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Abstract
Purpose of Review This paper reviews practical challenges for microgrid electrification projects in low- and middle-income
economies, proposing a Social-Technical-Economic-Political (STEP) framework. With our STEP framework, we review
recent Artificial Intelligence (AI) methods capable of accelerating microgrid adoption in developing economies.
Recent Findings Many authors have employed novel AI methods in microgrid applications including to support energy
management systems, fault detection, generation sizing, and load forecasting. Despite these research initiatives, limited works
have investigated the specific challenges for developing economies. That is, high-income countries often have high-quality
power, reliable wireless communication infrastructure, and greater access to equipment and technical skills. Accordingly,
there are numerous opportunities for the adaptation of AI methods to meet the constraints of developing economies.
Summary In this paper, we provide a comprehensive review of the electrification challenges in developing economies
alongside an assessment of novel AI approaches for microgrid applications. We also identify emerging opportunities for AI
research in the context of developing economies and our proposed STEP framework.

Keywords Microgrids · Artificial intelligence · Electrification · Developing economies

Introduction

Affordable and high-quality electricity is essential for the
advancement of modern economies. Developing economies,
especially those with large rural populations, face signif-
icant challenges in achieving sustainable economic and
social development due to inadequate electricity access [1].
According to the International Energy Agency, around 775
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million people worldwide lack access to electricity, while 75
million more may lose access due to energy affordability [2].
Africa accounts for nearly 600 million of those without elec-
tricity, with themajority of the remaining population residing
in regions of Asia.

Considering the ongoing climate crisis, there is an imme-
diate need to shift to low-carbon or carbon-free energy
systems. The Intergovernmental Panel on Climate Change
indicates that renewable energy must account for 70 to 85%
of total electricity by 2050 [3]. Developing economies are
expected to account for a crucial portion of the energy tran-
sition as their electrical demands are expected to grow at
3% per year until 2040, compared to a 0.9% growth rate
in high-income countries [4, 5]. The urgent call for action
presents a unique opportunity for un-electrified regions in
Africa and Asia to adopt a renewable and restructured energy
approach. With the implementation of appropriate policies,
social initiatives, and investments, renewable energy can
enhance electrification in developing economies.

Building on the potential of renewable energy, Artificial
Intelligence (AI) has gathered much interest in the energy
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community as it provides advanced data analysis and insight
opportunities. Significant research efforts have been made
withAI and power systems; however, limited research efforts
have focused on AI’s impact on microgrids in low- and
middle-income countries.As such, themajority of power sys-
tems AI research often perform analysis using models built
using ideal electrical sensing, substantial consumer loads,
and high economic accessibility, assumptions that are often
unrealistic in developing economies. Previous reviews in the
literature have focusedon eachof these challenges separately,
with comprehensive reviews of the social [6], technical [7••],
economic [8], and political challenges [9], in addition to the
general state of energy in developing regions [10–13]. Like-
wise, reviews of AI research on microgrids have been well
documented, focusing on the areas of energy management
systems [14], fault response resilience [15], load forecast-
ing [16], and general AI algorithms applications [17•, 18•]
alongside many others.

This paper aims to holistically examine AI solutions and
their integration within emerging economies, bridging the
gap between academic scholarship and real-world contexts.
To our knowledge, this paper represents the first such type
of review with the analysis of AI applications in microgrids
with a specific focus on the limitations inherent in low- and
middle-income countries. The chief objectives of this review
are

1. To provide insights into the social, technical, economic,
and political (STEP) rural electrification challenges
unique to developing economies,

2. To review the application of AI in the context of micro-
grids in developing economies, and

3. To propose future research directions and potential AI
advancements in microgrids located in low- and middle-
income countries.

