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Abstract
Soil swelling is one of the major causes of structural failure, due to excessive mois-
ture saturation and desaturation moisture. In situ measurement of swelling stress is 
somewhat impossible and requires tedious routine site observation. The use of artifi-
cial intelligence to predict the swelling stress of in situ soil is highly recommended, 
because of the complex behavior of soil upon moisture absorption. Because of this 
challenge, this study is channeled towards the prediction of swelling stress using 
basic geotechnical properties to save the challenges of repeating geotechnical exper-
imental tests. In this study, the swelling stress of soils collected from 15 locations 
in 5 sites across South Africa has been predicted by using the artificial neural net-
work (ANN), genetic programming (GP), and evolutionary polynomial regression 
(EPR)-based intelligent techniques. Multiple data were collected through laboratory 
experiments on the predictors: gravimetric moisture content (GMC), plasticity index 
(Ip), dry density (γd), free swell index (FSI), degree of saturation (S), matric suction 
(Ψm) and the target, and swelling stress (Psm). This predictive model was aimed at 
proposing models, which will help earthwork designers and constructors in South 
Africa overcome the rampant visit to the laboratory in search of soil data needed 
for geotechnical engineering designs. The soils showed their potential for swelling, 
which was eventually confirmed by the sensitivity analysis of the intelligent mod-
els. The performance indices of the models showed that ANN outclassed the other 
techniques with a performance accuracy of 93.6% at an error of 1.9%. Also, the sen-
sitivity analysis showed that the plasticity index and matric suction were the most 
influential to the models. With the predicted models, future earthworks in South 
Africa can quickly forecast swelling stress prior to designs and construction more so 
in hydraulically bound environments.
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1  Introduction

Expansive soil underlies over one-third of the world’s land surface, and it is often 
found in arid and semi-arid regions. South Africa as a country is situated between 
arid and semi-arid regions; hence, this caused 50 to 65% of South African soil to be 
expansive (Diop et al. 2011). This implies that expansive soils are always in unsatu-
rated conditions as they are situated above the groundwater table. On that note, dam-
ages caused by expansive soils to buildings, roads, pipelines, and other geotechni-
cal structures upon contact with water are much higher than the damage caused by 
floods, hurricanes, tornadoes, and earthquakes combined (Jones and Holtz 1973). 
More so, expansive soil undergoes significant volumetric changes upon contact with 
water, hence causing severe swelling, shrinkage, and desiccation cracks which if not 
properly predicted and mitigated could cause colossal damage to infrastructures. 
Therefore, it is imperative to intelligently predict the swelling stress of an expansive 
soil because swelling stress governs the amount of soil volume change which is one 
of the designs in geotechnical engineering rather than a frequent visit to the labora-
tory that is somewhat tedious and time-consuming. However, in situ measurement of 
swelling stress is extremely challenging and somewhat impossible, especially in the 
existing geotechnical foundation system. It is also a fact that swelling stress nega-
tively influences the settlement of the geotechnical system causing an impediment 
to the desired use of the foundation through the reduction of the design life of the 
structure (Punthutaecha et al. 2006; Aneke et al. 2018; Aneke et al. 2021a, b).

Often geotechnical engineers are faced with the most crucial challenges of 
analyzing the mechanics of fine-grained soil while identifying and evaluating its 
vulnerability to contraction and expansion problems. Because the rate of swell-
ing and shrinkage in expansive soil depends on the number of clay minerals. For 
instance, clayey soils expand and contract at a significant degree whereas sand 
and gravel shrink slightly. Many published studies have suggested the correla-
tion of compression index (Cc) and the basic soil properties utilizing advanced 
models (Benbouras et al. 2018; Samui et al 2019; Moayedi et al. 2020). However, 
only a few widely accepted empirical equations have been proposed in the litera-
ture to estimate the swelling index (Cs) from physical soil parameters, such as the 
natural water content, the plasticity index, the liquid limit, the specific gravity, 
and others. Therefore, the need to intelligently predict swelling stress utilizing 
soft computing and genetic programming has become imperative. Failure and the 
challenges of analyzing swelling mechanism will continue to cause disturbances 
to foundations which can result in service life impairment of roads, buildings, 
pipelines, and other lightly loaded structures (Aneke et  al. 2015; Ermias et  al. 
2017; Chu et  al. 2018; Aneke et  al. 2021a, b). In this regard, several scholars 
have used numerical analysis, statistical models, mathematical models, coupled 
artificial intelligence, and soft computing models to predict swelling stress (Ly 
et  al. 2019; Mawlood and Hummadi 2020; Amin Benbouras and Alexandru-
Ionut 2021; Aneke and Nkwonta 2021; Guo et al. 2021).

