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Abstract There is increasing interest in energy from woody
biomass as fossil fuel replacement, yet environmental and
economic limitations have reduced feedstock available for
bioenergy. Supply could likely be substantially increased with
intensive forest management for productivity and utilization
as well as forest-based dedicated energy crops. This
paper discusses the role of industrial forests in sustainable
bioenergy feedstock production and the lessons learned in an
operational scale project. Catchlight Energy, LLC, a
Chevron|Weyerhaeuser joint venture, evaluated intercropping
switchgrass (Panicum virgatum) in loblolly pine plantations
for liquid transportation fuel, with the goal of full-scale
production. Within Weyerhaeuser, sustainability and opera-
tional research were conducted simultaneously. While the
environmental research is non-proprietary and being
published as it is completed, operational trials were internal.
To understand lessons learned, staff responsible for manage-
ment, planning, logistics, and field operations were
interviewed, and perceived and actual barriers to production
described. Ongoing environmental research is showing that
carefully planned field operations can be conducted sustain-
ably, but energy crop production fell below levels needed for
economic feasibility.
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Introduction

Increasing concern over impacts of elevated concentrations of
greenhouse gases (GHG) in the atmosphere on climate has
generated interest in replacing energy from fossil fuels with
energy from forests, with woody biomass possibly accounting
for 18% of global energy consumption by 2050 [1]. However,
it is likely that this value could be substantially increased by
developing and implementing forest management measures to
enhance biomass productivity and utilization and also grow
dedicated energy crops.

While woody biomass may be defined as Ball forest plant
and forest-plant-derivedmaterials^ [2], not all woody biomass
is grown in a forest nor is it the only potential feedstock from
the forest. Forest-based bioenergy crops can come from in-
creased management and use of trees grown for traditional
forest products or from dedicated feedstock grown specifically
for bioenergy. Short-rotation woody crops are an important
source of biomass but are typically grown agriculturally.

Recent efforts have focused on innovations to make
second-generation biofuel technically and economically feasi-
ble. Initial estimates showed adequate feedstock to meet the
Renewable Fuel Standard [3], but models over-allocated
woody biomass to bioenergy uses [4] and environmental and
economic limitations make actual supply much lower than
potential availability [5, 6]. Capital for investment in conver-
sion was limited by the economic recession, energy costs
dropped, and high-profile failures in wood-based biofuel con-
version facilities [7] reduced willingness of growers to plant
bioenergy-specific feedstock.
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However, there are still US wood-based cellulosic biofuel
planned and in place, although only one is ready for commer-
cial scale production [7]. European markets will depend on
US woody biomass to meet renewable fuel targets [8]. With
careful landscape planning, industrial forestry could source a
large, stable source of biomass without affecting food supply,
bring experience in large-scale sustainable land management,
and provide a balanced economic and market portfolio of
products.

Forest-Based Feedstock

Increased Management and Use of Forests Grown
for Traditional Forest Products

While there was initial concern that a market for forest-based
sources of biomass would cause conversion of forest to more
intensive land uses, bioenergy production need not lead to
deforestation [9], and demand could lead to increased forest
area [10]. More intensive biomass removal from public forests
could work within fuel load reduction and pest management
plans to remove understory and manage stand density [11].
For small private landowners, increased utilization of existing
forest biomass requires less investment and risk than dedicat-
ed plantings. More intensive management could include fer-
tilization, denser plantings, more frequent thinning of non-
crop trees, or understory harvest. Forest residues could be an
important bioenergy feedstock, making up 13 % of the US
potential biomass [12] and displacing about 3 % of electricity
sector carbon (based on 1997 FIA and energy data) [13].
Figure 1, produced by the National Renewable Energy
Laboratory based on US Forest Service data, shows residues
available for biomass removal.