This paper is structured as follows. In Section Back-
ground, we present important background knowledge on
electrification in developing economies. In Section Chal-
lenges Facing Electrification in Developing Economies, we
present the social, technical, economic, and political (STEP)
model for evaluating and integrating new electrification
methods. Section A Review of AI Applied to Microgrids
in Developing Economies provides an overview of exist-
ing microgrid AI algorithms and includes suggestions for
how to adapt these algorithms to include the constraints of
a developing economy. Section Future Artificial Intelligence
Research provides future opportunities for AI research to
benefit the constraints of low-income countries. This work
draws on academic literature aswell as an ongoing case study
of electrification in Kenya and Uganda and seeks to merge
the discrete threads ofAI advancements andmicrogrid devel-
opment.

Background

Access to electricity has been associated with numerous
developmental and welfare benefits, such as increased eco-
nomic opportunities, better quality of life, improved health,
and greater educational attainment [20–22]. Renewable
energy electrification in regions without electricity can yield
additional social benefits. Electrification could introduce
awareness and opportunities for refrigeration, proper light-
ing, and electrical based clean cooking,which can all improve
the quality of life [23–25].

As a testament to the state of energy in developing
economies, Fig. 1 depicts the electrification rates in Africa by
country, with darker colors indicating higher rates of electri-
fication [19]. As shown, many countries have electrification
rates below 50%, with the electrification rate in South Sudan
as low as 7.2% [19]. The limited access to electricity in these
regions highlights the opportunities for alternative technical
solutions. While electricity adoption is a widely used met-
ric, it does not take into account the quality of electricity and
population distribution—which are also extremely important
in bolstering widespread adoption of electricity [1]. In fully
electrified countries like SouthAfrica, load shedding and fre-
quent power quality issues have resulted in a reduced reliance
on electrical appliances, limiting further electricity adoption
[26–28].

In efforts to improve both reliability and electricity access,
microgrids are often suggested as an innovative and cost-
effective solution [29]. A microgrid is a localized grouping
of electricity generators and electrical loads capable of oper-
ating independently of the centralized grid. Depending upon
the connection with the main grid structure, microgrids can
take on two forms—grid-connected or islanded (standalone)
[30].

A grid-connected microgrid aims to enhance reliability,
reduce transmission demands, and provide an alternative
power source during instances of large-scale outages by dis-
connecting autonomously from the main grid structure. On
the other end of the spectrum is the islandedmicrogrid, which
are self-sustaining, standalone entities supplying electricity
without any connection to themain grid. Islandedmicrogrids
are especially relevant in the context of rural electrification
of regions already devoid of grid power.

With the aim of achieving universal energy access by
the year 2030, solar-based microgrids have received signifi-
cant interest fromgovernments andorganizationsworldwide,
with the United Nations suggesting their implementation
as an important part of achieving the Sustainable Devel-
opment Goal 7 [13]. Recent reports by the International
Energy Agency have supported this agenda with estimations
that more than 490 million individuals are expected to ben-
efit from over 217,000 microgrids by 2030 [31]. With the
ambitious goals set forth by international organizations and
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Fig. 1 Access to electricity in African countries as a percentage of the total population [19]

governments worldwide, understanding the social, technical,
economic, and political barriers in developing economies is
paramount to effective microgrid implementation.

Challenges Facing Electrification in
Developing Economies

The drive to extend electricity services to rural regions in
developing economies has been a longstanding initiative by

the UN, the World Bank, non-profit organizations, and gov-
ernments worldwide [13, 19, 32]. Despite the significant
interest in electrification, electrification rates haveprogressed
slowly, with many projects failing due to social, technical,
economic, or political challenges that were not adequately
addressed [33, 34].

In this section, we examine and identify four key pillars
reflecting challenges in developing economies. It is impor-
tant to keep in mind that these pillars are often heavily
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codependent and can be segmented into a variety of subse-
quent challenges. The categories, as represented in Fig. 2, are
social, technical, economic, and political (STEP). Through
an understanding of the STEP challenges, we provide a foun-
dation for identifying and implementing effective strategies
for accelerating electricity access in remote regions.