Artificial intelligence techniques for predicting the swelling stress of expansive 
soil have demonstrated a substantial degree of success, as an alternative approach 
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to data processing and analysis in various areas of engineering (Singh et al. 2013; 
Sharma et al. 2017). These techniques are flexible and dynamic and have a wide 
range of tolerance for uncertainty which makes them more reliable in handling 
complex geotechnical problems.

Ikizler et al. (2010) used grain density, LL, PL, PI, SL (shrinkage limit), OMC 
(optimum moisture content), MDD (maximum dry density), and K (hydraulic con-
ductivity) to construct an ANN model that estimates swelling pressures of clay-rich 
soils. At first, the lateral and vertical swelling pressures were measured with differ-
ent thicknesses of expanded polystyrene (EPS) geofoam placed between one of the 
vertical walls of the steel testing box and the expansive soil. Then, artificial neural 
network was trained using these pressures for the prediction of transmitted lateral 
swelling pressure and vertical swelling pressures on a retaining structure. Results 
obtained from this study showed that neural network-based prediction models could 
satisfactorily be used in obtaining the swelling pressures of the expansive soils.

Yilmaz and Kaynar (2011) applied multiple regression, radial basis function, 
multilayer perceptron, and ANFIS methods for the prediction of the swell potential 
of soils. In their study, they presented the use of MLP and RBF functions of ANN 
(artificial neural networks) and ANFIS (adaptive neuro-fuzzy inference system) for 
the prediction of S% (swell percent) of soil which was described and compared with 
the traditional statistical model of MR (multiple regression). However, the accura-
cies of ANN and ANFIS models may be evaluated relatively similarly. It was found 
that the constructed RBF exhibited a high performance than MLP, ANFIS, and MR 
for predicting S%. The performance comparison showed that a soft computing sys-
tem is a good tool for minimizing uncertainties in soil engineering projects.

Ikizler et  al (2014) provided a new estimation model to predict the pressures 
developed using experimental data. The data were collected in the laboratory using 
a newly developed device and experimental setup also. In the experimental setup, 
a rigid steel box was designed to measure transmitted swelling pressures in lateral 
and vertical directions. In the estimation model, approaches of artificial neural net-
works (ANN) and adaptive neuro-fuzzy inference systems (ANFIS) are employed. 
In the first stage of the study, the lateral and vertical swelling pressures were meas-
ured with different thicknesses of expanded polystyrene geofoam placed between 
one of the vertical walls of the steel box and the expansive soil in the laboratory. 
Then, ANN and ANFIS approaches were trained using the results of the tests meas-
ured in the laboratory as input for the prediction of transmitted lateral and vertical 
swelling pressures. Results obtained showed that ANN-based prediction and ANFIS 
approaches could satisfactorily be used to estimate the transmitted lateral swell-
ing pressure. Other than the prediction of swelling stress, the artificial intelligence 
approach can also be used to predict several other geotechnical properties. Tizpa 
et al. (2015) presented artificial neural network prediction models which relate com-
paction characteristics, permeability, and soil shear strength to soil index properties. 
A database including a total number of 580 data sets was compiled. The database 
contains the results of grain size distribution, Atterberg limits, compaction, per-
meability measured at different levels of compaction degree (90–100%), and con-
solidated–drained triaxial compression tests. Comparison between the results of 
the developed models and experimental data indicated that predictions are within 
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a confidence interval of 95%. According to the performed sensitivity analysis, the 
Atterberg limits and the soil fine content are the most important variables in predict-
ing the maximum dry density and optimum moisture content. Another aspect that is 
coherent from the sensitivity analysis is the considerable importance of the compac-
tion degree in the prediction of the permeability coefficient. However, it can be seen 
that the effective friction angle of shearing is highly dependent on the bulk density 
of the soil.

Since unsaturated soil is typically located at the vadose zone above the ground-
water table, this study is geared towards developing empirical models that correlate 
suction, gravimetric moisture content (GMC), plasticity index, dry density, and free 
swell index and degree of saturation to predict the swelling stress of three South 
African expansive soils. Generally, the developed models rationally predicted reli-
able results for expansive soils when validated with independent data sets without 
going through tedious processes. The developed models are also trusted to save high 
costs accompanied by running oedometer tests and time-consuming.

