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Abstract
Obesity is a public health crisis, presenting a huge burden on health care and the economic system in both developed and 
developing countries. According to the WHO’s latest report on obesity, 39% of adults of age 18 and above are obese, with 
an increase of 18% compared to the last few decades. Metabolic energy imbalance due to contemporary lifestyle, changes in 
gut microbiota, hormonal imbalance, inherent genetics, and epigenetics is a major contributory factor to this crisis. Multi-
ple studies have shown that probiotics and their metabolites (postbiotics) supplementation have an effect on obesity-related 
effects in vitro, in vivo, and in human clinical investigations. Postbiotics such as the SCFAs suppress obesity by regulating 
metabolic hormones such as GLP-1, and PPY thus reducing feed intake and suppressing appetite. Furthermore, muramyl 
di-peptides, bacteriocins, and LPS have been tested against obesity and yielded promising results in both human and mice 
studies. These insights provide an overview of targetable pharmacological sites and explore new opportunities for the safer 
use of postbiotics against obesity in the future.

Keywords Obesity · Energy metabolism · Gut microbiome · Postbiotics · SCFAs · Muramyl di-peptides · Bacteriocins · 
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Introduction

Over the decades, researchers have faced a global chal-
lenge in understanding preventing and treating obesity and 
its accompanying metabolic consequences. Obesity preva-
lence and its related metabolic conditions have skyrocketed 
worldwide, particularly in developed countries [1, 2]. Given 
the link between obesity and both short- and long-term poor 
somatic, psychological, and socioeconomic circumstances, 
various studies support the WHO's assessment that obesity 
is one of the most serious threats to global public health 
today [3–5]. The development of obesity is linked to several 
variables. Along with the genetics, hormonal, and environ-
mental factors, the utilization of high-calorie junk foods, a 
high consumption rate, less physically demanding occupa-
tions, a lack of physical activities, insufficient sleep, and 
repeated use of some medications contribute significantly to 
the onset of obesity [6]. Obesity is a complex and heritable 
illness caused by the interaction of genetic predisposition, 
epigenetics, metagenomics, and the environment. Numer-
ous genes related to syndromic monogenic, non-syndromic 
monogenic, oligogenic, and polygenic obesity have been 
found in attempts to understand the genetic basis of obesity 
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[7]. The genetics of leanness are also regarded as important 
since they reflect some of the etiologies of obesity. Various 
studies have witnessed different genes linked to monogenic 
obesity in humans. The mutations in leptin (an adipocyte-
specific secreted protein associated with energy expenditure 
and appetite), leptin receptor, melanocortin 4 receptor (a 
G-protein-coupled receptor involved in energy homeosta-
sis), and prohormone convertase 1 (involved in prohormone 
management), defects in pro-opiomelanocortin precursor 
(precursor of adrenocorticotrophin, melanocyte-stimulat-
ing hormone) [8]. The variations in these genes were also 
associated with severe consequences including a defective 
immune system, cardiovascular diseases, insulin resistance, 
metabolic dysfunctions, type-2 diabetes, ageing, and cancer 
[9]. The hormones secreted from the endocrine tissue, adi-
pose tissue, and neuroendocrine cells mediate appetite, body 
composition, and glucose homeostasis [10, 11].

Improper nutrition not only affects the composition and 
function of the gut microbiota, but it also has a direct impact 
on energy intake and can contribute to the development of 
obesity [12]. The neural system regulates energy expendi-
ture through the stimulants from the gastrointestinal tract 
in the form of neurotransmitters and other neuropeptides 
generated by gut microbiota [7, 13]. The regulatory chemi-
cals generated by the microbiota have an impact on brain 
areas that are in charge of cognitive processes, emotions, 
and food consumption [14]. In obesity, the negative energy 
balance (due to increased physical activity or decreased 
food consumption, or both) is important concerning energy 
expenditure, physical and metabolic activities, and orexi-
genic signals [15].

The fact that probiotics and their metabolites play an 
important role in maintaining health and help in treating and 
mitigating various gastrointestinal (GIT) diseases/conditions 
via maintaining intestinal homeostasis cannot be ignored 
[16, 17]. “Postbiotics” is a term used to describe biologi-
cal components produced by probiotics that have beneficial 
effects on the host. These biological components such as 
short-chain fatty acids (SCFAs), bacteriocins, lipoteichoic 
acids, surface layer protein, and secreted protein were named 
postbiotics in recent scientific discoveries. [18–21]. It is 
worth noticing that the host microbiota varies among indi-
viduals and populations and so as well as its metabolites, 
which are linked to the difference in functional phenotype 
as well as the metabolic status of the host [22]. The use 
of SCFAs and other microbial compounds produced by the 
host’s gut microbiota may also explain the intricacy of the 
pathogenic pathways linked to obesity [23, 24]. Therefore, 
this review aims to describe the physiology and molecu-
lar mechanism that directly and indirectly lead to obesity, 
furthermore, highlighting the nutritional strategy of using 
postbiotics and its action mechanism in encountering obesity 
and weight gain.

Current global situation of obesity

The body mass index (BMI) scale is the most widely used 
to assess obesity [25]. According to the World Health 
Organization, BMI is “a basic indicator of weight-for-
height that is routinely used to classify adults as under-
weight, overweight, or obese”. The most recent report 
published by WHO (2022) obesity is an emerging epi-
demic in developed and developing countries worldwide. 
The WHO fact sheet (https:// world popul ation review. com/ 
count ry- ranki ngs/ obesi ty- rates- by- count ry) about obesity 
updated in 2022 reported about 39% of the adult popula-
tion aged 18 and above as obese, while those lower than 
18 has a rise of 18% in 2016 compared to the 4% in 1975.