Social Challenges

The success of an electrification project often hinges on
the involvement of all stakeholders from the outset—from
local communities to developers and governmental organiza-
tions [7••, 35].Cultural andbehavioral differences oftentimes
serve as barriers to electrification as they may incur signifi-
cant societal and cultural change [36].

In communities that are first exposed to regular electricity
access, proper education is crucial to achieving a success-
ful transition. Many households in low-income communities
face misconceptions related to energy benefits, electrical
safety, and usefulness of electrical equipment [37]. A lack of
understanding around which appliances use high amounts of
electricity and amisunderstanding of electrical best practices
challenge adoption as well. Due to economic constraints,
rural households frequently employ inefficient appliances—
further increasing their electrical demand and their impact
on the planet [38]. Misconceptions about renewable energy
sources are common as well, with household solar battery
systems seeing short lives due to pervasive overdischarge of
battery systems, leading to premature degradation [39].

Contrary to the general optimism around renewable
energy’s role in facilitating electricity accessibility, aware-
ness lags significantly. For example, in Nigeria, nearly 40%
of the population is unaware of the potential for solar photo-

voltaic systems [40]. Focusing on grassroots-level education,
targeting women (often traditionally in charge of household
energy management) can enable a smoother transition to
modern energy systems [41].

Oftentimes, an energy system will be set up for a com-
munity by an external organization and donated to a rural
community afterward. A lack of clear understanding and
funding post installation often leads to short-lived systems
with unclear expectations on who will be responsible for
management [42]. In remote communities, system mainte-
nance and responsibility are further complicated by a lack
of skilled and qualified technicians [43]. Remote sites may
confront high costs and long lead times in obtaining replace-
ment parts, which might not be locally available [44]. The
long-term sustainability of microgrids relies heavily on local
skills and supply chains. Despite skills development, trained
techniciansmight be swayed tomigrate to urban areas for bet-
ter pay. Therefore, overcoming reliability challenges in rural
microgrids requires proper training and retention of local
operators and technicians [45].

Political Challenges

The energy sector is particularly susceptible to corruptiondue
to its capital-intensive nature, high degree of public-private
coordination, and large amounts of public procurement [46].
While the visibility of such corrupt practices is often par-
ticularly pronounced in regions of Sub-Saharan Africa, it
is imperative to acknowledge that personal and financial
gains often supersede public interest in countries worldwide.
Various forms of corruption may persist throughout the life-
cycle of an energy project, including rent-seeking, which
entails the extraction of excess value from an investment not

Fig. 2 Mapping the challenges for electrification in developing economies: interplay of social, technical, economic, and political elements
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fully owned by the entity or official. Patrimonialism involves
transferring value to unrelated insiders to maintain politi-
cal patronage, and reallocation of ownership occurs when
power actors gain control over energy systems during plan-
ning and construction phases, at the cost of initial investors
[47–49]. At the energy service delivery stage, which encom-
passes new electrical connections, meter arrangements, and
billing, corruption can inflate costs, spur uncertainty, and
deter investment, which can have a detrimental impact on
social stability and economic development [14, 50]. Public
sector corruption is also unfortunately existent; a case study
in Nigeria showed roughly $16 billion USD allocated for
power sector renovations between 1999 and 2007was squan-
dered through corruption and poorly managed bureaucracy
[51]. Private sector corruption is just as prevalent, involv-
ing manipulations and bribes to influence political decisions
and bypass environmental guidelines, an areawhich has been
exploited through many examples in the USA and Australia
[52, 53].

Interestingly, despite being traditionally associated with
the fossil fuel industry, forms of corruption have migrated
to the realm of renewable energy as well [50]. Subsidized
renewable energy schemes are becoming avenues for rent-
seeking, leading to problems often ignored due to the sector’s
relative novelty [54, 55]. An example of these areas of
corruption, as presented by community members from a
month-and-a-half field survey in Africa, are some models
that corruption impacts energy projects and day-to-day life.