2 � Materials and Methods

2.1 � Material Preparation

2.1.1 � Soil

The soil samples used herein were sampled from 4 different sites across Free State 
(i.e., Bloemfontein, Welkom, Bethlehem, and Winburg). The investigated soil is of 
vertisol characteristics, and it formed the parent soil across this province with exces-
sive expansiveness and compressibility. Thus, they portray significant volumetric 
change upon contact with water, and these soils are categorized as one of the prob-
lematic soils in South Africa (Diop et al. 2011, Aneke et al. 2021a, b). Three differ-
ent samples were collected from each visit, and they are labeled alphabetically as 
soil A, B, and C. As such, Fig. 1 presents the 4 visited sites where the soil samples 
were collected as highlighted in a green circle. Different cores were drilled at each 
site, and representative soil samples were collected at a depth of 1.2 m and sealed in 
airtight plastic bags to minimize moisture loss for the subsequent soil testing.

The collected soil samples were classified according to ASTM D2487-17 stand-
ard practice for engineering purposes. Based on the test results, the soil sample clas-
sifications range from CH to CL, with predominant clay contents and high plasticity. 
The grain size analysis of the soil samples was achieved through blends of different 
particle sizes. The blending of the particle size was applied to minimize grain size 
discrepancies that might influence the test results. Firstly, dry sieving was conducted 
by passing soil grains through a 9.5-mm sieve size, followed by additional sieving 
through aperture sieve sizes of 4.75 mm and 75-μm sieves to separate fines, sand, 
and gravel. The hydrometer analysis was also conducted as 75 to 85% of fines passed 
through the 75-μm sieve as summarized in Table 1. The purpose of the hydrometer 
analysis is to further differentiate the percentages of silt and clay representative from 
the fines following ASTM D1140.
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Based on the consistency test as presented in Table 1, the liquid and shrinkage 
limit results imply that the investigated soils possess a degree of expansion. The 
plasticity values of the soils are within the range of 35 to 50%, whereas the obtained 
linear shrinkage is within the value range of 15 to 23%. In the winter season, when 
the samples were sampled, the soil generally experiences a net water deficit given 
the semi-arid climate prevalent in the province. The degree of saturation ranges 
from 82 to 95, and the value reflects the unsaturated condition of the soil in the field 
because the high liquid limit and plastic limit indicate high-water retention capabil-
ity due to the double-layer structure of the clay minerals available in the soil. It is 
noted that the percentages of expansive clay minerals such as smectite, montmoril-
lonite, kaolinite, and vermiculite also contributed to the soil–water retention capac-
ity of the soils.

The index properties of clayey material depend on the type and content of 
clay minerals, which considerably influence the swelling stress of expansive soils 
(Changxi et al. 2019). Therefore, to evaluate the mineralogical compositions respon-
sible for swelling activities, the investigated soils were subjected to X-ray diffraction 
(XRD) testing using the Rigaku TTRA III diffractometer, and tests were performed 
at Cu Kα radiation (1.5418 Å) level as presented in Table 2. The presented XRD 
result analysis also confirms that the investigated soils are expansive consisting of 
dominant phases of smectite, illite, silica, calcite, and other clay minerals evaluated 
at trace level.

2.1.2 � Sample Preparations

Prior to sample preparation, Proctor compaction tests were conducted on the soil 
samples following ASTM D698-12(2021), to determine the optimum moisture con-
tent (OMC) with the corresponding maximum dry density (MDD) of the soil. Due 

Table 1   Summary of soil properties used in the study

Gs, specific gravity; USCS, universal soil classification system

Designation LL (%) Ip (%) LS (%) Fines (%) Gravel (%) Gs USCS

Sites Soils Silt Sand

BLM 1 Soil A 69.11 43.93 18.9 71.38 18.32 10.30 2.75 CH
Soil B 65.23 38.11 22.13 62.45 21.24 16.31 2.78 CH
Soil C 64.18 35.71 16.42 59.20 27.19 13.61 2.74 CH

WLK 2 Soil A 61.30 38.25 13.68 55.25 28.83 15.92 2.77 CH
Soil B 74.32 50.11 15.48 68.11 18.18 13.71 2.73 CH
Soil C 45.20 22.10 11.24 39.27 40.24 20.49 2.75 CL

BHM 3 Soil A 75.41 35.47 13.83 67.98 20.92 11.10 2.71 CH
Soil B 71.25 29.54 12.93 64.78 21.98 13.24 2.76 CH
Soil C 66.24 24.13 15.24 58.23 28.66 13.11 2.74 CH

