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Abstract
Re-entrant textures are promising geometries for hydrophobic surfaces, however a 
direct processing method of microscale re-entrant textures applicable for general 
industrial materials such as metals has yet to be established. The purpose of this 
study was to demonstrate a possibility of direct processing method of microscale 
re-entrant textures by using a femtosecond-pulsed laser. We designed a novel and 
simple optical unit including a pair of step mirrors and a newly designed aspherical 
condenser lens that enable processing of reverse-tapered uniaxial grooves. A maxi-
mum reverse-taper angle of 20° was achieved on stainless steel using a femtosecond-
pulsed laser that could be controlled linearly with the step mirror angles. Four types 
of test-pieces with re-entrant texture composed of reverse-tapered grooves were fab-
ricated with reverse-tapered angles of 5 – 20°. It was demonstrated that the apparent 
contact angle exhibited an increase in the processed angle of the re-entrant texture. 
The re-entrant structures on stainless steel achieved a hydrophobicity over 140° of 
apparent contact angle with good stability, and allowing water droplets to slide off.

Keywords  Femtosecond-pulsed laser · Re-entrant texture · Reverse-tapered groove · 
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Introduction

It has been pointed out by Herminghaus [1] that the various surface constituents 
of leaves of numerous plants, such as the common smoketree or wild cabbage, 
have superhydrophobic surfaces that are expected to be due to re-entrant texture [2, 
3]. The re-entrant surface curvature can be used to design surfaces with extreme 
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resistance to wetting for multiple kinds of liquids with low surface tension. A criti-
cal parameter of re-entrant texture is the angle formed between the sidewalls of 
the indent and the horizontal line [4, 5]. The reverse-taper angle is defined as the 
angle made clockwise from the vertical line at the center of the hole (Fig. 1). The 
micro-periodic structure has a geometry such as width of the solid–liquid interface, 
f1 (= tooth width), width of the liquid–air interface, f2 (= groove width), pitch, τ 
(= f1 + f2), and depth, d. In a forward-tapered hole, the angle of the convex top is 
larger than the angle of the indent bottom. Conversely, in a reverse-tapered hole, 
the angle of the convex top is smaller than the angle of the indent bottom. The latter 
shape can form the re-entrant texture. Increasing the reverse-taper would enhances 
the ability of asperities to suspend drops [6–8]. For re-entrant curved surfaces, the 
net traction on the liquid–vapor interface is directed upwards, thereby supporting 
the formation of a composite interface. Additionally, four design criteria have been 
proposed to form an air-entrapped Cassie–Baxter state from the re-entrant texture 
considering the pressure balance of liquids, such as Laplace pressure, gravity, sur-
face curvature, pinning effects, and the suspending conditions [9].

Several fabrication methods have been proposed to process re-entrant textures, 
such as lithographic techniques [10, 11], nanoimprinting [12, 13], reactive ion etch-
ing [14], spin coating [15], self-assembly [16], and laser [17, 18]. Kang and Choi 
created mushroom-like micropillar arrays by photolithography on silicon [10]. Yun 
et  al. assembled primary doubly re-entrant nanostructures on secondary micro-
grooves by nanoimprinting [12]. An overhang structure fabricated by using reverse 
nanoimprint lithography was used in conjunction with reactive ion etching as a 
re-entrant texture [14]. An oleophobic surface was fabricated by spin coating with 
ultra-violet-cure resin and poly(tetrafluoroethylene) microbeads [15]. Mushroom-
like microstructures were fabricated by self-assembly and dip-coating using mag-
netic particles [16]. A fabrication process using laser ablation and electrodeposi-
tion was also investigated [17]. Yang et  al. proposed a laser-induced self-growing 
mushroom-like microstructure on poly(ethylene terephthalate) tape/heat-shrinkable 
polystyrene bilayer surfaces [18]. However, with these processing methods, materi-
als were limited to silicon and resin, and no method existed that can process any 
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Fig. 1   Geometries of a re-entrant texture with reverse-taper angle, ψ
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materials. A direct processing method of microscale re-entrant texture that applica-
ble for general industrial materials such as metals has yet to be established.