Model 1: Large Scale Contracts Organization A secures
significant funding, potentially government or externally
sourced, for the execution of an energy solution. The respon-
sibility falls on Organization A to appoint subcontractors
for the execution of the project. In lieu of awarding con-
tracts to the most fitting companies, preferential treatment is
often extended to close acquaintances or those who suggest
a financial gain to the part of Organization A in charge of
contract assignments. In turn, companies that are operating
in the best interest of the peoplemay be neglected unless they
can promise some economic or political advantage or tie.

Model 2: Inter-Contract The second model entails Orga-
nization B receiving a contract from Organization A for
connecting a specific number of people to the power grid.
Organization B provides an accurate quote to Organization
A for the installment cost but installs at half of what was
expected or with cheaper components. The leftover hardware
is then resold to other contractors or, in some cases, back to
Organization B. This can lead to early equipment failure,
potentially harmful conditions, and often, the requirement
for the work to be redone.

Model 3: Low-Level Corruption The third type of cor-
ruption, recognized as the most prevalent by community
members, can best be illustrated through unequal power qual-
ity. In this situation, political leaders or peoplewith economic

influence receive higher quality electricity, with any power
disturbance being attended to promptly. In some situations,
service companies accept bribes and favors as away to ensure
that power remains reliable to the person in power.

Economic Challenges

Microgrid-based rural electrification is often met with an
array of economic hurdles. In rural and remote areas, a
large portion of the community often depends on substance
farming and other forms of infrequent or unofficial income,
with the average income often falling below $2 USD per
day [56–58]. The limited access to capital makes afford-
ing electricity-intensive appliances such as electric stoves,
refrigerators, and electric water pumps very difficult. One
solution considering the limited capacity for capital expen-
diture for community members is a microfinance-based
approach, where money can be borrowed for a small-scale
investment [59]. Unfortunately, many microfinance compa-
nies in Africa have faced challenges with long returns on
investments, high default rates, and income instability [60–
63]. Persistent issues such as the quality of power supply and
infrastructure robustness compound the risk for prospective
private sector investors [64, 65].

When funding and policy do arrive, microfinance-based
plans are frequently plagued by political instability and
socio-economic complications specific to some developing
economies [66]. The challenge is highlighted by a recent
development in Kenya, which has been the recipient of large
efforts to extend the grid to their rural customers, seeing a
30% increase in the number of electrified households from
2013 to 2018 [67]. A key assumption behind the electrifi-
cation initiative was the well-documented correlation that
economies in low-income countries increased proportion-
ately due to electrification rates [68]. However, electricity-
based economic stimulation has been recently put to the test
in Kenya as economic rates in rural communities have not
increased as much as anticipated post-electrification. As a
result, customers have exhibited revenues below expected,
and Kenya Power is now faced with the challenges of main-
taining an overly spread out grid with less financial resources
than expected [69, 70].

Public sector and donor applications have often facili-
tated great strides in electrification, but they do not come
without their problems. Political interests and inefficiency
often burden public sector electrification [71], while donor
efforts are limited to available funding and have often been
challenged with providing consistent long-term plans and
funding [8]. Private sector investment has been suggested as
a potential solution to donor and public sector challenges.
However, investment decisions hinge primarily on balancing
risks and anticipated rewards. When discussing investment
into a microgrid, the private sector often bring up concerns
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of both high risk and low return on investment [72]. Another
prevalent challenge stems from the electricity price regula-
tions in various countries and jurisdictions. Many countries
set a maximum price of electricity while requiring a certain
standard of electricity reliability to bemet, making it increas-
ingly difficult for the private sector to achieve dependable
returns [60, 73]. Financing such microgrid projects relies
heavily on secure revenue streams to cover operating costs,
debt repayment, and ensuring a return to the equity investors
[60].