WBG 4 Soil A 71.54 48.21 16.71 62.52 20.82 16.66 2.73 CH
Soil B 42.61 19.32 8.11 35.21 42.15 22.64 2.69 CL
Soil C 45.28 21.31 9.28 38.54 40.21 21.25 2.68 CL
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to the high soil–water retention capacity, the investigated soils rendered moisture 
contents within the range of 18.24 to 33.31% from the dry to the wet side of the 
optimum. This implies that the soils constitute high plasticity with significant swell-
ing potentials, whereas the dry densities at the optimum moisture content range 
from 17.74 to 21.85 kN/m3 for the investigated soils. The soil samples were pre-
pared at various dry densities with their corresponding moisture contents, as ini-
tially obtained from the compaction test. The soils were prepared for a series of tests 
mentioned earlier in this study, by weighing out given quantities of soil. The mold-
ing moisture contents that were determined from the Proctor compaction test were 
measured out followed by thorough mixing of the measured soil and water contents. 
The mixing continued until a homogeneous soil mixture was obtained. The soil mix-
tures were covered in airtight plastic bags for 8 h before specimen fabrication for 
the series of geotechnical testing mentioned earlier in this study to ensure uniform 
distribution of moisture. The preliminary compaction test was used as a guide to 
determine the required quantities of water for the specimen’s fabrication; thus, the 
specimens were deemed suitable for testing when the density after preparation was 
at least 97% of the targeted MDD after specimen fabrication.

2.2 � Experimental Methods and Data Collection

2.2.1 � Laboratory Work

The present study is focused on the prediction of swelling stress by applying artifi-
cial intelligence soft computing programming as well as using laboratory-generated 
data for the training of artificial intelligent programs. The free swell index was con-
ducted following the Indian standard IS-2720 (Part 40, 2002) test method. The main 
objective of this test is to evaluate the swelling potential of expansive soils.

Table 2   Soil mineralogical compositions (X-ray diffraction result)

BLM, Bloemfontein; WLK, Welkom; BHM, Bethlehem; WBG, Winburg

Sites Soils Smectite Silica K-feldspar Plagioclase Illite Calcite

BLM 1 Soil A 71.74 13.41 9.91 1.85 1.89 1.22
Soil B 67.05 19.98 10.66 2.31  <  <   <  < 
Soil C 71.74 13.40 9.91 1.85 1.89 1.22

WLK 2 Soil A 61.30 13.25 6.95 5.15 8.13 5.22
Soil B 70.18 11.12 5.14 4.11 2.31 3.14
Soil C 34.26 30.75 20.32 7.04 2.11 5.52

BHM 3 Soil A 64.23 14.36 8.93 5.98 4.58 2.10
Soil B 67.47 15.54 8.49 4.15 3.21 1.14
Soil C 65.50 10.45 7.03 6.37 6.14 4.51

WBG 4 Soil A 63.37 20.34 10.71 1.80 2.43 1.35
Soil B 61.14 11.93 19.01 2.63 3.31 1.98
Soil C 59.53 27.47 9.19 3.81  <  <   <  < 
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The soil used for this test was passed through a 425-μm sieve size (#40); this sieve 
size was selected because it represents 90% of the fines from the soil. The soils were 
oven-dried at a temperature of 115 °C, and 2 graduated cylinders were filled with water 
and kerosene to the level of 100 ml. Subsequently, 10 g of the representative soil sam-
ples was placed into each cylindrical jar followed by vigorous shaking and agitation 
for 15 min. The graduated cylindrical jar after shaking was placed on a flat surface and 
allowed to settle. The initial volume of the soil placed into the jars was recorded fol-
lowed by the last reading after 48 h of taking the initial readings. The soil placed in the 
jar containing kerosene did change in volume as it was used as the control, whereas the 
volume of the soil in the jar containing water recorded a significant increase in volume. 
Therefore, the free swell index is the expression in Eq. 1.

where FSI is the free swell index, Vk is the volume of soil in kerosene, and Vs is the 
volume of soil in water.

The filter paper test was used in this study to determine the soil matric suction 
since the soil is unsaturated. However, the filter paper test was conducted following 
ASTM 5298 (2016). Prior to the specimen fabrication for the filter paper test, the 
samples were prepared with different moisture contents; then, the specimens were 
shaped to have a dimension of 85 mm and 70 mm of diameter and height. Subse-
quently, specimens were cut in half, and three filter papers were sandwiched between 
the sliced soils. After the filter papers were sandwiched, the joint was sealed off 
with electric tape to eliminate moisture loss for the filter paper. The taped specimens 
with sandwiched filter papers were placed in different jars and a poly-vinyl chloride 
(PVC) ring of 40 mm diameter and 5 mm thickness was placed on top of each taped 
specimen and non-contact filter papers were subsequently placed on top of the poly-
vinyl chloride (PVC) ring. The prepared specimens were labeled and placed in an 
ice chase box capable of maintaining 240 ℃ temperature for 14 days. After 14 days, 
the contact and no-contact filter papers were retrieved and weighed, and their water 
contents were determined following the procedures suggested by Bulut and Leong 
(2008). Then, filter paper moisture contents were converted to total suction and mat-
ric suction using Eqs. 2 and 3.

where ω is the filter paper water content.