To overcome the limitations, we focused on pulsed laser sources as a direct pro-
cessing method of microscale re-entrant texture on metals. Femtosecond-pulsed 
lasers have been applied for three-dimensional processing with nano- and micro-
scale surface topography in an open environment and in an acceptable time for mul-
tiple materials [19, 20]. The processing angle that can be applicable to overhang 
processing have been especially used in interference laser processing [21]. Since the 
conception of the Mach–Zehnder interferometer, numerous types of beam correla-
tors such as Lloyd’s mirror and the transmission beam splitter with Schwarzschild 
optics have been used for laser interference patterning [22]. Fan et  al. improved 
the taper degree of laser-drilled holes by adopting a nanosecond double-pulse laser 
beam [23]. However, these processing methods rarely have reverse-taper angle that 
exceeds 10°, which may be because no need existed for such processing on the sur-
face of materials.

The purpose of this study was to demonstrate a possibility of direct processing 
method of microscale re-entrant textures by using a femtosecond-pulsed laser. We 
designed a novel and simple optical unit for reverse-taper processing including a 
pair of step mirrors and a newly designed aspherical condenser lens. We optimized 
the reverse-taper angle of uniaxial grooves through femtosecond-pulsed laser pro-
cessing of stainless steel and evaluated the characteristics of the proposed optical 
unit. Subsequently, we evaluated the geometries of re-entrant texture composed of 
reverse-tapered uniaxial grooves. Finally, we demonstrated the hydrophobicity of re-
entrant texture made on stainless steel.

Materials and Methods

Principle of Optical Unit for Reverse‑Taper Processing

An optical unit for processing reverse-tapered uniaxial grooves comprised (i) a 
beam expander (× 1/4, BEZHP-2/8–500/570, Sigmakoki Co., Ltd., Tokyo, Japan), 
(ii) a pair of step mirrors (0.008° of resolution of stepping motor, Suruga Seiki 
Co., Ltd., Shizuoka, Japan), (iii) a fixed mirror, and (iv) an aspherical condenser 
lens (Fig. 2). The aspherical condenser lens (synthetic quartz) was designed by 
the authors to meet the following specifications: 20° of irradiation angle after 
passing, 24  mm of effective diameter, 15.0  mm of thickness, and 17.14  mm of 
focal length, and manufactured by a company (Natsume Optical Co., Iida, Japan). 
An x–y electric-stage (HST-50X, 2 μm of repeated positioning accuracy, Sigma-
koki Co., Ltd.), a dual-directions (x–y) tilt stage (KRE04360-C, 0.00034° of res-
olution, Kohzu Precision Co.,Ltd., Japan), and a z-stage (OSMS60-10ZF, 5  μm 
of repeated positioning accuracy, Sigmakoki Co., Ltd.) were installed on a table 
on which a work piece was placed. Prior to the experiment, the test piece was 
levelled by using a digital level meter (SELN-011B, Sakamoto Electric MFG 
Co., Ltd., Fukuoka, Japan) to satisfy within 0.001° and the focal length was set 
to a target value. A commercial femtosecond-pulsed laser (Pharos-6  W, Light 
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Conversion UAB, Vilnius, Republic of Lithuania) providing pulses at an oscil-
latory wavelength of 515  nm, a pulse width of 277  fs, and a repetition rate of 
10 kHz was used for this experiment.

The distance of a laser beam from the centre of the aspherical condenser lens was 
controlled by changing the angle of the step mirrors (ϕ). A processing angle (irra-
diation angle with respect to the workpiece, ψ) is determined according to this dis-
tance of a laser beam from the center of the aspherical condenser lens. After that, a 
reverse-tapered uniaxial groove was processed when the laser beam scanned in one 
direction (uniaxial groove processing in x-direction).