Technical Challenges

Technical hurdles in low-income regions can vary greatly
by community size and location and are often impacted by
intertwined socio-political and economic challenges. A crit-
ical technical obstacle in electrifying Africa, for instance,
lies in power quality enhancement. As an example, some
microgrids established for health clinics in the Democratic
Republic of Congo have exhibited steady-state voltage lev-
els of up to 150% of the nominal [64]. Several other health
clinics consistently experience steady-state voltages below
10% of nominal for 6 or more hours daily. Such sustained
over-voltage and under-voltage conditions, or otherwise low
power quality conditions, result in a significant economic and
social impact. Specifically, low levels of power quality are
the primary cause of over 70% of medical equipment failures
in developing economies [65].

Unexpected community or electrical load growth can lead
to improper electricity installation, which further increases
faults and decreases safety and reliability. Figure3 portrays
an example of an overcrowded electricity pole with a lone
service worker fixing a frequent power outage in Kampala,
Uganda. Electrical crowding is further worsened by a lack
of accurate electrical sensing, which can make fault and
anomaly detection a challenge [26]. Additionally, electric-
ity and equipment theft are also prevalent, which can cause
faults, hazardous environments, and inaccuracies in power
flow estimation and demand metrics if sensing is present
[74].

Additionally, islanded microgrids tend to be more sen-
sitive to variability in energy consumption patterns than
grid-tied microgrids due to their smaller geographical size
[75]. The high uncertainty in demand, often coupled with a
substantial amount of infrequent renewable energy sources,
makes microgrid management more challenging. Addition-
ally, load variability further complicates the sizing of the
generation system that seeks a minimization of cost while
maintaining adequate service quality [76]. Indeterminate
load profiles and inefficient second-hand appliances add to
the issue, making it challenging to size distributed energy
generators according to demand. Technical challenges, such
as those previously discussed, offer great opportunities for

Artificial Intelligence research to rapidly improve the relia-
bility and adoption of microgrids in developing economies.

A Review of AI Applied toMicrogrids in
Developing Economies

Artificial Intelligence research hasmade significant advance-
ments in addressing key technical challenges of microgrid
control and operation, including energy demand-side man-
agement, security and stability assessment, power system
resilience, energymanagement, anddemand response, along-
side many more [17•]. In this section, we conduct a compre-
hensive examination of several of the prevailing technical
challenges faced by microgrids in developing economies.
Specifically, we examine AI research in the following sub-
categories: fault detection, sizing, and energy management
systems. Table 1 is organized as a comprehensive view of
current AI microgrid research, the technology used, and sug-
gestions for expanding further into developing economies.

EnergyManagement Systems

An energy management system (EMS) is the system respon-
sible for the distribution of available generation to meet the
energy load in a microgrid [92]. The primary objective of
an EMS is to facilitate the efficient administration of all
dispersed energy resources and loads, and it presides over
decisions to disconnect from the main grid in grid-connected
microgrids. Recently, AI has emerged as a solution to address
the multitude of energy management challenges experienced
by a microgrid [14].

In rural regions in low-income countries, islanded micro-
grids are often the most cost effective solution as these areas
often do not have access to the main grid [100]. Likewise,
these areas donot have readily available access to the internet,
and many data monitoring solutions rely on cellular com-
munication over 2G and 3G networks. The limited access
to reliable internet access furthers the constraint that EMS
algorithms must be locally deployable or use extreme data-
conscious sensing. In operation in a rural microgrid, an EMS
plays a key role in controlling and optimizing functional
areas like battery charging, diesel generator operation, and
PV resources. The battery storage system is often the most
important element of amicrogrid and is used tomaintain peak
load demand via instructions from the energy management
system (Fig. 4).

Recent AI advancements employing the use of artificial
neural networks [93], fuzzy logic systems [94], and sliding
mode controller [95] have shown substantial advantages in
managing the uncertainty of renewable energy sources and
consumer loads. Complementing these, multi-agent systems,
game theory, and Markov decision processes have proven to
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Fig. 3 An electricity service worker fixing a frequent power outage due to overcrowding of electricity wires in Kampala, Uganda

be proficient tools for the problems of EMS optimization
[17•]. Multi-agent systems foster decentralized decision-
making, facilitating cooperative control among microgrid
components [98], which increases device autonomy and real-
time decision-making flexibility. Meanwhile, game theory
applications encourage fairness in energy distribution by
dealingwith competition amongplayers in amicrogrid [101].
Markov decision processes assist in making informed deci-
sions about power generation and allocation in the face of
uncertainties in renewable energy sources and loads [99].
These AI techniques collectively enhance EMS’s efficiency

and reliability, contributing to amore sustainable and resilient
energy system.