Zero Swelling Test  The zero swelling test is a measure of soil swelling counter 
loading with contact with water up until no further swelling is recorded. In this 
study, the ZST was conducted following IS 2720 (Part 41, 1977). The soil sam-
ples passing through an ASTM sieve size of 4.75 mm (#4) were used due to the 
high content of fines. The specimens were prepared at various moisture contents 
and corresponding dry unit weights, according to the initial compaction test. After 

(1)FSI =
[

(Vs − Vk)∕Vk

]

× 100%

(2)Log(kPa) = −0.0769�f + 5.2266,

(3)Log(kPa) = −0.0126�f + 2.3361
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compaction, the specimens were demolding and shaped to bear 25 mm in height 
and 75 mm in diameter size to fit into the oedometer ring. It was then wetted on 
a high-pressure oedometer frame under vertical stress of 0.1 MPa using distilled 
water as the specimens are loaded. Once the swelling starts, the vertical load was 
increased to prevent further vertical swelling. During this process, maximum swell 
and vertical strain were allowed as presented in Fig. 2. The swelling was deemed 
complete when no further swelling was recorded by the swelling dial gauge. The 
total applied load was summed as Eq. 4 which is used to calculate the swelling 
stress at each molding moisture content. The zero swelling experimental setups 
are shown in Fig. 2.

where Ps is the swelling stress in kPa, 
∑n

i
= 1Mi is the total sum of surcharge, g is 

the acceleration due to gravity 9.81 m/s2, br is the beam ratio of the oedometer arm, 
and �(∅2)∕4 is the internal area of the ring.

2.2.2 � Collected Database and Statistical Analysis

The physical and mechanical proprieties of 60 soil samples were tested following 
these soil parameters gravimetric moisture content (GMC) (%), plasticity index (Ip) 
(%), dry density (γd) (t/m3), free swell index (FSI) (%), degree of saturation (S) (%), 
matric suction (Ψm) (MPa), and swelling stress (Psm) (MPa). The measured records 
were divided into two sets, i.e., training and validation. Thus, 40 records were used 
for the training exercise whereas 20 records were used for validation purposes as pre-
sented in Table 3 with the inclusion of the complete data set. Furthermore, Tables 4 
and 5 summarize the statistical characteristics and the Pearson correlation matrix of 
the data set as the histograms for both inputs and outputs are demonstrated in Fig. 3. 
The histogram results revealed that FSI recorded the highest frequency value, followed 
by dry unit weight, GMC, and matric suction. It is also evident that the plasticity index 
and degree of saturation recorded the same frequency value (Table 6). The frequency 
provokes an increment in the quantity of data; therefore, it enhances the performance 
which adjusts the magnitude of change in each variable value and most likely influ-
ences the predictability of the model.

2.3 � Research Program

Besides the traditional multi-linear regression (MLR) technique, three different artifi-
cial intelligent (AI) techniques were used to predict the shrinkage limit of the tested soil 
samples. These techniques are genetic programming (GP), artificial neural networks 
(ANN), and polynomial linear regression optimized using a genetic algorithm which 
is known as evolutionary polynomial regression (EPR). All three developed models 
were used to predict the values of swilling stress (Psm) using the measured gravimetric 

(4)Ps(kPa) =

(

n
∑

i

= 1Mi × g × br∕π(∅
2)∕4

)

∕100
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Table 3   The used database

GMC (%) Ip (%) γd (t/m3) FSI (%) Ψm (MPa) S (%) Psm (MPa)