Obesity and its consequences are important factors con-
tributing to morbidity, mortality, and compromise living 
standards, its complications can have a major effect on 
the financial and social life of an individual and popula-
tion [26]. As it is strongly linked with mortality due to 
high-risk diseases such as cardiovascular, liver diseases, 
and certain types of cancer [26–28]. A recent report by 
“Statista, 2022” (https:// lb- aps- front end. stati sta. com/ stati 
stics/ 12877 34/ rate- of- deaths- attri butab le- to- obesi ty- leadi 
ng- count ries- world wide/) showed that the mortality cred-
ited for obesity is 62.6 per 100,000 population.

Obesity and energy metabolism linkage/
consequences

In the recent era of industrialization, easy transportation, 
urbanization, and developments, a significant decline 
in physical activities leading to an imbalance of energy 
homeostasis cannot be ignored [29, 30]. These factors 
hugely favoured the condition of obesity and increased 
body weight by an easily and increased food access. 
Energy homeostasis refers to the intake of energy com-
pared to its expenditure within the frontiers of thermody-
namics law [31, 32]. A persistent positive energy results 
in obesity, it just takes a 1% increase in daily energy con-
sumption for the average person to accumulate a 10-kg 
gain in fat mass over a decade [32, 33]. The energy intake 
and energy expenditure balance maintain the whole body’s 
energy homeostasis, when this balance is disturbed due to 
the contemporary lifestyle tied to the energy rich diet, the 
surplus energy is stored in the form of adipose tissue lead-
ing to obesity [34]. Obesity causes increased circulation 
of free fatty acids (FFA), which in turn induces oxidative 
stress by stimulating the reactive oxygen species (ROS) 
[35]. The elevation in ROS is the factual cause of insu-
lin resistance. The decrease in liver antioxidant enzymes 

https://worldpopulationreview.com/country-rankings/obesity-rates-by-country
https://worldpopulationreview.com/country-rankings/obesity-rates-by-country
https://lb-aps-frontend.statista.com/statistics/1287734/rate-of-deaths-attributable-to-obesity-leading-countries-worldwide/
https://lb-aps-frontend.statista.com/statistics/1287734/rate-of-deaths-attributable-to-obesity-leading-countries-worldwide/
https://lb-aps-frontend.statista.com/statistics/1287734/rate-of-deaths-attributable-to-obesity-leading-countries-worldwide/
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glutathione (GSH) is strongly linked with a high-fat diet 
(HFD), whereas the NADPH oxidase, which is involved in 
(ROS) production, is increased [36, 37]. Markers of oxi-
dative stress increase in skeletal muscle because of HFD, 
which induces peripheral insulin resistance and ectopic fat 
storage [38, 39]. Over time, the pancreas gets exhausted 
and blood glucose levels begin to rise because there is not 
enough production of insulin to overcome the resistance. 
Once hyperglycemia occurs, the toxic effect on islet cells 
(glucotoxicity) intensifies the problem, thus lipotoxicity 
takes place as a result of increased FFAs levels [26, 40]. 
Insulin resistance in the liver, muscles, and adipose tis-
sue escalates proinflammatory cytokines and de-escalates 
anti-inflammatory cytokines, which results in chronic 
inflammation [26]. No wonder how risky is obesity, and 
its consequences, as it is significantly associated with life-
threatening diseases such as cardiovascular diseases, type 
two diabetes, cancer, osteoarthritis, and liver diseases [26, 
27]. These risks arise from the enlarged number of adipo-
cytes formation and their metabolism. Considering these 
consequences, obesity increases overall mortality, which 
needs serious attention.

Endocrinal regulation of obesity

The hormonal imbalance and its resulting abnormalities 
are significantly associated with obesity [41]. The lean 
body maintains the normal regulation of the endocrinal 
system, an increase in weight causes the disproportion 
of several hormones and affects normal physiology [14, 
41]. The hormones secreted from the endocrine tissue, 
adipose tissue, and neuroendocrine cells mediate appe-
tite, body composition, and glucose homeostasis [10, 
11]. These hormonal signals are strictly controlled in 
order to keep body weight/adiposity within a restricted, 
individually determined range, which can be influenced 
by factors such as calorie intake, meal composition, and 
lifestyle [10, 42]. In response to changed energy balance, 
the hypothalamus analyses and integrates a variety of neu-
ronal and humoral cues to coordinate eating and energy 
expenditure. Long-term signals from the hypothalamus 
provide information about the body’s energy resources, 
an endocrine condition, and overall body condition [43]. 
Meal initiation and termination are supervised by short-
term cues such as gut hormones and neurological impulses 
from the brain centre and gut. Both these short-term and 
long-term cues significantly influence energy expenditure 
by affecting sympathetic nerve outflow to brown adipose 
tissue and pituitary hormone release [44, 45]. Parallel to 
the neurological system’s control of appetite, the gut–brain 
axis communicates continuously from the stomach to the 
brain in both health and sickness. Not only does the gut 

