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Abstract It is common knowledge that the Wigner function of a quantum state may admit negative values, so
that it cannot be viewed as a genuine probability density. Here, we examine the difficulty in finding an entropy-like
functional in phase space that extends to negative Wigner functions and then advocate the merits of defining a
complex-valued entropy associated with any Wigner function. This quantity, which we call the complex Wigner
entropy, is defined via the analytic continuation of Shannon’s differential entropy of the Wigner function in the
complex plane. We show that the complex Wigner entropy enjoys interesting properties, especially its real and
imaginary parts are both invariant under Gaussian unitaries (displacements, rotations, and squeezing in phase
space). Its real part is physically relevant when considering the evolution of the Wigner function under a Gaussian
convolution, while its imaginary part is simply proportional to the negative volume of the Wigner function. Finally,
wedefine the complex-valuedFisher informationof anyWigner function,which is linked (via an extendeddeBruijn’s
identity) to the time derivative of the complex Wigner entropy when the state undergoes Gaussian additive noise.
Overall, it is anticipated that the complex plane yields a proper framework for analyzing the entropic properties of
quasiprobability distributions in phase space.

Keywords Wigner distributions · Quasiprobability distributions · Quantum phase space · Shannon entropy ·
Wigner entropy · Fisher information · de Bruijn’s identity

1 Introduction

When representing a quantum state with a quasiprobability distribution in phase space, the most common choices
are the Glauber–Sudarshan P-function P(α), the Wigner function W (α), or the Husimi Q-function Q(α), where
α is a complex variable [1]. These correspond to the normal, symmetric, and antinormal ordering of annihilation
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Fig. 1 Phase-space representations of the Fock state |1〉. Its Glauber–Sudarshan P-function P(α) is expressed in terms of the second
derivative of a Dirac δ-function (represented by a red star) and is thus not regular. Smoothing P(α) with a Gaussian distribution of one
unit of shot-noise (noted as the convolution ∗G) yields the Wigner functionW (α), which is regular but takes negative values (red zone)
near the origin. Smoothing again the Wigner function W (α) with the same Gaussian distribution yields the Husimi function Q(α),
which is both regular and non-negative. Here, we focus on defining the complex-valued entropy of W (α) instead of the real-valued
entropy of Q(α), which is the well-known Wehrl entropy

and creation operators, respectively, and belong to a continuous family of s-ordered quasiprobability distributions
Ws(α) parametrized by the real parameter s ∈ [−1, 1], see [2,3]. Conventionally,W1(α) = P(α),W0(α) = W (α),
and W−1(α) = Q(α). The P-function (i.e., s = 1) of a state is often not even a regular function (for instance, it is
expressed in terms of derivatives of the Dirac δ-function for a squeezed vacuum state). However, by decreasing the
value of s (which corresponds to convolving P(α) with a Gaussian distribution of increasing variance), we reach
a point where Ws(α) becomes regular, see example in Fig. 1. The largest value of s for which Ws(α) is a regular
function for all states is s = 0, corresponding to the Wigner function W (α). The Wigner function is thus always
regular but, as is well known, it is often not a positive function, so it cannot be treated as a genuine probability
distribution.

The negativities ofW (α) can be suppressed by further decreasing s below0,which smears out the quasiprobability
distribution up to the point where it becomes positive everywhere in phase space. The largest value of s for which
Ws(α) is a non-negative function for all states is s = −1, corresponding to the Q-function Q(α), see example
in Fig. 1. This is the only quasiprobability distribution among Ws(α) with s ∈ [−1, 1] that behaves as a genuine
probability distribution (this is because it is the probability distribution of the outcome of a POVMmeasurement in
the overcomplete basis of coherent states |α〉, often called heterodyne or eight-port homodyne detection in quantum
optics).

Defining a sensible measure of uncertainty based on the representation of a state in quantum phase space is
an objective that has long been pursued, and a natural candidate for this is the differential entropy as defined in
Shannon’s information theory [4,5]. Notably, the Shannon differential entropy of the Q-function associated with a
state is called the Wehrl entropy [6] and it has extensively been analyzed in the literature. For example, the Wehrl
conjecture [7] (later proven by Lieb [8]) gives a lower bound to the Wehrl entropy of any state. Let us stress here
that the Q-function is the only one quasiprobability distributionWs(α)with s ∈ [−1, 1]whose Shannon differential
entropy is always well defined for all states as the entropy definition would otherwise require taking the logarithm
of negative numbers for some states.

Here, we revisit the definition of the entropy of a quantum phase-space distributionWs(α) by relaxing the strong
requirement of having a genuine probability distribution, yet requiring the function Ws(α) to remain regular for all
states. Themost natural choice is then theWigner functionW (α), which also enjoys numerous interesting properties
and is by far the most commonly used phase-space representation in quantum optics [9]. Among its main properties,
let us mention the phase-space area preservation under Gaussian unitaries, which does not hold for any otherWs(α)

with s �= 0. Furthermore, its marginals yield the probability distributions of the x and p canonical coordinates, so
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Complex-valued Wigner entropy of a quantum state

it can be thought of as a sort of joint (x, p) probability distribution albeit violating Kolmogorov’s non-negativity
axiom.