Training set
0.09 0.50 1.25 0.20 6.941 0.85 0.73
0.12 0.42 1.66 0.18 5.076 0.85 0.68
0.15 0.37 1.73 0.16 3.789 0.85 0.60
0.23 0.28 1.59 0.12 2.593 0.85 0.53
0.28 0.10 1.29 0.02 0.921 0.85 0.40
0.10 0.40 1.25 0.18 8.517 0.94 0.70
0.13 0.39 1.56 0.16 6.843 0.94 0.68
0.18 0.28 1.69 0.13 4.989 0.94 0.58
0.23 0.20 1.42 0.10 3.295 0.94 0.52
0.28 0.10 1.21 0.01 1.613 0.94 0.42
0.09 0.40 1.15 0.20 6.498 0.85 0.70
0.13 0.38 1.76 0.18 5.145 0.85 0.65
0.18 0.30 1.66 0.15 4.250 0.85 0.60
0.23 0.20 1.69 0.04 2.898 0.85 0.51
0.27 0.10 1.35 0.02 1.040 0.85 0.40
0.08 0.45 1.61 0.18 6.541 0.92 0.72
0.13 0.39 1.89 0.15 5.976 0.92 0.66
0.16 0.31 1.94 0.10 4.689 0.92 0.61
0.25 0.28 1.75 0.08 2.793 0.92 0.51
0.28 0.10 1.62 0.04 1.121 0.92 0.45
0.09 0.50 1.55 0.18 8.628 0.97 0.73
0.12 0.40 1.75 0.16 6.754 0.97 0.65
0.18 0.38 1.85 0.10 5.898 0.97 0.55
0.25 0.36 1.89 0.08 2.895 0.97 0.51
0.30 0.12 1.56 0.06 1.413 0.97 0.41
0.10 0.35 1.42 0.18 6.398 0.83 0.68
0.14 0.30 1.59 0.16 5.345 0.83 0.60
0.21 0.26 1.68 0.13 3.450 0.83 0.55
0.26 0.18 1.60 0.08 1.998 0.83 0.48
0.33 0.10 1.30 0.04 1.240 0.83 0.42
0.09 0.36 1.65 0.2 8.534 0.95 0.73
0.13 0.30 1.95 0.17 6.098 0.95 0.62
0.19 0.29 2.18 0.15 4.643 0.95 0.60
0.24 0.23 2.01 0.11 2.134 0.95 0.51
0.29 0.11 1.62 0.07 1.378 0.95 0.46
0.10 0.36 1.55 0.20 5.278 0.97 0.65
0.14 0.30 1.92 0.18 4.465 0.97 0.58
0.19 0.25 2.09 0.15 3.087 0.97 0.58
0.27 0.21 1.90 0.12 2.598 0.97 0.47
0.30 0.10 1.60 0.10 1.091 0.97 0.41
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moisture content (GMC) (%), plasticity index (Ip) (%), dry density (γd) (t/m3), free swell 
index (FSI) (%), degree of saturation (S) (%), and matric suction (Ψm) (MPa). Each 
model of the three developed models was based on a different approach (evolutionary 

Table 3   (continued)

GMC (%) Ip (%) γd (t/m3) FSI (%) Ψm (MPa) S (%) Psm (MPa)

Validation set
0.10 0.38 1.81 0.20 6.395 0.95 0.66
0.14 0.32 2.16 0.15 4.525 0.95 0.65
0.19 0.28 2.28 0.12 3.272 0.95 0.58
0.24 0.19 2.17 0.08 2.010 0.95 0.52
0.30 0.10 1.88 0.06 1.481 0.95 0.40
0.10 0.43 1.65 0.16 7.071 0.92 0.70
0.14 0.39 1.88 0.14 5.884 0.92 0.67
0.19 0.34 2.06 0.12 3.959 0.92 0.56
0.24 0.25 1.80 0.10 2.183 0.92 0.48
0.30 0.12 1.60 0.03 1.128 0.92 0.43
0.10 0.35 1.77 0.18 4.263 0.82 0.68
0.14 0.17 2.00 0.16 3.989 0.82 0.63
0.19 0.15 2.24 0.13 2.914 0.82 0.56
0.23 0.14 2.10 0.10 2.029 0.82 0.50
0.243 0.10 1.98 0.04 0.667 0.82 0.46
0.09 0.21 1.97 0.20 4.331 0.85 0.70
0.12 0.18 2.11 0.16 3.708 0.85 0.65
0.17 0.14 2.26 0.12 2.707 0.85 0.57
0.24 0.12 2.24 0.08 1.715 0.85 0.50
0.28 0.08 2.12 0.02 0.763 0.85 0.42

Table 4   Statistical analysis of the collected database

GMC (%) Ip (%) γd (t/m3) FSI (%) Ψm (MPa) S (%) Psm (MPa)

Training set
Min 0.08 0.22 1.15 0.60 0.92 0.83 0.35
Max 0.33 0.50 2.18 1.50 8.63 0.97 0.87
Avg 0.19 0.37 1.64 1.04 4.22 0.91 0.59
SD 0.08 0.08 0.24 0.28 2.25 0.05 0.14
Var 0.40 0.22 0.15 0.27 0.53 0.06 0.24
Validation set
Min 0.09 0.19 1.60 0.60 0.67 0.82 0.35
Max 0.30 0.48 2.28 1.40 7.07 0.95 0.87
Avg 0.19 0.28 2.00 0.88 3.25 0.89 0.58
SD 0.07 0.12 0.20 0.31 1.79 0.05 0.13
Var 0.37 0.41 0.10 0.36 0.55 0.06 0.23
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approach for GP, mimicking biological neurons for ANN, and optimized mathematical 
regression technique for EPR). However, for all developed models, prediction accuracy 
was evaluated in terms of the sum of squared errors (SSE).