Increased residue usage is most easily accomplished by
whole-tree harvest, with natural understory vegetation har-
vestedmechanically [14–16]. Periodic natural understory veg-
etation would be more variable than a dedicated crop, causing
potential conversion issues. Increased residue use and under-
story removal would be subject to applicable regulatory forest
practice rules, state Best Management Practices, certification
guidelines, and other environmental regulations, such as the
Clean Water Act. Participation within forest certification sys-
tems, such as the Sustainable Forestry Initiative® (SFI®),
Programme for the Endorsement of Forest Certification
(PEFC), American Tree Farm System® (AFTS), and Forest
Stewardship Council® (FSC) [17], has expanded rapidly over
the last decade, and many standards associated with these
certification programs are applicable to forest biomass
production.

Sustainability of intensive removals from forests depends
on the specific practice and site. Eisenbies et al. [12] synthe-
sized study data on biomass left after current stem-only

harvest and found that whole-tree harvest could remove 20–
50 % of material now retained after harvest. They cite con-
flicting evidence as to which sites are most resilient, but that it
is possible to remove residue without depleting nutrients and
reducing site productivity. Many studies have found little to
no effect of these types of removals on soil quality [18–20],
though aggressive biomass removal may impact soil produc-
tivity. On poorer loblolly pine (Pinus taeda) sites, often with
coarse-textured soils, intensive biomass removal is more like-
ly to reduce productivity [21–24], and higher slope areas are
more susceptible to erosion from biomass removal [25].
Removal of harvest residues on sites that are already deficient
in organic matter/soil carbon may remove a higher proportion
of available C and nutrients from the site than would occur on
sites with higher levels of organic matter.

Dedicated Forest-Based Feedstock Grown Specifically
for Bioenergy

There are many hurdles to growing a purpose-grown
bioenergy crop on forest land, but future scenarios may re-
quire more bioenergy feedstock than is available from existing
agriculture and forest landscapes. These crops could include
low-value trees or perennial energy crops, either intercropped
in or grown in a mosaic with traditional plantations. However,
much of what we know comes from plot-scale trials or agri-
cultural studies. Weyerhaeuser Company installed, to our
knowledge, the only purpose-grown bioenergy crop at opera-
tional scale within a forested system.

Weyerhaeuser’s bioenergy project was initiated in 2008 as
part of Catchlight Energy, LLC, a Chevron|Weyerhaeuser
joint venture, to evaluate intercropping switchgrass
(Panicum virgatum) in loblolly pine plantations for liquid
transportation fuel. Switchgrass is a native C4 grass, and there
is a large body of research and guidance in growing it for
bioenergy in agricultural settings [26–28], including a full-
scale, integrated bioenergy system through the University of
Tennessee [29]. Pine intercropping is also not new; the litera-
ture includes examples of plot trials, for example
intercropping with low-value trees [30] and switchgrass [31,
32].

The Catchlight joint venture brought together expertise in
natural resources from Weyerhaeuser and energy from
Chevron and worked to fill technology gaps. We, the authors,
were primarily involved in feedstock supply and sustainability
research. While our sustainability research is being published,
many of the planning decisions and operational trial results
were not public. To capture the important lessons from these
and gain additional insight into project history, we interviewed
others in management, planning, operations, and logistics, and
the following reflects our experience and that of those we
interviewed. As part of the bioenergy project scoping, plan-
ners from Weyerhaeuser, Chevron, and the joint venture
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evaluated barriers to bioenergy supply. Major barriers were
overall demand including energy and feedstock markets; gov-
ernment policy, mandates, and incentives; environmental ef-
fects on biodiversity, water, and soil; carbon fate and account-
ing methodology; seed source and availability; planting
methods and establishment success; switchgrass productivity;
competition between pine and switchgrass; equipment and
contractor availability; harvesting logistics and efficiency;
and transportation costs. Plans were put in place to simulta-
neously address the major research gaps and scale up sustain-
able feedstock production. Seventeen bioenergy plants were
planned by 2029, with the first commercial plant on line in
2014.