It thus makes sense to define the Wigner entropy [10] of a state as the differential Shannon entropy of W (α),
which is well behaved as long as one restricts to Wigner-positive states, i.e., states such that W (α) ≥ 0, ∀α ∈ C.
A great merit of this definition is that it inherits all nice properties of Wigner functions. For example, the Wigner
entropy is invariant under Gaussian unitaries as a consequence of the area-preservation property (notice that such
an invariance does not hold for the Wehrl entropy, nor for any other Ws(α) with s < 0). In fact, as long as the
considered states are Wigner-positive, all results of Shannon’s information theory remain applicable toW (α) since
the latter is a true probability distribution (see, e.g., the Wigner entropy-power inequality [10] for a beam splitter).
The Wigner entropy is thus also a lower bound to the sum of marginal entropies of x and p as a consequence of
the subadditivity of Shannon entropy, which results in a stronger version of the entropic uncertainty relation of
Białynicki-Birula and Mycielski [11], see [12] or [13] for a review. However, extending this entropic uncertainty
measure to states with negative Wigner functions appears precluded because it inherently comes with logarithms
of negative numbers.

In the present work, we start by exploring a few possible ways of adapting the definition of Wigner entropy to
Wigner-negative states, i.e., states such that ∃α ∈ C : W (α) < 0. Unfortunately, no good alternative real-valued
functional emerges that obeys all desirable properties of an entropy measure. Then, we advocate that the same
functional should be kept when considering Wigner-negative states by resorting to the analytic continuation of the
Shannon entropy in the complex plane. As we shall see, this leads us to define a complex-valued Wigner entropy,
whose real and imaginary parts both have a physical meaning (the real part has an interpretation close to that of
the ordinary real-valued entropy, while the imaginary part is simply proportional to the negative volume of the
Wigner function). Interestingly, both the real and imaginary parts of the complex Wigner entropy remain invariant
under Gaussian unitaries. Finally, as an additional argument supporting this continuation in the complex plane, we
consider the complex extension of de Bruijn’s identity, which leads us to define a complex-valued Fisher information
associated with any Wigner function.

This paper is organized as follows. In Sect. 2 we recall the basics of Wigner functions and summarize the
main facts about the (real-valued) Wigner entropy of Wigner-positive states [10]. In Sect. 3 we consider some
possible ways of extending this definition to Wigner-negative states while keeping a real-valued entropy. We list
the desirable properties of such an extended entropy and discuss the results of our exploration, suggesting that a
real-valued entropy functional cannot be found. In Sect. 4 we then make the step to extend the Wigner entropy to
the complex plane. We prove some main properties of the complex Wigner entropy and discuss a few examples.
In Sect. 5 we move to the complex-valued Fisher information and prove that its real (resp. imaginary) part governs
the time-evolution of the real (resp. imaginary) part of the Wigner entropy under Gaussian additive noise. Finally,
we discuss the perspectives of our work in Sect. 6.

2 Wigner entropy

2.1 Wigner function

The Wigner function associated with a density operator ρ̂ is defined as

W (x, p) = 1

2π

∫
〈x − y

2
|ρ̂|x + y

2
〉 eipy dy, (1)

where we have set h̄ = 1. Note that we use from now on the (x, p) canonical coordinates instead of the complex
variable α = (x + i p)/

√
2. More generally, the Weyl transform A(x, p) of any linear operator Â is defined as

A(x, p) = 1

2π

∫
〈x − y

2
| Â|x + y

2
〉 eipy dy, (2)
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implying that the Wigner function is simply the Weyl transform of the density operator ρ̂. It is straightforward to
check that

Â = Â† ⇔ A(x, p) = A∗(x, p), Tr Â =
∫

A(x, p) dx dp, (3)

which immediately implies that the Wigner function W of any physical state ρ̂ (with ρ̂ = ρ̂† and Trρ̂ = 1) is real
and normalized to one. Furthermore, note that the Weyl transforms of operators f (x̂) and g( p̂) are f (x)/2π and
g(p)/2π , respectively, where f and g are arbitrary functions.

For any two linear operators Â1 and Â2, the so-called overlap formula reads

Tr( Â1 Â2) = 2π
∫

A1(x, p) A2(x, p) dx dp, (4)

which implies, for example, that

Tr(ρ̂) =
∫

W (x, p) dx dp, Tr(ρ̂2) = 2π
∫

W (x, p)2 dx dp, (5)

since the Weyl transform of the identity operator 1̂ is simply the constant function 1/2π . Note that

Tr(ρ̂s) �= c
∫

W (x, p)s dx dp, ∀s �= 1 or 2, (6)

for any constant c. Furthermore, using the overlap formula and the fact that theWeyl transform of a projector |x0〉〈x0|
in position space is δ(x − x0)/2π , and, similarly, a projector |p0〉〈p0| in momentum space is δ(p− p0)/2π , we get

ρx (x0) := 〈x0|ρ̂|x0〉 =
∫

W (x0, p) dp,

ρp(p0) := 〈p0|ρ̂|p0〉 =
∫

W (x, p0) dx, (7)

confirming that themarginals ofW (x, p) yield the probability densities ofmeasuring the coordinates x or p, denoted
respectively as ρx and ρp. To be complete, note also that the Weyl transform of the particle-number parity operator
(−1)n̂ is δ(x)δ(p)/2, so that the overlap formula yields the well-known formula