GMC % Ip %

γd t/m3 FSI %

Ψm MPa S %

Psm MPa

Fig. 3   Distribution histograms for inputs (in blue) and outputs (in green)
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The following section discusses the results of each model. The accuracies of 
developed models were evaluated by comparing the (SSE) between predicted and 
calculated swilling stress (Psm) values. The results of all developed models are sum-
marized in Table 7.

3 � Results and Discussions

3.1 � Preliminary Results

Geotechnical sensitivity analysis was conducted prior to artificial intelligence 
prediction of the swelling stress to evaluate which of the geotechnical index 
properties is highly sensitive to swelling stress. Figure  4 presents the geotech-
nical sensitivity analysis of the individual geotechnical properties like plasticity 
index, free swell index, gravimetric moisture content (GMC), and matric suction. 
Based on the obtained results, it was noted that the GMC has the highest sensi-
tivity to swelling stress prediction compared to the rest of the geotechnical prop-
erties. In the order of hierarchy, the gravimetric moisture content is the highest 

Table 6   Connection weights for the developed ANN

Hidden layer 1 Output layer

H (1:1) H (1:2) H (1:3) H (1:4) Psm

Input layer Bias  − 0.71 0.03  − 0.37  − 0.61
GMC  − 0.10  − 0.84  − 0.81 0.32
Ip  − 0.07  − 0.52  − 0.70  − 1.32
γd  − 0.21 0.38 0.22 0.65
FSI 0.53  − 0.27 0.34 0.38
Ψm 0.12  − 0.01  − 0.08 0.65
S  − 0.29 0.39 0.27 0.50

Hidden layer 1 Bias  − 0.01
H (1:1) 0.85
H (1:2) 0.84
H (1:3) 0.72
H (1:4)  − 0.95

Table 7   Performance accuracies 
of developed models

Technique Developed equation Error % R2

MLR Equation (1) 2.4 0.907
GP Equation (2) 2.4 0.907
ANN Equation (3) 1.9 0.936
EPR Equation (3) 2.1 0.930
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sensitive property index, followed by the free swell index, matric suction, and 
plasticity index, respectively. The high sensitivity of GMC on swelling stress was 
a result of the high smectite mineral contained, diffused double-layer structure, 
and absorption capacity of the investigated soils. Hence, the increased soil plas-
ticity was expected due to the high liquid limit value of the soil because water is 
needed to make the mixture more plastic thereby resulting in a higher coefficient 
of determination (R2) of 95% compared to FSI, matric suction, and plasticity that 
render lower R2 of 84%, 83%, and 73%, respectively. Furthermore, the dry unit 
weight and degree of saturation are a function of GMC. Therefore, the degree 
of saturation and dry unit weight responds differently as the GMC increases. 
Notably in this study, it could be concluded that the GMC significantly influ-
ences the response of the soil swelling stress, though the obtained results agree 
with the study published by Abbey et al. (2017), Abbey et al. (2020), and Aneke 
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Fig. 4   Correlation relationship behavior for a swelling stress and plasticity index, b swelling stress and 
FSI, c swelling stress–matric suction, and d swelling stress and suction
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and Nkwonta (2021), which stated that the several additional soil properties like 
liquid limit, plastic limit, plasticity index, or unit weight influence the swelling 
stress; thus, moisture content is the principle index property that controls the 
other mechanical soil properties. They also concluded that water content has sta-
tistical significance in the estimation of swell pressure for the expansive soil. Fig-
ure  5 presents the microstructural surface configuration of the 15 soil samples 

(1a) (1b) (1c)

(2a) (2b) (2c)

(3a) (3b) (3c)

(4a) (4b) (4c)

(5a) (5b) (5c)

Fig. 5   SEM of site 1: soils a, b, and c; site 2: soils a, b, and c; site 3: soils a, b, and c; site 4: soils, a, b, 
and c; and site 5: soils a, b, and c
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collected from the 5 locations across South Africa. It can be seen that soils from 
sites 1 and 5 are more consistent in surface behavior compared to the other three. 
These behaviors help to study the surface response to suction and the resultant 
swelling stress upon exposure to moisture ingress and impregnation.

3.2 � Prediction of Swilling Stress (Psm)

3.2.1 � Model (1)—Using (MLR) Technique

Prior to the intelligent prediction of the swelling pressure, a geotechnical sensitivity 
analysis was first conducted to identify the most sensitive soil index properties with 
the highest influence on the swelling stress. It is noted that swelling stress is expo-
nentially relative to dry unit weight; hence, it is dependent on the initial GMC of the 
soil. Furthermore, the swelling stress is less affected upon soil saturation, rather it 
increases with the initial dry unit weight of the soil but decreases as the initial GMC 
shift from the dry side to the wet side of the optimum. This trend behavior agrees 
with the predictions of conceptual models that consider the interaction between the 
responses of the microstructure and the macrostructure as published elsewhere by 
Aneke et al. (2022) and Ikechukwu and Mostafa (2022) which indicates that mois-
ture content in the soil material mobilizes the secondary effect on matric suction.