Operational tracts and studies were installed in 2008 and
continued until 2012 when it became clear that with dropping
energy prices, reduced policy imperatives, and no break-
throughs in scaled conversion technology efficiency,
pine/switchgrass intercropping was economically infeasible
except under the most productive conditions. As Alan Shaw,
former CEO of Codexis advanced biofuel company, said
about cellulosic conversion, it is Bnot a promising place to
start producing commodity chemicals and fuels where 80 per-
cent of the cost is feedstock.^[33]. Where research into
engineered system components can occur rapidly, research
and development of feedstock cannot move faster than crop

establishment and growth, and perennial, forest-based systems
face additional challenges. Competition between pine and
switchgrass is a major component of the economic [34] and
sustainability equation, yet switchgrass does not reach matu-
rity for 3 years. Site preparation and sowing of switchgrass
were expected to cause high erosion initially [35], yet once
established, switchgrass is a very effective sediment control
[36] and has even been shown to be effective in mitigated
gully erosion [37]. Biodiversity and water quality components
of sustainability research required a pre-and post-treatment
period, further increasing length of time needed for results.
However, results can be extrapolated to many intensive
forest-based biofuel practices, and although the operational
studies concluded, sustainability work has continued and is
yielding useful insights.

Operational studies included in-field operations, logistics,
plant and system productivity, and effects on soil quality and
carbon stocks. Trials examined switchgrass species optimiza-
tion, provenance, spacing and configuration, fertilization rates
and timing, herbicide prescriptions, shading effects, planting
equipment and methods, harvest timing and frequency, site
preparation, pine/switchgrass competition, and ash content.
The intercropping system was patented [38], and while some
studies were proprietary, others overlapped sustainability
work and were published (e.g., [39–44]). Many trials were

Fig. 1 Forest residues beyond that needed for ecological function [72]
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conducted in Lenoir County, NC, an experimental site
established in 2008 for soil and carbon sustainability work
[45]. Other field trials, environmental research sites, and ap-
proximately 30 full-scale operational tracts were installed
across Weyerhaeuser’s ownership in Mississippi, Alabama,
and North Carolina. These to-scale trials revealed several bar-
riers to economically viable and environmentally sustainable
feedstock production.

Site Planning

Although multiple row spacings were studied, switchgrass
was operationally planted between pine spaced in rows 6 m
apart (Fig. 2). Plot studies demonstrate lower switchgrass
height and productivity on edges nearest to pine, due to com-
petition and shading [39, 40]. Effect magnitude increases with
pine age and competition for resources, including light.
Although a shading effect is not apparent early in the
intercropping cycle [40] and has been hypothesized to help
young switchgrass outcompete other grass [46], it greatly
limits productivity as switchgrass matures [39].

Correlated with row spacing, age of pine at switchgrass
planting has implications for switchgrass productivity and site
erosion. Delaying switchgrass site preparation and planting
until 2 years after plantation establishment leaves residuals
time to decay, providing more uniform ground conditions,
improving establishment efficiency and success. Preliminary
results also found desynchronized planting reduced water
quality response to switchgrass site preparation [47, 48] com-
parison to simultaneous planting. However, switchgrass loses
significant productivity under a shading equivalent of 6–8-

year-old pine [39], moving switchgrass production to a 4–6-
year window in a 25-year pine rotation.

These sites, like all Weyerhaeuser US plantations, were
managed under SFI requirements, and state Best
Management Practices (BMPs) for forestry were followed.
Forested riparian buffers and non-riparian buffers, common
in steeper slopes and wet areas, reduced operable area.
Steeper sites and sites with brokenmicrotopography were also
excluded. Trees were planted on contour, and in sites with
steep and dissected relief, planting rows became broken and
also intersected, making operations less efficient. While these
practices provided soil and water quality protection, areas left
in trees shaded switchgrass and reduced and fragmented plant-
ing area. Other best practices, such as sinuous contour plant-
ing, limited equipment type and maneuverability and required
more fuel.