W (0, 0) = 1

π
Tr(ρ̂ (−1)n̂), (8)

connecting the expectation value of the particle-number parity with the Wigner function at the origin. Denoting the
displacement operator as D̂x ′,p′ , the Weyl transform of D̂x ′,p′(−1)n̂ D̂†

x ′,p′ becomes δ(x − x ′)δ(p − p′)/2, so we
may extend Eq. (8) into

W (x ′, p′) = 1

π
Tr(D̂†

x ′,p′ ρ̂ D̂x ′,p′ (−1)n̂), (9)

which implies that the Wigner function at (x ′, p′) is proportional to the average particle-number parity of the
displaced state by (−x ′,−p′). Hence, we also note that |W (x, p)| ≤ 1/π , ∀x, p. Finally, by taking the Weyl
transform of the expression

W (x, p) =
∫

W (x ′, p′) δ(x − x ′)δ(p − p′) dx ′ dp′, (10)

we obtain

ρ̂ = 2
∫

W (x ′, p′) D̂x ′,p′ (−1)n̂ D̂†
x ′,p′ dx ′ dp′, (11)

which is the inverse Weyl transform of W (x ′, p′).
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Complex-valued Wigner entropy of a quantum state

2.2 Wigner entropy of Wigner-positive states

In Shannon’s information theory, the differential entropy of a pair of random variables (x, p) is defined as [14]

h(x, p) = −
∫

f (x, p) ln f (x, p) dx dp (12)

where f (x, p) is the joint probability density of x and p. Roughly speaking, it measures how spread out is the
distribution f (x, p). Note that h(x, p) can be positive but also negative. It satisfies the following scaling property:
if the two random coordinates transform as(
x ′
p′

)
= S

(
x
p

)
, (13)

where S is a 2 × 2 matrix, then the differential entropy is shifted by an additive constant, namely [14]

h(x ′, p′) = h(x, p) + ln |det(S)|. (14)

As long as a state ρ̂ admits a non-negative Wigner function, that is W (x, p) ≥ 0,∀x, p, the latter behaves as
a genuine probability distribution (it is non-negative and normalized to one) and we may compute its Shannon
differential entropy. Accordingly, the Wigner entropy of a Wigner-positive state can be defined as [10]1

h(W ) = −
∫

W (x, p) lnW (x, p) dx dp. (15)

Note that we write it as a functional of W here instead of h(x, p), but it measures the joint uncertainty of the (x ,p)
pair—or actually any pair of canonically conjugate coordinates—in phase space as long as the system admits a
non-negative Wigner function W . We immediately see from Eq. (14) that the Wigner entropy is invariant under
symplectic transformations (i.e., any phase shift or squeezing) since det(S) = 1 in such a case [15]. It is also
trivially invariant under a displacement in phase space since h(x + c) = h(x) for any constant c ∈ R [14]. Hence,
h(W ) is invariant under all Gaussian unitaries. Note also that it takes the value ln π +1 for the vacuum state as well
as any pure Gaussian state in view of this invariance.

TheWigner entropy appears as a natural functional to measure the uncertainty of Wigner-positive states in phase
space as it enjoys reasonable properties, most notably:

• Symmetric functional—The Wigner entropy can be rewritten as

h(W ) =
∫

ϕ
(
W (x, p)

)
dx dp, (16)

where ϕ(z) = −z ln z. Therefore, it is indeed a symmetric functional, which means that it is invariant under
any area-preserving transformation M, that is, h(M [W ]) = h(W ), where M[W ] is any transformation in
phase space that keeps the level-function of W unchanged [16]. This property is the continuous counterpart to
the fact that the discrete Shannon entropy is invariant under permutations of the probability vector. The set of
area-preserving transformations M includes the class of Gaussian unitaries (symplectic transformations and
displacements in phase space).

• Concave functional—The Wigner entropy is a concave functional of the Wigner function, that is,

h(λ1W1 + λ2W2) ≥ λ1 h(W1) + λ2 h(W2), (17)

where λ1, λ2 ≥ 0 and λ1 + λ2 = 1. This property is guaranteed by the fact that the function ϕ(z) appearing in
Eq. (16) is itself concave.

• Lower bound on marginal entropies—The Wigner entropy is a lower bound on the sum of the entropies of the
marginal distributions, namely,

h(W ) ≤ h(ρx ) + h(ρp). (18)

This is a consequence of the subadditivity of Shannon’s differential entropy [14]: the joint entropy can be written
as h(x, p) = h(x) + h(p) − I (x :p), where the mutual information I (x :p) ≥ 0.

1 This entropy was originally defined in Ref. [12] in an attempt to find stronger entropic uncertainty relations, but it was deemed
problematic in view of its extension to Wigner-negative states.
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• Pure Gaussian extremal states—Although only conjectured as of today [10], it is expected that the Wigner
entropy ofWigner-positive states reaches its minimum over the set of pure Gaussian states, viewed as minimum-
uncertainty states, that is

ln π + 1
?≤ h(W ). (19)

It must be recalled that the entropic uncertainty relation of Białynicki-Birula and Mycielski [11],

ln π + 1 ≤ h(ρx ) + h(ρp), (20)

gives a lower bound on the sum of marginal entropies which actually coincides with the Wigner entropy of
pure Gaussian states. Provided it holds,2 Eq. (19) can thus be viewed as a tighter entropic uncertainty relation
involving the Wigner entropy (limited to Wigner-positive states) instead of the sum of marginal entropies as in
Eq. (20).