microbiota connect with adjacent cells, but also produces 
and releases chemicals that can communicate with distant 
cells [46, 47]. In this regard, any changes to it may have a 
significant effect on appetite control. Gut microbiota and 
their metabolites (postbiotics) target the central nervous 
system (CNS) directly through vagal stimulation or indi-
rectly through immune–neuroendocrine processes. Indeed, 
fat tissues are metabolic/endocrine organ that secretes adi-
pokines, chemokines, and proinflammatory cytokines such 
as tumour necrosis factor-alpha (TNF-α), and interleukin-6 
(IL-6), and others, thus play an important role related to 
obesity, and inflammation [48]. The adipose tissue releases 
three major hormones leptin, adiponectin, and visfatin 
[10]. Leptin is released by the white adipose tissue accord-
ing to the body fat mass which induces an anorexigenic 
reaction and increases the expenditure of energy [49, 50]. 
The administration of leptin both peripheral and central 
significantly reduced the feed intake and feeding behaviour 
in mice [51]. Six alternative splice isoforms have been 
identified yet, and Ob-Rb among them is found high in the 
hypothalamus and other cells and acts as a primary sig-
nal transducer in the JAK–STAT signalling pathway [52]. 
Overall leptin acts as a mediator for energy homeostasis, 
through blood glucose regulation, feed intake, and eating 
behaviour in humans and mice [53, 54].

Adiponectin regulates insulin and acts as an anti-
inflammatory agent, which is reduced in obese conditions 
[28]. The synthesis of adiponectin is triggered by gluco-
corticoids, prolactin, growth hormone, and catecholamine, 
while inhibited by androgens and the paracrine actions of 
TNFα [55, 56]. Adiponectin stimulates glucose metabo-
lism and fatty acid oxidation in muscle tissue [57], while 
in the liver it increases insulin sensitivity, limits non-ester-
ified fatty acids inflow stimulates fatty acids oxidation, 
and minimizes glucose synthesis and release [58]. A study 
performed in adiponectin knockout mice showed reduced 
hepatic insulin sensitivity and glucose intolerance [59].

Visfatin is an insulin-like peptide hormone generated by 
adipocytes that stimulates glucose absorption in muscles 
and skin while blocking its release from the liver [60]. 
A study in mice revealed visfatin lower glucose levels in 
an insulin-independent mode [60, 61]. Visfatin promotes 
the accumulation of triglycerides from pre-adipocytes, 
enhances glucose to lipid conversion, and upregulates the 
expression of various genes including PPAR gamma and 
adiponectin. However, visfatin did not alter the food intake 
or body weight in a knockout heterozygous mouse com-
pared to the wild type [60–62]. Besides these, there are 
other hormones like insulin, ghrelin, obestatin, and so on 
(Table 1) which directly or indirectly affect body weight 
showing a deep connection between endocrinology and 
obesity.
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Genetics of obesity

The genetic contribution to obesity cannot be underestimated 
due to the significant heritability of the BMI (20–40%) [82, 
83]. Evidence showed that there has been a considerable 
link between genetics and obesity, with two studies claim-
ing a heritability value of 0.77 at different ages in differ-
ent regions [84, 85]. To date, there have been discoveries 
of some important genes strongly related to severe obesity, 
which give enough evidence of genetic and obesity linkage, 
as shown in Table 1. Recently, through GWAS combined 
with the in vivo study in C. elegans, scientists discovered 
14 genes that promote obesity and 3 genes that prevent 
diet-induced obesity as shown in Table. 2 [86]. Referencing 
the studies performed previously several hundred genetic 
loci have been found by genome-wide association analysis 
(GWAS) studies, where sequence variants are statistically 
linked with BMI at the population level, however, these links 
show only a 3–5% contribution of variation to the BMI [82, 
87, 88]. Furthermore, the majority of obesity-predisposing 
gene variations are not linked to weight loss or regain due 
to lifestyle interactions.

Genetics of obesity studies conducted in humans 
and mice model

In order to improve the prevention, treatment, and manage-
ment of obesity it is important to undermine and understand 
its molecular causes. Consequently, this has encouraged 
identifying the genes responsible for obesity using rodent 

and human models [40, 89]. The mouse model is widely 
used in studying the genetics of obesity due to its low cost, 
maintenance, small size, easy breeding, and short gestation 
period [90–92]. The complete genome sequence, genetically 
distinct strains availability, and cutting-edge genetic manipu-
lative tools make it possible to conduct advanced genetic 
analysis associated with obesity in rodents. Furthermore, the 
occurrence of obesity and metabolic phenotypes alteration 
in mice are similar to humans, moreover, the measurement 
of these phenotypes in mice is more convenient and safe 
compared to humans [93, 94]. However, there are certain 
limitations in the mouse model used for obesity phenotypes 
compared to the human model, such as the difference in 
obesity phenotypes, and physiology, which leads to further 
and safe investigation in the human model [95]. From the 
literature, we have identified several genes that are directly 
related to obesity and both verified in mice and human mod-
els as shown in Table 2.