Therefore, the trend influence of the GMC on swelling stress mobilized this study 
to further investigate the results obtained from the preliminary geotechnical sensitivity 
analysis. Therefore, the traditional multi-linear regression (MLR) technique was used as 
a benchmark to evaluate the accuracies of the three (AI) techniques. The developed MLR 
was generated using the MS-EXCEL Add-in regression module. The output expression 
for Psm is presented in Eq. 5 while Fig. 3 shows its fitting curve accuracy. The average 
error % of this model is 2.4% with a coefficient of determination (R2) value of 0.907.

From the presented expression in Eq.  5, more geotechnical index properties, i.e., 
degree of saturation and dry unit weight, were considered to intelligently evaluate the 
most influential among the considered properties. It was noted that the listed mechani-
cal soil properties were negatively correlated to the swelling stress; this was expected 
because the above-mentioned soil properties negatively influence the swelling pressure.

3.2.2 � Model (2)—Using (GP) Technique

The developed GP model started with one level of complexity and settled at three lev-
els of complexity. The population size, survivor size, and number of generations were 
50,000, 15,000, and 75, respectively. Equation 6 presents the output formulas for Psm, 
while Fig. 7b shows its fitness. The average error % of this equation is 2.4%, while the 
R2 value is 0907.

(5)Psm = 1.31 − 1.9GMC − 0.261Ip − 0.08�d − 0.004FSI − 0.005�m − 0.2S
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3.2.3 � Model (3)—Using (ANN) Technique

A back-propagation ANN with one hidden layer and (Hyper Tan) activation function 
was used to predict the same swilling stress (Psm) values. The used network layout and 
its connotation weights are illustrated in Fig. 6 and Table 6. The average error % of this 
model is 1.9%, and the corresponding R2 value is 0.936. The relation between calcu-
lated and predicted values is shown in Fig. 7c.

3.2.4 � Model (3)—Using (EPR) Technique

Finally, the developed EPR model was limited to a hexagonal level; for 6 inputs, there 
are 924 possible terms (462 + 252 + 126 + 56 + 21 + 6 + 1 = 924) as follows:

(6)Psm =
Ln(GMC.S)

(1.1S)7GMC−1 − 3.15

Fig. 6   Layout for the developed ANN and its connection weights
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GA technique was applied on these 924 terms to select the most effective 9 terms 
to predict the values of the swilling stress (Psm) values. The output is illustrated in 
Eq. 7 and its fitness is shown in Fig. 7d. The average error % and R2 values were 
2.1% and 0.930 for the total data sets, respectively.
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Psm = 1.88 − 1.31GMC +
Ip − 16GMC

55gd.S.GMC.Ip
+

gd.S

3
(gd − 3.6Ip) −

4.1gd.Ip.S + S − 0.5Ip

11.3Ip2

Fig. 7   Relation between predicted and calculated Psm values using the developed models
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4 � Conclusions

This research presents three models using three (AI) techniques (GP, ANN, and 
EPR) to predict the swilling stress (Psm) using the measured gravimetric moisture 
content (GMC) (%), plasticity index (Ip) (%), dry density (γd) (t/m3), free swell index 
(FSI) (%), degree of saturation (S) (%), and matric suction (Ψm) (MPa). The tradi-
tional multi-linear regression (MLR) technique was used as a benchmark to evaluate 
the accuracies of the three (AI) techniques. The results of comparing the accuracies 
of the developed models could be concluded in the following points:

–	 The prediction accuracies of the three (AI) techniques are more than or equal to 
the accuracy of the traditional MLR technique.

–	 The prediction accuracies of MLR and GP models are the same (97.1% and 
97.1%) while the accuracies of ANN and EPR are close (93.6% and 93%) which 
gives an advantage to the EPR model because its output is expressed in a simple 
equation and could be applied either manually or implemented in software unlike 
the complicated output of the ANN which cannot be applied manually.

–	 Weights of the ANN model and the formula of the (GP) model showed that Psm 
value depends mainly on GMC values, and other parameters are secondary and 
have almost equal weights.

–	 GA technique successfully reduced the 924 terms of conventional PLR hexago-
nal formula to only 9 terms without significant impact on its accuracy.

–	 Like any other regression technique, the generated formulas are valid within the 
considered range of parameter values; beyond this range, the prediction accuracy 
should be verified.
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