3 Tentative definitions for the entropy of Wigner-negative states

3.1 Desirable properties

We wish to construct a valid extension of h(W ) to Wigner-negative states that remains consistent with all (or most)
of its properties. Let us denote the set of Wigner functions byW , and the subset of non-negative Wigner functions
by W+. We seek a real-valued functional � : W �→ R with the following properties:

1. ∀W ∈ W+ : �(W ) = h(W )

2. ∀W ∈ W : �(W ) is a symmetric functional
3. ∀W ∈ W : �(W ) is a concave functional
4. ∀W ∈ W : �(W ) ≤ h(ρx ) + h(ρp)

5. ∀W ∈ W : ln π + 1 ≤ �(W ).

3.2 Candidate real-valued extensions of h(W )

We consider three possible real-valued extensions of h(W ) to Wigner-negative states which do satisfy properties
1 and 2 (i.e., symmetric functionals that reduce to the usual Wigner entropy for Wigner-positive states). We first
define the real Wigner entropy as

hr (W ) = −
∫

W (x, p) ln|W (x, p)| dx dp. (21)

It is not an entropy stricto sensu as it departs from the usual “−z ln z” form, but we use this name because it will
appear in Sect. 4 that it coincides with the real part of the complex-valued Wigner entropy. We then define the
absolute Wigner entropy as the entropy of the absolute value of the Wigner function, namely

ha(W ) = −
∫

|W (x, p)| ln|W (x, p)| dx dp. (22)

Note that |W (x, p)| is not normalized for Wigner-negative states, so that ha(W ) is also not a true entropy. Finally,
we define the positive Wigner entropy as the entropy of the positive part of the Wigner function, namely

h+(W ) = −
∫

W (x,p)≥0

W (x, p) lnW (x, p) dx dp. (23)

Note again that W (x, p) is not normalized over the domain W (x, p) ≥ 0 in the case of Wigner-negative states, so
that h+(W ) is not a genuine entropy

2 Further progress on the proof of conjecture (19) has recently been reported in Ref. [17], see also Ref. [18].
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Fig. 2 The three plotted functions ϕr (W ) = −W ln|W |, ϕa(W ) = −|W | ln|W |, and ϕ+(W ) = −	(W )W lnW are concave inR+ but
not concave in R. Of course, we have ϕr (W ) = ϕ+(W ) = ϕa(W ) = −W lnW provided W ≥ 0. These functions are used to build the
symmetric functionals hr (W ) = ∫

ϕr (W (x, p)) dx dp, ha(W ) = ∫
ϕa(W (x, p)) dx dp and h+(W ) = ∫

ϕ+(W (x, p)) dx dp, which
are concave over the set W+ but not concave over the set W . Note that the functions ϕ(W ) must only be defined on a narrow domain
since |W | ≤ 1/π but this does not change the problem

All three functionals hr , ha , and h+ are symmetric as they are constructed from the integration of some function
ϕ(W ) over the entire phase space (see Fig. 2), so they are invariant under Gaussian unitaries. Moreover, it is obvious
that the three functionals coincide with the Wigner entropy when W is non-negative, that is, hr (W ) = ha(W ) =
h+(W ) = h(W ), for all W ∈ W+. However, it appears that none of these three functionals is concave over the
full setW . This can be understood by looking at the corresponding functions ϕr , ϕa , and ϕ+ in Fig. 2. These three
functions coincide with ϕ(z) = −z ln z when z ≥ 0, so they are concave over the restricted domain z ∈ R

+, but
they are not concave anymore in the whole domain z ∈ R. Hence, the functionals hr , ha , and h+ are concave for
W ∈ W+, but not concave for W ∈ W . These functionals are, of course, not unique—other functions ϕ(z) could
be built—but it appears that the construction of a symmetric concave functional overW is bound to fail because it
is impossible to build a concave function that extends the function ϕ(z) = −z ln z to negative z (this is because the
derivative of ϕ(z) is infinite at z = 0+).

The construction of a real-valued extension of h(W ) satisfying properties 1, 2, and 3 thus seems hopeless, which
motives the introduction of a complex-valued extension of h(W ) in Sect. 4. Before doing so, we examine whether
some of the above three real-valued extensions of h(W ) may nevertheless satisfy properties 4 or 5. Note first that
these three functionals can be ordered as

hr (W ) ≤ h+(W ) ≤ ha(W ). (24)

This can easily be proven by defining the negative Wigner entropy as

h−(W ) =
∫

W (x,p)≤0

W (x, p) ln|W (x, p)| dx dp, (25)

and noting that h−(W ) ≥ 0 since |W (x, p)| ≤ 1/π , so that ln|W (x, p)| < 0. It is easily seen that the following
relations hold:

hr (W ) = h+(W ) − h−(W ), (26)

ha(W ) = h+(W ) + h−(W ), (27)

which implies Eq. (24) since h−(W ) ≥ 0. We have investigated whether these three functionals may be a lower
bound to the sum of marginal entropies (property 4) or whether they may themselves be lower bounded by lnπ + 1
(property 5). Since the results of this exploration are not fully satisfactory, we report them in Appendix A. From
numerical evidence, it seems that h+(W ) is lower bounded by ln π + 1, hence the same is true for ha(W ), but we
lack a proof. We can also lower bound the sum of marginal entropies h(ρx ) + h(ρp) by a quantity that depends on
h+(W ), but the result is not tight.
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4 Complex-valued entropy of a Wigner function