Novel genes in human obesity using the C. elegans 
model

Previously genetic selection using the Caenorhabditis 
elegans model has led to the discovery of drug targets for 
various diseases including depression and metabolic related 
disorders [116, 117]. C. elegans is considered, evolutionar-
ily distant from humans, as the many pathways related to 
lipid, glucose, and protein metabolism are the same in both 
species [118]. In both organisms, identical genes such as 
TOR kinase and AMPK, as well as transcription factors like 

Table 1  The tissue localization and characteristics of important hormones related to obesity and energy metabolism

Hormone Localization Function Study References

Leptin Adipose tissue Glucose, insulin regulation/increased 
energy expenditure

Human / mice [63, 64]

Adiponectin Adipose tissue Insulin regulator/ anti-inflammatory Human /mouse [65, 66]
Visfatin Adipose tissue Glucose/insulin regulation Human /mouse [61, 67]
Insulin Pancreatic islets Fasting/feeding/lipogenesis Human /mouse [68, 69]
Ghrelin Oxyntic glands/ gastric mucosa Fasting/feeding/lipogenesis Human /mouse [29, 70]
Obestatin Gastric mucosa Suppress fasting Human /mouse [70, 71]
Cholecystokinin Intestine/ hypothalamus Suppress fasting, increase intestinal 

motility, stimulate the pancreas
Human /mouse [72, 73]

Glucagon-like peptide-1 Intestine Suppress appetite, increase energy 
expenditure, decrease intestinal 
motility

Human /mouse [29, 74]

Polypeptide YY Intestine/ileum Suppress feed intake, glucose homeo-
stasis

Human /mouse [29, 75]

Glucose-dependent insulinotropic 
polypeptide

Upper intestine Adipose regulation, glucose homeo-
stasis

Human /mouse [76, 77]

Oxyntomodulin Intestine Suppress appetite, feed, and intake, 
increase energy expenditure

Human /mouse [78, 79]

Secreted frizzled related protein-5 
(Sfrp-5)

Adipose tissue Glucose/insulin/ lipid regulation Human /mouse [80, 81]
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sterol response element binding protein (SREBP), peroxi-
somes proliferator-activated receptor gamma (PPAR), and 
transcription factor EB (TFEB), govern metabolic genes 
and cellular responses. Studies have also shown that the 
loss of function of such regulators in both species causes 
metabolic dysfunction [119–122]. Furthermore, obesity-
related genes identified in human GWAS whose orthologue 
has been shown to contribute to obesity in C. elegans are 
more likely to be a robust anti-obesity target across human 
populations. Recently scientists discovered 11 novel and 
overall 16 genes as shown in Table 2, which promote or 
prevent C. elegans obesity, as well as the early beginning of 
organismal degradation and mortality linked with obesity 
[86]. The findings of in vivo research in C. elegans com-
bined with assessments of mouse and human GWAS datasets 
revealed that the sign of the connection between the mouse 
and human gene expression levels and their associated clini-
cal characteristics matched. The behavioural consequences 
of knocking down these genes in C. elegans revealed that 
these obesity genes had conserved causation and therapeutic 
potential [86] (Table 3).

Epigenetics of obesity

For the development of novel obesity causing DNA varia-
tions, the duration of the obesity as a pandemic is not long 
enough. In this case, the dynamic epigenetic regulations and 
environmental factors are leading contenders for explaining 
energy regulations [6, 7]. So far, DNA methylation has been 
the most thoroughly researched epigenetic mark for human 
disorders at the genome-wide or site-specific level, which 
takes place at the cytosine [83, 88, 123]. Various studies 
have identified the methylated loci through the epigenetic 
wide association studies linked with obesity. Furthermore, 
these studies uncovered that several genes had undergone 
methylation associated with obesity [124]. CpG promoter 
methylation of peroxisome proliferator-activated receptor 
gamma (PPARc) coactivator-1alpha (PGC-1a), a transcrip-
tional coactivator for mitochondrial biogenesis, is elevated 
in obese women's subcutaneous adipose tissue (SAT) [88]. 
In obese people, adiponectin, an adipokine that controls sys-
temic energy expenditure and insulin sensitivity, is dimin-
ished in adipose tissue [125]. In very obese patients, DNA 

Table 2  The genomic information of the obesity-related genes, and their functional characteristics

Gene Full name Chr. location Consequences Study Associated traits References

FTO Fat mass-and obesity associ-
ated gene

16q12.2 Severe obesity Human/mice Promote food intake [96, 97]

LEP Leptin 7q32.1 Severe obesity Human/mice Hyperphagia, metabolic, 
immune dysfunction, hypo-
gonadism

[63, 98]

LEPR Leptin receptor 1.p31.3 Severe obesity Human/mice Hyperphagia, metabolic, 
immune dysfunction, hypo-
gonadism

[63, 98]

MC4R Melanocortin 4 receptor 18q21.32 Severe obesity Involve in growth develop-
ment and growth hormone, 
hyperinsulinemia

[63, 99]

PCSK1 Proprotein convertase subtili-
sin/kexin type 1

5q15 Child obesity Human Involve in glucose homeosta-
sis, hyperphagia, decreased 
growth, hypothyroidism, 
hypocortisolism, and hypog-
onadotropic hypogonadism

[100, 101]

BDNF Brain-derived neurotrophic 
factor

11p14.1 Severe early obesity Human/mice Severe obesity, hyperphagia, 
impaired cognitive

[102, 103]

KSR2 Kinase suppressor of ras 2 12q24.22-q24.23 Child obesity Human/mice Hyperphagia, insulin resist-
ance, reduced metabolic rate

[104, 105]

POMC Proopiomelanocortin 2p23.3 Child obesity Human ACTH, red hair, and pale skin [106, 107]
ADCY3 Adenylate cyclase 3 2p23.3 Early obesity Human/ mice T2D [108, 109]
ADIPOQ Adipocyte-C1q, and collagen 

domain containing
3q27.3 Obesity Human Promotes energy and expendi-

ture
[9, 110]