Characteristics of Optical Unit for Reverse‑Taper Processing

Stainless steel (SUS304, JIS G 4305, 30 mm × 30 mm of area and 1 mm of thick-
ness, Ra = 6.3  μm of surface roughness (without polish), Nippon Steel Stainless 
Steel Co., Tokyo, Japan) was used for fabricating test-pieces. The surface roughness 
was measured using a non-contact laser confocal microscope (10 nm resolution for 
depth, OLS4100, Olympus Co., Tokyo, Japan). In order to determine the relation-
ship between step mirror angle and processed angle, the side-views of the reverse-
tapered uniaxial grooves were observed using the x–y electric-stage. The pulse-to-
pulse overlap (overlap ratio, OR) was calculated as a function of the pulse separation 
distance, p, and the spot diameter, D, as follows [24]:

The parameters were fluence, F, at 250 mJ/mm2 and overlap ratio, OR, at 99.6%. 
In this evaluation, the test-pieces were placed at the focal position in the depth direc-
tion, z, where the diameter of the processing mark was smallest. Where, 250 mJ/
mm2 of fluence was the upper limit of our processing system. This was performed 
by using the z-stage and was defined as 0 μm. The spot diameter, D, at the focal 
position on the test-piece surface was calculated to be 11.6  μm by 1/e2 using the 
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Fig. 2   Designed optical unit for reverse-taper processing with a femtosecond pulsed laser
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focal length of the focusing lens f = 17.14 mm, a laser beam quality with M2 = 1.117, 
and an expanded (1/4) laser beam diameter db = 4.83 mm as follows [25]:

The spot diameter was set to achieve processing resolution in 10 μm scales.

Optimization of Laser Processing

The optimum processing conditions were identified based on the shape of perpendicu-
larly uniaxial groove processing. The micro-periodic structure has a geometry such as 
f1 (= tooth width), f2 (= groove width), τ (= f1 + f2), and d (please see Supplementary 
Materials Section for further details). The relationship between the depth and the shot 
number was measured at 250 mJ/mm2 of fluence and 80% of the overlap ratio with per-
pendicularly uniaxial groove processing. The surface and side geometries of the test-
pieces were observed using the non-contact laser confocal microscope. Prior to side 
observation of reverse-taper angles of re-entrant textures, the edge surface was polished 
using a polishing sheet (#8000 defined by ISO 8486–2:2007, Riken Corundum Co., 
Ltd., Saitama, Japan).

Fabrication of Re‑Entrant Texture

Three processed angles of 0°, + 20°, and − 20° were repeated at the same position for 
each angle in order to construct a re-entrant texture in 3  mm × 3  mm of processing 
area using the x–y electric-stage. Test-pieces with re-entrant textures were fabricated at 
250 mJ/mm2 of fluence and 80% of the overlap ratio, with the uniaxial groove process-
ing. Finally, four types of test-pieces with re-entrant textures at reverse-tapered angles 
of 5, 10, 15, and 20° were prepared under the optimal conditions such as 250 mJ/mm2 
of fluence, 80% of the overlap ratio.

Measurement of Apparent Contact Angle and Sliding Characteristics

The apparent contact angles, θ’, of the test-pieces with re-entrant textures were meas-
ured using a commercial contact angle analyzer (DM-701, Kyowa Interface Science 
Co. Ltd., Japan) by dropping 2 μL of distilled water droplet from a microsyringe at 
24 °C. The measurements were repeated five times (n = 5), and the mean values were 
used.

Finally, the sliding angles, α, were observed by dropping 12 μL of distilled water 
droplet. For this evaluation, we used a test-piece of the reverse-tapered uniaxial groove 
with a width of 5 mm and a length of 7 mm. Water droplets were slides down in an 
orthogonal direction to the reverse-tapered uniaxial grooves. Sliding was defined to 
occur if the distilled water droplet moved more than 3 mm from its original position. 
Droplets were released onto samples from a height of 10 mm [26].