For many grid-tied microgrids, there is a significant
advantage to having weather and load forecasting methods
integrated into the energy management system so that opti-
mal grid-based charging and reliance on batteries can be
maintained [96]. In islandedmicrogrids, however, a common
practice is to use all available power to fully charge batteries
and provide a diesel generator backup only when the battery
state of charge has reached protection levels. However, this
approach has several disadvantages as lithium ion batteries
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Table 1 Summary of current AI methods used for sizing, fault detection, and energy management in a microgrid, with suggestions for how future
research can be adapted for developing economies

Category Current research AI technology used Suggestions for future research in
developing economies

Sizing • Managing uncertainties of renew-
able energy supply [77]
• Multi-objective optimization of
DER and forecasting [78]

• Software: HOMER and iHOGA
[79]
• AI algorithms: leveragingGenetic
Algorithms (GA) [80], Harmony
Search Algorithm (HSA) [81], Par-
ticle Swarm Optimization (PSO)
[82], andSimulatedAnnealing (SA)
[83]

• Growth-forward approach consid-
ering potential load increase
• Multifactor optimization with a
reliability consideration
• Implementing algorithms that
optimize operational costs and ease
of maintenance

Fault Detection • Improve accuracy of Identifica-
tion, and characterization of power
disturbances [84–86]
• Fault Location Detection [87]
• Smart anomaly information [85,
86]

• Type-2 Fuzzy Logic (FL) [88],
Decision Tree [89], Artificial Neu-
ral Networks (ANN) [90, 91], Sup-
port Vector Machines (SVMs) [90,
91], K-Nearest Neighbors (KNN)
[90], Naïve Bayes [90], Hybrid
ANN-SVM models [91]

• Autonomous AI Systems
• Local deployable algorithms
• Super Resolution, energy data
encoding
• Exploring self-correction capabil-
ities

Energy Manage-
ment Systems

• Optimization of microgrid opera-
tions [14, 92]
• Handling integration and variabil-
ity of DER [93–95]
• Load forecasting, weather fore-
casting, smart control [96, 97]

• Artificial Neural Networks [93],
Fuzzy Logic Systems [94], Sliding
Mode Controller [95]
• Multi-agent systems [98], Game
theory [17•], Markov decision pro-
cesses [99]

• AI-based forecasting techniques
for battery state-of-charge [97]
• AI for operation of productive use
of electricity
• AI for creating and implementing
electricity tariffs

Fig. 4 An example of an EMS in a developing economy, with inputs for weather and load forecasting
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have a high degree of self-degradation when kept at a high or
low state of charge.Recent studies bySchulte et al. [97] found
that the proposed operation strategy could reduce the average
battery state-of-charge by 20% without causing power out-
ages for the mini-grids in applied case studies on microgrids
in Nigeria. This study used the statistical method autore-
gressive integrated moving average, of forecasting; however,
there is great potential for AI-based future work in this area.

Fault Detection

Fault detection is the identification, segregation, and char-
acterization of disturbances related to power quality within
a power system [84]. In the context of a microgrid, fault
detection strategies traditionally employ distributed sensors
to monitor electricity parameters and identify anomalies that
could indicate hazardous power conditions, potentially caus-
ing harm to the inhabitants or leading to equipment failure
[85]. Traditional fault detection techniques largely depend
on signal processing approaches such as Fourier transform,
waveform transform, and eigenvalue analysis [87]. These
methods are used to inform microgrid operators and, in
some situations, operate autonomously to safeguard elec-
trical equipment. Recent advancements in AI stand out as
a promising solution, potentially offering superior detection
capabilities for complex power disturbances and heightened
accuracy in signal processing thatmay be overlooked by con-
ventional methods [86].