4.1 Definition

The definition (15) based on the differential Shannon entropy is only valid provided W (x, p) ∈ W+ because it
requires taking the logarithm of W (x, p) and the logarithm function in the real domain is not defined for negative
values. In order to extend the Wigner entropy to all states, including those with negative Wigner functions, we turn
to a complex extension of the Wigner entropy by using the complex logarithm function

Ln (z) = ln |z| + i arg(z), z ∈ C. (28)

We must recall here that Ln(z) is a multivalued function since the argument is defined modulo 2π . Here, we
conventionally use the principal value of the logarithm, meaning that its imaginary part lies in ] − π, π ]. We will
also use a lazy notation and write ln(z) instead of Ln (z) for the complex logarithm of z.

Thus, we define the complex Wigner entropy as

hc(W ) = −
∫

W (x, p) lnW (x, p) dx dp

= hr (W ) + i hi (W ) (29)

where the real and imaginary parts of hc(W ) are respectively given by

hr (W ) = −
∫

W (x, p) ln |W (x, p)| dx dp (30)

hi (W ) = −
∫

W (x, p) argW (x, p) dx dp

= π

∫ |W (x, p)| − W (x, p)

2
dx dp. (31)

Note that argW (x, p) is equal to 0 if the Wigner function is positive and is equal to π if it is negative, hence the
second definition of hi (W ) [Eq. (31)]. Thus, by convention, we define hi (W ) as non-negative.

The imaginary part of the complex Wigner entropy happens to be simply proportional to the volume of the
negative part of the Wigner function, namely

hi (W ) = π Vol−(W ) (32)

with

Vol−(W ) = −
∫

W (x,p)<0

W (x, p) dx dp. (33)

The negativity of the Wigner function has long been known to witness the non-classicality of a state and, along
this line, the negative volume Vol−(W ) has even been used to build a measure of non-classicality [19] (see also
[20,21] for a resource-theoretical approach to Wigner negativity). It is remarkable that the negative volume appears
naturally here simply from the expression of the complex Wigner entropy. Note that hi (W ) is unbounded as it is
known that one can build Wigner functions with an arbitrarily large negative volume [22].

4.2 Properties of the complex Wigner entropy

Let us examine some properties of the real and imaginary parts of the complex Wigner entropy hc(W ). Note first
that hc(W ) is defined only if the integral in Eq. (29) exists. Since any Wigner function tends to zero at the limit
of infinite distance from the origin in phase space, we have the complex logarithm of W (x, p) → 0. However,
using the standard continuity argument, we see that this does not cause a problem since limW→0 W ln |W | = 0 and
limW→0 W argW = 0.
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Property 1 Both the real and imaginary parts of the complex Wigner entropy are invariant under symplectic
transformations (Gaussian unitaries).

Proof Consider the symplectic transformation such that the vector of canonically conjugate variables X = (x, p)T

transforms into X′ = (x ′, p′)T according to X′ = SX + d, with S being a symplectic3 matrix and d being a (real)
displacement vector. Following this transformation, the Wigner function can thus be expressed as W ′(x ′, p′) =
| det(S)|−1W (x, p), where (x, p) is expressed in terms of (x ′, p′) by inverting the transformation. Therefore, using
the change of variable dx ′ dp′ = | det(S)| dx dp,
hr (W

′) = −
∫

W ′(x ′, p′) ln |W ′(x ′, p′)| dx ′ dp′

= −
∫

W (x, p) ln

∣∣∣∣W (x, p)

det(S)

∣∣∣∣ dx dp
= hr (W ) + ln | det(S)|
= hr (W ) (34)

and

hi (W
′) = π

∫ |W ′(x ′, p′)| − W ′(x ′, p′)
2

dx ′ dp′

= π

∫ |W (x, p)| − W (x, p)

2| det(S)| dx ′ dp′

= π

∫ |W (x, p)| − W (x, p)

2
dx dp

= hi (W ). (35)

��
Note that the proof of Eq. (34) looks similar to the corresponding proof for Wigner-positive states in Sect. 2.2 as

we have used det(S) = 1 since S is symplectic. Yet, the proof of Eq. (34) exploits the normalization of W (x, p) in
W (encompassing Wigner-negative states).

Together, Eqs. (34) and (35) thus imply that the complexWigner entropy hc is indeed invariant under all Gaussian
unitaries. Note that this property remains valid when extending the Wigner function to n modes.

Property 2 Both the real and imaginary parts of the complex Wigner entropy are symmetric functionals.

Proof The proof simply goes by noting that the real and imaginary parts of hc can be written as

hr (W ) =
∫

ϕr (W (x, p)) dx dp, (36)

hi (W ) =
∫

ϕi (W (x, p)) dx dp, (37)

with ϕr (z) = −|z| ln z and ϕi (z) = π(|z| − z)/2. The fact that W can be negative does not make any difference. ��
It can be shown that integrals such as those appearing in Eqs. (36) and (37) only depend onW (x, p) through the

level function, hence they are equal for two Wigner functions that have the same level function [16]. This property
extends the invariance of hc under symplectic transformations (which are area-preserving) to the invariance of hc
under all (even nonphysical) area-preserving transformations (those that keep the level function of theWigner func-
tion unchanged, so that the initial and final Wigner functions are equivalent in the sense of continuous majorization
theory, see [16]).