(2)D =
4f�M2

�db
μm
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Statistical Analysis

All analyses were performed using the Statistical Package for Social Sciences (SPSS) 
version 25 (Advanced Analytics, Inc., Tokyo, Japan). Unless stated otherwise, all data 
were expressed as means ± standard deviations (SDs).

Results and Discussion

Characteristics of Optical Unit for Reverse‑Taper Processing

Firstly, grooves with reverse-taper angles were fabricated by laser drilling using the 
optical unit for reverse-taper processing. The processing conditions were 11.6 μm of 
spot diameter, 250 mJ/mm2 of fluence, 250 of shots, and 99.6% of the overlap ratio. 
Figure 3 shows the relationship between processed angle, ψ, and step mirror angle, ϕ, 
when reverse-tapered uniaxial grooves were processed using the femtosecond-pulsed 
laser with the fabricated optical unit by changing the step mirror angle in 0.25° incre-
ments over the range of ± 3.5°. It was revealed that the processed angle can be con-
trolled linearly with the step mirror angles as follows:

(3)� = 6.15 � (◦)

φ 0 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3 3.25 3.5

ψ 0 1.6 2.9 4.8 5.6 7.9 8.3 10.4 12.4 12.9 16.6 18.3 18.5 19.6 21.7

B Relationship between processed angle and step mirror angle

A Side-views of processed reverse-tapered grooves
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Fig. 3   Characteristics of reverse-tapered grooves processed using femtosecond-pulsed laser with fabri-
cated optical unit

Lasers in Manufacturing and Materials Processing (2023) 10:64–76 69



where, the coefficient of determination, R2, reached 0.998. The aspect ratio (ratio of 
depth-to-groove width, d/f2) of the reverse-tapered uniaxial grooves was 6.35 ± 1.05.

Optimization of Laser Processing

The depth was increased in proportion to the number of shots of perpendicularly 
uniaxial grooves when 250 mJ/mm2 of fluence and 80% of overlap ratio were used 
(Fig. 4). It was revealed that the depth can be proportionally increased up to 25.4 μm 
by setting the number of shots to 15.

Measurement of Apparent Contact Angle and Sliding Characteristics

Four types of test-pieces with re-entrant textures were fabricated with the processed 
reverse-tapered angles of 5 – 20°. Here, the lateral surface geometries of the test-
pieces were observed using a scanning electron microscope (SEM; JSM-6010LA, 
JEOL Ltd., Tokyo, Japan). The processed angle showed a reverse-taper (ψ = 20°, 
Fig.  5A), and the pitch of the periodic structures was τ = 40.1 ± 1.1  μm and the 
groove width was f2 = 29.4 ± 2.3 μm, respectively (Fig. 5B). Multiple linear grooves 
were observed to align independently without interfering. The groove width (f2)/
pitch (τ) ratio was obtained by dividing f2 by τ. The f2/τ ratio of 5, 10, 15, and 20° 
were 0.72, 0.71, 0.75, and 0.73, respectively. No significant difference was observed 
in the f2/τ ratio.

Figure  6 shows the measured results of apparent contact angles, θ’, in two 
directions for each processed angle. The pitch and depth of each condition ranged 
between 40.1 and 40.4 μm and 27.8 and 33.1 μm, respectively. No significant differ-
ence was observed in the pitch and depth for each condition. When the irradiation 
of femtosecond-pulsed laser, the ultra-short duration of the pulses leads the vapori-
zation of the material under the effect of the huge instantaneous power received by 
the irradiated zone [27]. The iron-oxide layer will be disappeared when iron is pro-
cessed with a femtosecond-pulsed laser [28]. However, when the sample is exposed 