INSIG2 Insulin-induced gene 2 2q14.1-q14.2 Obesity Human Involve in cholesterol regula-
tion and fatty acid synthesis

[111, 112]

PPARG Peroxisome proliferator-acti-
vated receptor gamma

3p25.2 Obesity Human Stimulate and development of 
fat tissue

[113, 114]

ADCY3 Adenylate cyclase 12A1.1 Obesity Human/ mice Obesity, diabetes, and energy 
metabolism

[96, 115]
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methylation levels at the adiponectin gene locus in SAT were 
linked to BMI. The hypothalamus through regulation of the 
pro-opiomelanocortin (POMC) gene controls energy homeo-
stasis, and methylation in the POMC gene was found to be 
significantly associated with obesity. Only a few particu-
lar genes and pathways have been consistently identified as 
being involved in the development of obesity [6]. Therefore, 
despite the genetic susceptibility to obesity, environmental 
and epigenetics seem to be important factors (Fig. 1).

Gut microbiota and obesity linkage

The gut microbiota plays an important role in the devel-
opment of obesity due to its intimate nexus with energy 
metabolism. Any alteration in gut microbiota may lead to 
energy dysbiosis as well as energy homeostasis [14, 126]. 
The human gut hosts a diverse microbial population among 
which ~ 1000 bacteria are preponderant and belong to 40 
different species [16, 127]. In order to disclose the predic-
tive microbial markers of obesity, the Firmicutes phyla’s 
staphylococcus and lactobacillus, as well as Bifidobacterium 
from the Actinobacteria genus, were examined. Interestingly 
Bifidobacterium showed a higher number in normal-weight 
compared to the obese individuals, while staphylococcus 
were less [128, 129]. With the decrease of keystone micro-
bial species in the guts, the symbiosis between the host and 
gut microbiota is disturbed, resulting in dysbiosis, which 
unsettles the host's metabolic health. On one side dysbio-
sis is considered to be a result of a decreased number of 

bacteria that are metabolically protective against obesity, and 
an increase in those that extract more energy from indigest-
ible carbohydrates. Furthermore, various studies including 
clinical trials suggested that intervention of certain microbial 
species exerts a significant effect and mitigates obesity as 
shown in Table 4.

Various studies using the animal model have proposed 
that the gut microbiota energy homeostasis and adiposity 
through various mechanisms. The gut microbiota extracts 
energy from the diet while also modifying tissue fatty 
acid composition, secreting gut-derived peptides and 
hormones with CNS effects, and generating chronic low-
grade inflammation via lipopolysaccharide release [48, 
129]. One of the critical tasks of the gut microbiota is 
the enzymatic conversion of primary bile into secondary 
bile, which influences the absorption and emulsification 
of bile acids. Following this mechanism gut microbiota 
has an enormous impact on bile acid entero-hepatic distri-
bution. The secondary form binds to G-protein and leads 
to glucagon-like-1 peptide stimulation, which lowers cir-
culation and hepatic triglyceride levels [126, 139]. Both 
qualitative and quantitative variations in the gut micro-
biota can affect this pathway by encouraging fat formation 
in the body. For instance, gut microbiota on a high-fat diet 
may convert dietary choline into hepatic toxic methyl-
amines, lowering choline availability, which is required 
for very low-density lipoprotein (VLDL) assembly and 
production, thus significantly enhancing hepatic steatosis 
and lipo-peroxidation. The intestinal microbial commu-
nity plays an important role in the processing of dietary 

Table 3  The molecular characteristics of the novel genes discovered in C. elegans involved in human obesity

Gene in C. elegans Chr. location Exon count Human orthologue Knock-out results

puf-8 Chr. II 6 Pumilio RNA binding family 2 (PUM2) Promotes obesity
rpac-19 Chr. III 3 RNA polymerase I and III subunit D (POLR1D) Promotes obesity
Fbf-2 Chr. II 8 Pumilio RNA binding family 2 (PUM2) Promotes obesity
Gon-1 Chr. IV 31 ADAM metallopeptidase with thrombospondin type 1 motif 20 Promotes obesity
Glp-1 Chr. III 9 Notch receptor1 (NOTCH1 Promotes obesity
Hlh-2 Chr. I 6 Transcription factor (TCF-2) Promotes obesity
Let-767 Chr. III 5 Hsd17b12 Prevent obesity
Pop-1 Chr. I 4 lymphoid enhancer-binding factor 1 (LEF1) Promotes obesity
Mys-1 Chr. V 5 Lysine acetyltransferase 5 ( KAT5) Promotes obesity
Zfh-2 Chr. 

102C3-102C4; 
4–0 cM

15 Zinc finger homeobox 3 (ZFHX3) Promotes obesity

Nst-1 Chr. II 5 G-protein nucleolar 3 like (GNL3L) Promotes obesity
Y46e12bL.2 Chr. II 9 Ribosomal RNA processing 12 homologs (RRP12) Promotes obesity
Rpt-5 Chr. I 4 Proteasome 26S subunit, ATPase 3 (PSMC3) Promotes obesity
Y71H10B.1 Chr. X 11 5′-Nucleotidase, cytosolic II (NT5C2) Prevent obesity
pho-1 Chr. II 11 ACP-2 Prevent obesity
Eif-6 Chr. I 3 Eukaryotic translation initiation factor 6 ( EIF6) Promotes obesity
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carbohydrates, and their fermentation into SCFAs. The 
acetic acid that is the most abundant in peripheral blood 
is vital for cholesterol synthesis, a stimulant for adipogen-
esis via the FFA2 receptor, and a suppressor of appetite 
via the hypothalamic mechanism. Propionic acid is the 

main precursor for protein synthesis, hepatic gluconeo-
genesis, and lipogenesis, as well as an inhibitor of fatty 
acid production, and an inflammation-reducing agent [16, 
48, 126].