3 A symplectic matrix S is a real matrix that preserves the so-called symplectic form 
 = (
0 1−1 0

)
, that is, S
ST = 
. Physically, this

corresponds to rotations and squeezing in phase space.
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Property 3 The real part of the complex Wigner entropy is additive when considering a product state.

Proof Let us consider a two-mode Wigner function defined as W (x1, p1, x2, p2) = W1(x1, p1)W2(x2, p2). Then,

hr (W ) = −
∫

W ln |W | dx1 dp1 dx2 dp2

= −
∫

W1 ln |W1| dx1 dp1
∫

W2 dx2 dp2 −
∫

W1 dx1 dp1

∫
W2 ln |W2| dx2 dp2

= hr (W1) + hr (W2) (38)

where we have omitted the arguments of Wigner functions for notational simplicity. ��
Again, the proof is similar to that for Wigner-positive states but here we have used the normalization of Wigner

functions in W , including negative Wigner functions. Interestingly, numerics seems to indicate that the real part
of the complex Wigner entropy is subadditive for a two-mode Wigner function W (x1, p1, x2, p2) that is not in a
product form, namely hr (W ) ≤ hr (W1) + h(W2), but we have not found a proof.

Property 4 The imaginary part of the complex Wigner entropy is superadditive when considering a product state.

Proof Using the identity

|XY | − XY = (|X | − X)Y + X (|Y | − Y ) + (|X | − X)(|Y | − Y ) (39)

and setting W (x1, p1, x2, p2) = W1(x1, p1)W2(x2, p2), we obtain

hi (W ) = π

∫ |W | − W

2
dx1 dp1 dx2 dp2

= π

∫ |W1W2| − W1W2

2
dx1 dp1 dx2 dp2

= π

∫
(|W1| − W1)

2
dx1 dp1

∫
W2 dx2 dp2 + π

∫
W1 dx1 dp1

∫
(|W2| − W2)

2
dx2 dp2 + �

= hi (W1) + hi (W2) + � (40)

where we have defined

� = π

∫
(|W1| − W1)(|W2| − W2)

2
dx1 dp1 dx2 dp2

= 2

π
hi (W1) hi (W2)

≥ 0 (41)

��
Thus, hi (W ) ≥ hi (W1)+ hi (W2). We see that Im(hc) becomes additive in the special case where at least one of

the two states is Wigner-positive, but otherwise it is superadditive because the product of the negative volumes is
nonzero.4 Note that the superadditivity of Im(hc) is linked to our convention argW (x, p) = π for W (x, p) < 0,
but it should be realized that Im(hc) becomes subadditive if we choose argW (x, p) = −π . From numerics, we also
observe that the imaginary part of the complex entropy hi apparently remains superadditive for arbitrary two-mode
Wigner functions W (x1, p1, x2, p2), but we have not proven this.

4 Equation (40) can be understood by re-expressing it in terms ofWigner negative volumes, namelyVol−(W ) = Vol−(W1)+Vol−(W2)+
2Vol−(W1)Vol−(W2). Indeed, by using normalization, i.e., Vol+(·) − Vol−(·) = 1, Eq. (40) becomes equivalent to Vol−(W ) =
Vol+(W1)Vol−(W2) + Vol−(W1)Vol+(W2). Clearly, W < 0 if either W1 < 0 or W2 < 0 but not both. Note that superadditivity is
consistent with the interpretation of Vol−(W ) as a resource monotone.
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Property 5 The imaginary part of the complex Wigner entropy is a convex function of the Wigner function.5

Proof Let us consider the following mixture W (x, p) = λW1(x, p) + (1 − λ)W2(x, p), where λ ∈ [0, 1]. Then,

hi (W ) = π

∫ ( |λW1 + (1 − λ)W2|
2

− λW1 + (1 − λ)W2

2

)
dx dp

≤ π

∫ (
λ|W1| + (1 − λ)|W2|

2
− λW1 + (1 − λ)W2

2

)
dx dp

= λ hi (W1) + (1 − λ) hi (W2) (42)

where we have used the triangle inequality, namely |X + Y | ≤ |X | + |Y |. ��
Again, convexity originates here from the choice that argW (x, p) = π for W (x, p) < 0. The opposite choice

argW (x, p) = −π would instead imply the concavity of Im(hc). Unfortunately, we cannot say anything about the
concavity of the real part of the Wigner entropy. Numerical tests show that it is neither concave nor convex.