Fig. 4   Relationship between 
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ence: 250 mJ/mm2, OR: 80%)
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to the atmosphere, oxidation starts again immediately after that, and an iron-oxide 
layer is formed quickly. The apparent contact angles were measured one week after 
laser processing because it has been reported that the laser processing of metal sur-
faces creates preferential sites for the adsorption of organic compounds from the air 
and that the wetting behavior changes with the amount of carbon on the structured 
surface [29, 30]. The apparent contact angle of the flat plate showed 103.7° and this 
water repellency was considered to be caused by surface oxidation. It was observed 
in the re-entrant texture that the apparent contact angle exhibited an increase with 
the processed angle. These results were entirely consistent with those of a previous 
report that the hydrophobicity of surface with re-entrant texture increases in propor-
tion to the reverse-taper angle [31, 32]. In particular, the maximum apparent contact 
angle of the re-entrant texture reached 140.1° compared with 103.7° for the flat plate, 
regardless of observation direction. The re-entrant textures with reverse-tapered uni-
axial grooves showed improvements the hydrophobicity 35% in maximum. As the 

Fig. 5   Surface morphology of 
fabricated re-entrant textures 
on a stainless steel (ψ = 20°, 
test-piece with reverse-tapered 
grooves at 0° and ± 20°)
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theoretical development of the re-entrant texture, Tuteja et al. proposed an equation 
for shape and hydrophobicity [7], Chhatre et  al. discussed the effect of the tooth 
width/groove width ratio [8], Wu and Suzuki presented the pinning and suspending 
condition for the theoretical development of the re-entrant texture [9], which led to 
suspending force by Liu et al. [33]. Thus, if the suspending force is sufficient, the 
droplet will not reach the bottom. These results showed that the water droplet did not 
reach the bottom of the re-entrant texture because it was sufficiently suspended to 
exceed the depth. It has also been reported that periodic structures applied in a uni-
axial direction affect the apparent contact angles by less than 2% [34]. Our results 
were thus consistent with those of the previous report. Furthermore, the apparent 
contact angle in x- and y-directions presented different changing trend with the pro-
cessed angle especially at 10°. The surface roughness, Ra, of the convex parts of 
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the grooves in y-direction with angles of 5, 10, 15, and 20° were 0.51 ± 0.03 μm, 
0.47 ± 0.04 μm, 0.52 ± 0.02 μm, and 0.54 ± 0.03 μm, respectively. The smoothness 
of the convex parts has a possibility to provide slight hydrophilicity.

On the flat sample of stainless steel, water droplets did not slide down even if 
the tilted angle exceeded 60°. In contrast, on test-pieces with re-entrant texture at 
the processed angle of 20°, water droplets slipped at α = 35° (Fig. 7). The sliding 
velocity reached a maximum of 131 mm/s showing that the water droplets passe 
the processing length of 7 mm within 53 ms.

A limitation to our study was that stainless steel was used as the material for 
fabricating the re-entrant textures. The femtosecond-pulsed laser micropatterning 
has been applied to several metals such as titanium [35] and aluminum [36], and 
other materials as silicon [37] and polymer [38]. In future work, we intend to 
examine the application of re-entrant texture processing to various materials.

Conclusions

We have demonstrated a possibility of direct processing method of microscale 
re-entrant textures with arbitrary pitch and depth by using a femtosecond-pulsed 
laser. A direct fabrication method of re-entrant textures with reverse-tapered uni-
axial grooves was proposed demonstrating improvements the hydrophobicity 35% 
in maximum. A maximum reverse-taper angle of 20° was achieved which can 
be controlled linearly via the step mirror angles of a fabricated optical unit. The 
re-entrant structures on stainless steel achieved the hydrophobicity over 140° of 
apparent contact angle with good stability allowing water droplets to slide off.

Since this method can be applied to additional processing to the products, the 
proposed methodology outlined herein may be adapted to applications in the 
medical field, semiconductor industry, automobile industry, or aviation industry. 
The apparent contact angle about 140° is not good enough expected for re-entrant 
structure. In future work, we would like to improve this method for applications 
involving biaxial grooves and laser drilling.

Supplementary Information  The online version contains supplementary material available at https://​doi.​
org/​10.​1007/​s40516-​022-​00198-y.
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