Fig. 1  Environment, genetics, and epigenetics contribute as the main 
factors causing obesity. Environmental factors such as a sedentary 
lifestyle, unhealthy food, stress, and abnormal sleep along with genet-
ics and epigenetics are predisposing causes for obesity. Both these 
factors cause epigenetics alteration, which causes energy dysbiosis, 

tissue inflammation, decrease insulin resistance, and increase lipid 
accumulation. In turn, obesity is capable of causing severe health 
problems such as cancer, type-2 diabetes, ageing, and cardiovascular 
disease are the most common

Table 4  Clinical trials signifying important microbial species alone or in combination involved in obesity mitigation

Microbial specie Dose CFU/day Trial duration Results References

L. gasseri BNR17 1010 12 weeks ↓ Body fat [130]
L. gasseri SBT2055 106–8 12 weeks ↓Body weight [131]
L. salivarius UCC18 109 4 weeks ↓ Body weight [132]
L. paracasei F19 9.4 ×  1010 6 weeks Improved insulin sensitivity [133]
B. breve B-3 5 ×  1010 12 weeks ↓ Body fat [134]
B. animalis, lactis B420 1010 6 months ↓ Body fat [135]
L. rhamnosus CGMCC1.3724 3.24 ×  108 12 weeks Appetite control [136]
L. plantarum KY1032, and L. curvatus 

HY7601
2.5 ×  109 12 weeks ↓ Body weight [137]

B. breve B-3 2 ×  1010 12 weeks ↓ Body fat [134]
B. lactis CECT 8145 1010 12 weeks ↓ Weight [138]
B. pseudocatenulatum CECT 7765 109–10 13 weeks ↓ Weight [138]
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Host and gut microbial metabolites 
(postbiotics) interaction

The intestinal microbial community plays an important 
role in the processing of dietary carbohydrates, and their 
fermentation into microbial metabolites. Growing findings 
suggest that microbial metabolites (postbiotics) produced 
by microbial fermentation have an important role in regu-
lating host metabolism, with implications for obesity [13, 
135]. Clostridium and Eubacterium from the gut micro-
biota convert bile acid in the intestine to secondary forms 
such as deoxycholic acid and lithocholic acid, which bind 
to the TGR5 receptor (G-protein-coupled receptor) and 
stimulate the secretion of the incretin hormones GLP-1 
and insulin, promoting energy expenditure [140]. Long 
chain fatty acids produced by gut microbiota, such as lin-
oleic acid, modify the lipid profile, contributing to obesity. 
The acetic acid that is the most abundant in peripheral 
blood is vital for cholesterol synthesis, a stimulant for 
adipogenesis via the FFA2 receptor, and a suppressor of 
appetite via the hypothalamic mechanism. Propionic acid 
is the main precursor for protein synthesis, hepatic glu-
coneogenesis, and lipogenesis, as well as an inhibitor of 
fatty acid production, and an inflammation-reducing agent 
[16, 48, 126].

Short‑chain fatty acids in control of energy 
regulation

Due to a lack of suitable enzymes, our gut bacteria fer-
ment dietary components that are incompletely hydro-
lyzed, leading to the formation of SCFA such as acetate, 
butyrate, and propionate [141]. These SCFAs have impor-
tant roles in the pathophysiology of obesity and related 
illnesses by regulating energy intake, energy harvesting, 
and host energy and substrate metabolism, all of which 
affect body weight [142–145]. Several pathways have also 
been hypothesized to link SCFA to insulin sensitivity and 
the progression of T2DM, including interorgan effects on 
adipose tissue function and lipid storage capacity, metabo-
lism, and inflammatory activities [146–148]. SCFAs are 
monocarboxylic acids including acetate, lactate, propi-
onate, and butyrate as the most abundant and common 
metabolites secreted by the gut microbiota [127]. These 
SCFAs are the main constituent of fibre fermentation 
because of gut microbiota and exert significant effects on 
host physiology, gut health, mucous production, promoting 
gut integrity, and protection of the gut epithelial [23, 149].

Evidence suggests that glucose is not the only source 
of energy utilized by the body. In addition, the body uses 
SCFAs and amino acids to carry out various physiological 

activities [141]. A study reported the involvement of 
butyrate and propionate in stimulating different gut hor-
mones and reducing feed intake [150]. Propionate blocks 
lipogenesis by downregulating fatty acid synthase in the 
liver, while acetate is a lipogenic substrate, thus, the ace-
tate/propionate ratio is thought to be critical for de novo 
lipogenesis. In addition, propionate and butyrate induce 
intestinal lipogenesis by upregulating the lipogenesis-
related genes, thus mitigating obesity.