4.3 Expressing the Wigner entropy in state space

By using the overlap formula (4), the definition (29) of the complex Wigner entropy in phase space may be
reexpressed in state space as

hc(W ) = Tr(ρ̂ 	̂), (43)

where 	̂ is defined as the operator whose Weyl transform is given by

W[	̂] = − 1

2π
lnW (x, p) (44)

Thus, we may also rewrite 	̂ = S[L̂], where S[L̂] denotes the Weyl (or symmetric) ordered form of the operator
L̂ = − lnW (x̂, p̂), hence

hc(W ) = Tr(ρ̂ S[L̂]). (45)

Unfortunately, Eq. (45) does not seem to provide a very convenient method to compute hc, except in some special
cases. As an example, consider a thermal state with a mean photon number ν. Its Wigner function is

Wν(x, p) = 1

π(1 + 2ν)
e− x2+p2

1+2v . (46)

Here, the operator

L̂ = − lnWν(x̂, p̂) = ln π(1 + 2ν) + x̂2 + p̂2

1 + 2ν
(47)

is already written in symmetric order, so we have

S[L̂] = ln π(1 + 2ν) + 1̂ + 2n̂

1 + 2ν
. (48)

Since Tr(ρ̂ n̂) = ν, Eq. (45) gives

hc(Wν) = ln π + 1 + ln(1 + 2ν), (49)

which is indeed the Wigner entropy of a Gaussian thermal state.

5 This property can also be immediately deduced from the convexity of the negative volume, see Appendix C of [20].
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Fig. 3 Complex Wigner entropy hc = hr + i hi of randomly generated states. Each blue (orange) point is associated with a random
pure (mixed) state. Red stars represent Fock states |n〉 with n = 0, 1, . . . , 8. Note that hr and hi increase monotonically with n for Fock
states. The dotted red line corresponds to hr = ln π + 1 � 2.145, which is a (conjectured) lower bound on the real part of the entropy
of Wigner-positive states [10]

4.4 Examples and numerical exploration

We have numerically computed the complex Wigner entropy of a variety of quantum states in order to get a grasp
on its meaning. First of all, we know that hc lies on the real axis as soon as the state is Wigner positive. Furthermore,
provided that conjecture (19) is true, we know thatRehc ≥ ln π +1 for all Wigner-positive states. This is visible in
Fig. 3, where we have plotted the complexWigner entropy hc of randomly generated states6, in particular pure states
(orange) and mixed states (blue). The red dotted line indicates hr = ln π + 1. We note that mixed states typically
have a lower value of Imhc, which is of course associated with a lower (or even zero) negative volume. The first
Fock states |n〉 with n ranging from 0 to 8 are represented by red stars in the complex entropy plane; we observe
that bothRehc and Imhc increase with n. The vacuum state (as well as any pure Gaussian state) corresponds to the
point (ln π + 1, 0).

In Fig. 4, we look more precisely at the complex entropy near this point and compare the superpositions and
mixtures of the lowest Fock states. The situation is more subtle than anticipated as we see that for some pure state
near the vacuum, Imhc becomes positive (which logically reflects the non-Gaussianity of the state as a consequence
of Hudson’s theorem) but Rehc goes below ln π + 1. This conjectured lower bound only applies along the real
axis (i.e., for Wigner positive states), so it is not contradicted. Sadly, however, it seems difficult to determine the
lowest possible value ofRehc for all states. Furthermore, we observe that the path connecting two neighboring Fock
states is rather complicated. We see that the superpositions (solid blue curves) generally have much larger values
of Im(hc) than the corresponding mixtures (dashed orange curves), which follows from the comparison of their
negative volumes. The value of Im(hc) reaches precisely zero if the mixed state becomes Wigner positive (which
happens if the weight of |0〉 is large enough). For example, we have Im(hc) = 0 for balanced mixtures of |0〉 and
|1〉, or balanced mixtures of |0〉 and |2〉, but never for any mixture of |1〉 and |2〉. When increasing the weight of |0〉
beyond this point, hc follows the real axis down to the lower bound attained for |0〉.

Let us now perform the analytical calculation of hc for another example, namely cat states. With the appropriate
displacement and rotation (hence, some Gaussian unitary, which do not affect hc), any cat state can be brought to

6 The generation of random states works as follows. Draw an eigenvalue vector λ from a random N × N unitaryU, so that λn = |U0n |2
[λ = (1, 0, ...) for pure states], then apply another random N × N unitary V so that ρ = Vdiag(λ)V† (here U,V are drawn according
to the Haar measure). This defines a state ρ̂ = ∑

mn ρmn |m〉〈n|. More details about this procedure are given in Appendix C of Ref.
[16]. Random states of Fig. 3 are generated for N = 2, . . . , 14.
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Fig. 4 Plots of the complex Wigner entropy hc = hr + i hi for superpositions vs. mixtures of Fock states (red stars stand for Fock
states). The blue lines correspond to binary superpositions of Fock states, i.e., |ψ〉 = √

p|m〉+ eiϕ
√
1 − p|n〉 with p ∈ [0, 1] (note that

the complex Wigner entropy of |ψ〉 is independent of ϕ). The dotted orange lines are the corresponding binary mixtures of Fock states,
i.e., ρ̂ = p|m〉〈m| + (1 − p)|n〉〈n|. The following binary superpositions and mixtures are plotted: (m, n) = (0, 1), (0, 2), (0, 3), and
(1, 2)

the following canonical expression:

|ψ〉α = 1√
C

(√
m|α〉 + eiϕ

√
1 − m|−α〉

)
(50)

where α ∈ R+, ϕ ∈ [0, 2π),m ∈ (0, 1), and the normalization constant isC = 1+2
√
m(1 − m) exp(−2α2) cosϕ.