A variety of AI-based mechanisms have been employed
in the literature, including type-2 fuzzy logic [88], decision
tree-induced fuzzy rule base intelligent protection schemes
[89], support vector machines, and artificial neural networks
[91]. Different machine learning techniques such as deci-
sion trees, K-nearest neighbors, support vector machines,
and naïve Bayes have been used and compared for fault
classification in microgrids as well [90]. Fuzzy logic and
graph algorithms are another popular choice [102]. To control
the autonomous switching of energy sources, many adaptive
relays have been developed, including using a hybrid fuzzy-
optimization method for optimal settings and coordination
[103].

The protective considerations for rural microgrids differ
vastly from those of urban or grid-tied microgrids. Rural
microgrids are often constrained by factors such as a limited
understanding of technological issues by the local commu-
nity, economic limitations, a higher degree of exposure to
severe environments, and an increased incidence of electric-
ity theft [104]. Duly addressing these issues is crucial as they
present additional complications that may not arise in larger
microgrids. There is an opportunity for academic research
to offer solutions for efficient identification and diagnosis of
power quality problems, such as pinpointing the location and
isolating the relevant components.

For a solution to be practically applicable in a micro-
grid environment, it should not require high-speed data
transmission to a cloud-based system or should be locally
deployable and deliver advanced power quality detection
accuracy. Moreover, it should be accompanied by a compre-
hensive strategy for execution and integration of the fixing
solutions and self-correction capabilities.

Sizing

Microgrid sizing is a crucial part of the microgrid implemen-
tation process, involving the selection of the energy genera-
tion capacity of one or many distributed energy resources
(DER). A prominent challenge in standalone microgrid
installation is sizing the generation components to reduce
overall system cost while maintaining adequate electricity
coverage through varying load conditions. While renew-
able energy sources are often considered an ideal solution,
they provide additional challenges due to the uncertainty of
renewable energy supply. In many rural communities, a pho-
tovoltaic system with battery storage and a diesel generator
backup is often one of the simplest and most cost-effective
methods of delivering zero or low-carbon emission during
production [77].

Software solutions like HOMER and iHOGA have emerged
as industry standards for microgrid sizing, accounting for
weather forecasting and employing specific algorithms for
optimization [79]. Alongside industry software solutions,
there has been significant academic interest in developing
various AI sizing algorithms focused on optimizing system
cost and reliability [105]. These algorithms leverage artifi-
cial intelligence methods, including genetic algorithms [80],
harmony search algorithm [81], particle swarm optimiza-
tion [82], simulated annealing [83], and others [78, 80]. The
defining feature of these AI-based sizing approaches is their
ability to handle non-linear fluctuations of the microgrid
components and the variable nature of the meteorological
parameters. Some AI-based solutions have been designed
with better accuracy and convergence and can ingress awider
range of operating parameters such as high-resolution time
series data [106].

From an algorithm design perspective, it is imperative to
consider not just the current energy requirements but also the
potential future growth of the community energy demands,
essentially creating a growth-forward approach [107]. One
of the key challenges when looking at rural microgrid siz-
ing is estimating energy growth over time among varying
political and economic climates. In the context of developing
economies, a more pragmatic approachmight be to acknowl-
edge the need for a reduced reliability factor in the short-term
while devising a plan to increase electricity reliability over
time—reducing the up-front cost of electrification [108].
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In low- and middle-income countries, a reality for rural
communities operating a microgrid is the often high costs
for maintenance due to limited technical skillsets available
locally. The economic barrier introduced by limited technical
skills can be partially mitigated by implementing algorithms
that reduce the operational cost of a microgrid in remote
locations [107]. Furthermore, AI can be used to model future
load growth andoperational costs by using population growth
forecasts and economic development indicators, which can
support the scalability and future readiness of the system
[109].