Acetate and obesity nexus

Acetate has been attributed to health benefits, whether 
derived from food or microbial fermentation in the gut. 
These health benefits include energy homeostasis, improved 
heart function, blood generation, and memory formation 
[151, 152]. The question of how acetate contributes to so 
many diverse biological functions is an area of intense 
research nowadays. Acetate is believed to be responsible for 
appetite regulation [153]. Supplementation of acetate can 
stimulate biochemical and physiological responses resulting 
in control of insulin regulation, weight loss, cardiac system 
safety, and anti-inflammatory responses [16]. Its function 
related to obesity is however still conflicting. On the one 
hand, acetate has been demonstrated to increase the expres-
sion of anorectic hormones in the hypothalamus, such as 
GLP-1 and peptide tyrosine-tyrosine (PYY), so decreasing 
food intake (Fig. 2) [14, 154] (Fig. 2). A study performed in 
mice showed that acetate generated in the intestine increases 
anorectic signalling in the arcuate nucleus ARC via the glu-
tamate–glutamine transcellular cycle [154]. However, this 
statement was contradicted by another study that showed 
the increased level of acetate was involved in increasing 
insulin and ghrelin leading to obesity [155]. Therefore, fur-
ther research is needed to confirm whether the acetate has a 
stimulating or suppressing effect on the appetite.

Propionate and obesity nexus

Propionate another SCFA has been reported to mitigate obe-
sity and reduce feed intake through gut hormone modulation 
[153, 156]. Propionate suppresses the appetite by regulat-
ing free fatty acids receptor FFAR2/3 in the intestinal cells, 
which induces the glucagon-like peptide (GLP-1) and PPY 
peptides [157]. The presence of propionate in the hindgut 
activates the PPY and GLP-1 involved in reducing both feed 
intake and weight gain in obese individuals (Fig. 2) [153]. 
Furthermore, propionate has been reported in the suppres-
sion of the genes responsible for lipid synthesis. Various 
studies performed using the mouse model explained the 
mechanism of propionic acid in preventing obesity by inhib-
iting food intake, increasing insulin sensitivity, and energy 
expenditure [145, 153, 158].
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Butyrate and obesity nexus

Among others, butyrate is one of the most used SCFAs used 
by the intestinal mucosa, as a primary source of energy [14, 
142]. Dietary butyrate has been reported in insulin resistance 
and prevents diet-induced obesity in mice [142]. Further-
more, butyrate has also been involved in controlling weight 
by boosting energy expenditure through direct contact with 
skeletal muscle and inducing lipolysis in adipose tissue. 
Butyrate supplementation in the diet showed a significant 
reduction in diet-induced obesity and insulin resistance in 
obese mice models [143, 159]. SCFAs are the byproducts of 
bioconversion in the colon and play a major role in appetite 
regulation by boosting the release of anorectic gut hormones 
such as PYY and GLP-1 [153]. As a result, raising SCFA 
levels represents a viable target that could lower adiposity 
and weight in obese persons. A study in mice revealed that 
oral administration of sodium butyrate induces fat oxidation 
and energy expenditure leading to weight loss [23, 142]. 
Moreover, the microbiota transplant from human to mouse 
resulted in increased adiposity, decreased faecal SCFAs, and 
increased monosaccharide and disaccharide concentration 
after feeding a plant carbohydrate-rich diet compared to 
the one received microbiota from the lean individual [131]. 
These studies suggest that the microbes from the obese indi-
vidual have lower capabilities to properly ferment and digest 
the polysaccharides compared to the microbiota from the 
lean individual. However, the molecular effect of butyrate 

needs further investigation due to its controversial position 
as it also acts as a substrate for energy in the host system. To 
explore the real scenario behind this controversy, the actual 
role of butyrate in the energy cycle shall be tested in differ-
ent animals, while using equicaloric food in both control 
and test groups.

Peptidoglycans as postbiotics linkage with obesity

Adipose tissue inflammation and insulin resistance are 
some of the main consequences of obesity, however, cer-
tain microbial components can significantly protect against 
these damages [144]. For example, the postbiotics from the 
proximal gut microbiota showed a significant role in prevent-
ing insulin resistance because of a high-fat diet [160, 161]. 
Peptides are the important component of the bacterial cell 
wall present in the form of peptidoglycan. A recent study 
using a mouse model showed that peptide-based postbiotics 
(muramyl-dipeptide) reduced insulin resistance and adipose 
tissue inflammation in obese conditions through nucleotide 
oligomerization 2 protein receptors [20]. NOD2 acts as a 
bacterial peptidoglycan sensor and its activation stimulates 
metabolic, inflammatory, and antimicrobial activities. Fur-
thermore, NOD2 keeps the gut microbiota healthy [162]. 
A study in mice reported that NOD2 knockout mice devel-
oped obesity due to a high-fat diet and caused metabolic 
disturbances including hyperglycemia, hyperlipidemia, and 
glucose intolerance. These repercussions consequentially 

Fig. 2  The molecular mechanism of SCFAs mitigating obesity through energy regulation. The intestinal wall absorbs acetate and butyrate in the 
intestine produced by the gut microbiota; regulate fatty acids, and insulin level through PPARα, GLP-1, and PPY signalling pathways



 Eating and Weight Disorders - Studies on Anorexia, Bulimia and Obesity           (2023) 28:84 

1 3

   84  Page 10 of 17

lead to the accumulation of adipocytes and lipid droplet 
formation in the liver [163]. A single dose of MDP-based 
postbiotics reduced glucose intolerance via interaction with 
NOD2 receptors without damaging the gut microbiome [20]. 
Further insight into the NOD protein and postbiotics interac-
tion related pathways will explore the molecular mechanism 
of action of postbiotics and recognition of specific pharma-
cological sites for treating obesity.

