

Informed consent was obtained from all the participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inoue, W., Ikezoe, T., Tsuboyama, T. et al. Are there different factors affecting walking speed and gait cycle variability between men and women in community-dwelling older adults?. Aging Clin Exp Res 29, 215–221 (2017). https://doi.org/10.1007/s40520-016-0568-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40520-016-0568-8

Keywords

Navigation