Future Artificial Intelligence Research

While significant research has focused on various technical
AI-microgrid opportunities, there is also great potential for
AI to address the various STEP challenges faced by devel-
oping economies. In this section, we break down the ways
in which future research can be practically implemented into
microgrids located in low- and middle-income countries.

Using AI to overcome social challenges presents an inter-
esting perspective on electrification adoption opportunities.
The recent advancements of large language models (LLM)
have demonstrated their usefulness in enhancing education
and explaining complex problems [110]. In cellular/ WI-FI
enabled areas, an LLM can be used to support the adoption of
electricity and electrical technology and explain use cases in
the local language [111–113]. Alongside community adop-
tion, AI can be leveraged to increase technical awareness and
semantically search across energy components manuals and
documents to help diagnose and resolve power quality issues
by technicians [114].

Another key aspect in implementing energy solutions is
navigating and overcoming the many political challenges
facing communities. AI has shown much promise in fraud
and anomaly detection—a useful feature for corruption
identification [115]. Technology such as graph neural net-
works can be useful in identifying bad actors based on
previous history, and their relation to other corrupt individu-
als [116, 117]. Additionally, machine learning algorithms,
including decision trees, random forests, support vector
machines, deep learning models like convolutional neu-
ral networks, recurrent neural networks, transformers, and
anomaly detection algorithms, perform comprehensive data
analyses—structured and unstructured—to discern and clas-
sify patterns indicative of suspicious activities [118, 119].
Natural language processing techniques and network analy-
sis using graph theory provide in-depth insights into text data
and complex relational data, respectively, further aiding the
identification of potential corruption instances [120].

Economic challenges are often viewed as one of the most
pronounced barriers to private sector involvement in electri-

fication, which is important for widespread adoption. One
of the biggest financial barriers facing microgrid developers
is a lack of revenue from customers. To increase profitabil-
ity, some microgrid operators have introduced productive
use appliances to the community to increase revenues [121].
Upon implementation, community services such as commer-
cial refrigeration, ice making, water purification, and other
appliances can be introduced to provide additional revenue
for a community. The scheduling and operation of these loads
provide an interesting potential area for future AI research,
as optimization and uncertainty are heavily involved. Finally,
while some companies have set limits for the maximum elec-
tricity tariffs, by optimizing and understanding consumer
load profiles, AI could help in the creation and implementa-
tion of better electricity tariffs, further increasing the payback
of microgrids.

Overcoming the technical challenges associated with siz-
ing, energymanagement, and fault detection in the context of
constraints faced by developing economies requires a signif-
icant commitment. One key area of potential future study is
developing methodologies for assessing the minimum level
of sensing necessary for reliable, real-time grid state analysis.
Likewise, due to the cost of data sensing and transmission,
solutions such as localized algorithm deployments can opti-
mize data processing while research on super-resolution data
technologies can enhance operational efficiency and analy-
sis of microgrids. Moreover, the development of economical
yet efficient sensing solutions can reduce overall installation
costs, a considerable benefit to developing economies with
limited resources.

Conclusion

The integration of AI advancements into microgrids in low-
and middle-income countries is a dynamic area of investi-
gation requiring the concerted effort of various stakeholders.
Microgrid installation companies often grapplewith resource
constraints, a lack of nuanced understanding of AI-based
solutions, and issues related to data acquisition costs. Collab-
orations with academic researchers and a further emphasis
on data-based approaches can guide these companies toward
innovative, cost-effective solutions that support electrifica-
tion effectively.

For both academics and industry, a systematic investi-
gation of social-technical-economic-political (STEP) chal-
lenges prior to rural microgrid implementations would
yield valuable insights. With community involvement and
a proper STEP analysis, economically viable grid systems
that seamlessly merge with the daily routines of commu-
nity members can be implemented successfully. Alongside
these efforts, there are great opportunities in AI models
that can identify and help overcome the many challenges
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facing developing economies on the path to electrification
today.
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