Operations

Establishing an agricultural crop on forest land proved to be
challenging, requiring equipment and experience not typical
of forest operators. Although intercropped sites were limited
to lower slopes, operators used their judgment and experience
to further restrict operations within a tract to limit erosion,
reducing the area site prepared for switchgrass by approxi-
mately 25 % in upland areas [49].

After plantation harvest, but before planting pine or switch-
grass, sites were cleaned with a brush rake, an expensive and
slow process. The ground had to be dry enough to support a
large bulldozer, but still have enough moisture for optimal
sowing. Intercropped areas had to be further cleared so that

Fig. 2 An intercropped site in
Greene County, Alabama, with
bales from previous year harvest
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the seeds were sown in mineral soil, while avoiding erosion.
Even with additional clearing, considerable forest residue
remained, slowing site preparation considerably. Planting
areas, while very smooth by forestry standards, were much
rougher than agricultural sites.

The first attempts at sowing used a seed drill designed for
row crops. However, in many sites, slope, ground undulations,
and rills led to large variations in seed placement, with some
sown too deeply and other dropped on the soil surface.
Experiments led to improved techniques, and in subsequent
attempts, soil was disked three times with a tractor and seed
was broadcast followed by a light harrowing using an all-
terrain vehicle with a chain bar. This produced more optimal
soil moisture conditions and seed depth leading to much more
successful germination.

Loblolly pine prefers soil pH from 4.5–7.0 [50] but switch-
grass prefers a pH of 5.5–6.5 [28], and productivity is reduced
in lower pH soils. Pine plantations are fertilized at low average
annual rates, and additional fertilization was needed for
switchgrass. Pine, planted as seedlings, are not affected by
localized standing water, but this reduced productivity of or
killed switchgrass. Competition from diverse seed reservoirs,
not present in highly cultivated agricultural land, required site-
specific herbicide prescriptions.

Agricultural equipment and techniques had to be modified
for mowing and baling. Pine rows closed over time, and
switchgrass growth hid obstacles. Contour plantings, efficient
in preventing erosion, require much more equipment maneu-
verability and slowed each equipment pass. Costs per bale
were approximately double those from an agricultural field.

Sustainability

To understand sustainability of intercropping, research was
conducted for carbon balance and environmental effects; en-
vironmental research included biodiversity, soil quality, and
water resources. Biodiversity studies covered plants,
herpetofauna, and large and small mammals [51–59]. Soil
quality, GHG, and carbon life cycle analyses were conducted.
[31, 40–42, 44].

In research watersheds, switchgrass was planted into a
young pine stand or co-planted during with pine along with
stands of mid-rotation pine, young pine, and switchgrass only.
Early switchgrass success was low, and the sites were
replanted and overseeded, delaying the project by a year and
extending the final growing season to 2015. Publications to
date evaluate methods and models, reference site dynamics,
plot trials, pre-treatment or site preparation periods, and early
data [47, 60–66]; however, general observations can be made.
A visual survey confirmed water quality analysis [47] that
erosion associated with site prep and sowing was minimized
by existing pine rows, which stopped almost all sediments. Co-
planted stands were clear of vegetation for a longer time and

had none of the litter accumulation associated with even young
pine. Water use has been a major concern in biofuel feedstock
[67, 68], but early estimates show intercropping would use
slightly less water than pine plantations they replace [50, 69].
The final analyses are not complete, but properly implemented
pine/switchgrass intercropping appears to maintain ecological
functions of the forest.

Conclusions

To make a significant contribution to renewable fuel supply,
forest-based biomass must be grown and harvested sustain-
ably and efficiently. Intense management of a high-
productivity crop must be done in a way that maintains eco-
system services of managed forests. Operational plantings
across feedstocks show much less yield than plot trials predict
[70]; this discrepancy between modeled and actual supply
could harm food and bioenergy markets and threaten plans
for renewable fuel [71]. Identifying and addressing the bene-
fits and challenges of forest-based biomass feedstock systems
will help ensure renewable fuel supply for our future.
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