Bacteriocins’ role in obesity

Bacteriocins are ribosomal-synthesized heat-stable antimi-
crobial peptides produced by the gut microbiota, which show 
distinct characteristics related to their size, structure, and 
mechanism of action [22, 150]. It is well known that bac-
teriocins show broad spectrum and narrow spectrum anti-
microbial activities, however, certain studies also showed 
that some of these species that produce bacteriocins play 
an important role in obesity and related metabolic activities 
[19, 150]. Recent studies have underlined the population 
of various microbiota that may be involved in obesity. A 
study claimed that the gut microbiota of genetically obese 
mice have a higher population of phyla Firmicutes and lower 
phyla Bacteroidetes [17, 24]. Other studies have established 
the role of a particular species or strain in obesity and T2D 
[17]. In germ-free mice, it was revealed that Enterobacter 
cloacae B29 produces endotoxins that cause obesity and 
insulin resistance [164]. Furthermore, Clostridium ramo-
sum, previously shown to be enriched in patients with T2D, 
induced obesity in mice consuming a high-fat diet [165]. 
Gut bacteria that produce antibiotics with specific activity 
against some of these organisms may be beneficial for bal-
ancing metabolic health.

Lipopolysaccharides and obesity

Lipopolysaccharides (LPS), a component of Gram-negative 
bacteria’s cell membrane, the function of which has been 
ambiguous, act as a triggering factor, causing low-grade 
chronic inflammation and the development of insulin resist-
ance (IR) [19]. LPS produced in the gastrointestinal tract 
enters the blood by direct diffusion via increasing intestinal 
permeability or absorption and chylomicron inclusion. High 
fat consumption reduces the expression of the tight junc-
tion proteins zonulin and occludin, increasing the intestinal 
permeability of LPS, the causative cause of endotoxemia 
[19, 69]. LPS interacts with toll-like receptor 4 (TLR-4) in 
immune cells as well as target organs such as the liver and 
adipose tissue. Migration of active NF-κB to the nucleus 
stimulates the production of proinflammatory proteins as 
well as signalling pathways such as JNK, p38 MAPK, and 
ERK, which leads to insulin resistance and obesity [166]. 
Bifidobacterium infantis administration decreased colonic 

permeability and inflammation in mice, indicating that gut 
microbial makeup, in addition to food, influences intestinal 
permeability. High levels of saturated lipid consumption 
not only increase systemic exposure to potentially proin-
flammatory-free fatty acids and their derivatives but also 
enhance the absorption of endotoxins, resulting in greater 
plasma LPS levels known as “endotoxemia” [8]. Endoge-
nous lipid interaction with cannabinoid receptors (CB1 and 
CB2) activates adenylate cyclase and also promotes second-
ary messengers implicated in the MAPK, ERK, and NF-κB 
pathways, causing inflammation and insulin resistance and 
eventually contributing to obesity. Additionally, circumstan-
tial evidence suggests that LPS compromises the liver’s criti-
cal role in preserving the body’s glucose metabolism. It has 
been demonstrated that LPS-stimulated macrophages from 
the gingival sulci release TNF-α, IL -1, and IL-6 in animal 
models of periodontitis [167]. These cytokines and/or LPS 
from the gingival sulci may be transported throughout the 
body and engage TLR-4 receptors on Kupffer cells in the 
liver to release proinflammatory cytokines, which may lead 
to insulin resistance and glucose intolerance [168]. Another 
study concluded that LPS concentrations are an adequate 
molecular trigger for high fat diet-induced obesity and diabe-
tes. Finally, via regulating insulin sensitivity, the LPS recep-
tor, cluster of differentiation antigen 14 (CD14) determines 
the cutoff point at which metabolic disorders manifest [169]. 
These evidence suggest that LPS might contribute to host 
obesity by modifying intestinal permeability, resulting in 
endotoxemia, increased calorie supply, and endocannabi-
noid system (eCB) activation, as well as by modulating lipid 
metabolism by increasing lipoprotein lipase activity and 
lipogenesis [8, 170]. However, the molecular details remain 
to be elucidated, as there is a complex interaction between 
LPS-induced inflammation and obesity, which needs further 
research.

Conclusion

The current knowledge and shreds of evidence explaining 
the current global situation, molecular mechanism inducing 
obesity, its prominent causes, and the potent role of postbiot-
ics in mitigating obesity. Irregularities in energy homeostasis 
due to changes in gut microbiota, environment, genetics, 
and epigenetics are highly linked to obesity. Postbiotics 
like SCFAs, lipids, and bacteriocins interact with genetics, 
hormones, nutrition, and certain environmental conditions 
as potential anti-obesity agents. SCFAs like acetate, propi-
onate, and butyrate have strong capabilities to counteract 
obesity by regulating metabolic hormones such as GLP-1, 
and PPY thus reducing feed intake and suppressing appetite. 
Given the severity and burden of the condition on the health-
care system, the need to identify pharmacological targets for 
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the treatment of obesity and adaptation of smart nutritional 
strategies are needed to explore which might further over-
come this scenario. Further research is needed to explore 
the exact molecular mechanism of action of postbiotics in 
mitigating obesity, which might answer most of the ques-
tions raised related to this scenario. With the increase in 
physical activities, the regulated range of energy balance 
can be achieved, and the internal molecular mechanism to 
maintain this energy homeostasis can be improved. Moreo-
ver, the adoption of a smarter diet will decrease the need for 
drastic dietary restrictions to avoid abrupt disturbances in 
the energy system.
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