The density operator is thus

|ψ〉α〈ψ | = 1

C

(
m|α〉〈α| + (1 − m)|−α〉〈−α| + 2

√
m(1 − m)(eiϕ |−α〉〈α| + e−iϕ |α〉〈−α|)

)
(51)

so the corresponding Wigner function is given by

Wα(x, p) = m

C
W0(x − √

2α, p) + 1 − m

C
W0(x + √

2α, p) + 2
√
m(1 − m)

C
W0(x, p) cos(2

√
2αp + ϕ) (52)

where W0(x, p) = exp(−x2 − p2)/π is the Wigner function of the vacuum state. In Fig. 5, we plot the real and
imaginary parts of the complexWigner entropy of this cat state (takingm = 1/2 and ϕ = 0) and compare with their
values for the corresponding incoherent mixture of the coherent states |α〉 and |−α〉. Of course, Im(hc) vanishes in
the incoherent case, while it is non-zero for cat states (it is shown in Appendix B that Imhc tends to 1 in the limit
α → ∞). In contrast, the curves of Re(hc) are more comparable for the cat state and its corresponding mixture
(as shown in Appendix B, the two curves tend to each other in the limit α → ∞, which is understandable as the
two Wigner functions almost coincide up to a series of infinitely narrow fringes whose contributions cancel each
other out). Of course, the cat state and mixture both coincide with the vacuum state for α = 0, hence their complex
entropies coincide. It can also be verified that the difference between hr for α = 0 and hr for α → ∞ tends to ln 2.

123



N. J. Cerf et al.

Fig. 5 Plots of the real and imaginary parts of the complex Wigner entropy hr + i hi for Wcat and Wmix, which are respectively the
Wigner functions of an even cat state and of a balanced mixture of coherent states |α〉 and |−α〉. When α = 0, the two states coincide
with the vacuum state. As α increases, the negative volume of the cat state increases. In the regime of |α| � 1, hr (Wcat) � hr (Wmix)

and hi (Wcat) � 1

5 Complex Fisher information and extended de Bruijn’s identity

5.1 Classical overview

Let us consider a vectorX0 of classical randomvariables and a normally-distributed randomvectorNwith covariance
matrix I. From these two random vectors, we define the random vector Xt := X0 + √

t N, which can be seen as
a noisy version of X0 with the amount of noise growing in time t (the variance increases linearly with t). The
probability density of Xt is the probability density of X0 convolved with a Gaussian distribution of covariance tI,
which describes a Gaussian diffusion process in time t characterized by the diffusion equation

d

dt
pt (x) = 1

2
�pt (53)

where � = ∇2 is the Laplacian and pt (x) denotes the probability density of Xt .
De Bruijn’s identity expresses the rate of increase of the Shannon entropy of the probability density pt (x) when

it undergoes such a Gaussian diffusion. It is written as [14]

d

dt
h(X0 + √

tN) = 1

2
J (X0 + √

tN) (54)

where J (X) is the Fisher information of X. The latter is defined based on the logarithmic gradient ∇ ln p, namely

J (X) =
∫

p(x) ‖∇ ln p‖2dx, (55)

=
∫

∇p · ∇ ln p dx, (56)

=
∫

p−1(x) ‖∇p‖2dx, (57)

where we have used∇ ln p = (∇p)/p. Note that the above three definitions of the Fisher information are equivalent
as long as p(x) ≥ 0, ∀x, but we shall see that only the second one is suitable when moving to the complex plane.
De Bruijn’s identity (54) can be verified by explicitly calculating the time derivative of h(Xt ) and using Eq. (53)
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as well as the definition of the Fisher information J (X), see [14]. Note also that J (X) ≥ 0, expressing the fact that
Xt can only spread over time.

Note that de Bruijn’s identitymakes use of a special case of the definition of the Fisher information. In general, the
Fisher information is introduced for a family of distributions pθ which depend on a set of parameters θ = (θ1, θ2, ...).
The Fisher information is then defined as Jθ (pθ ) = ∫

pθ (x)‖∇θ ln pθ (x)‖2dx. When the parameters θ act as a
translation over the distributions, so that pθ (x) = p(x − θ), the Fisher information simplifies to Eq. (55) and is
independent of θ [14]. It is this particular non-parametric definition of the Fisher information that we will extend
to the complex plane.

5.2 Complex Fisher information

Here, we will show that it is possible to derive a similar relation for an arbitrary Wigner function, even when it
becomes negative. In this case, both terms of de Bruijn’s identity (54) become complex-valued, so we need to
introduce a complex-valued Fisher information too. Crucially, the diffusion equation (53) holds regardless of the
sign of p(x), so it describes the evolution of any Wigner function under additive Gaussian noise (it is valid for
positive as well as negative Wigner functions). Since we consider the Wigner function of a single mode, we deal
with the 2-dimensional vector x = (x, p)T of canonically conjugate coordinates. We define the complex Fisher
information associated with any Wigner function W (x, p) as the complex continuation of definition (56), that is,

Jc(W ) =
∫

∇W · ∇ lnW dx dp

= Jr (W ) + i Ji (W ), (58)

where lnW stands for the complex logarithm of W . The real part of the complex-valued Fisher information is thus
given by

Jr (W ) =
∫

∇W · ∇ ln |W | dx dp. (59)

One can write (notice the absence of absolute value on the right hand side)

∇ ln |W | = 1

W
∇W, (60)

so we also recover the other two definitions

Jr (W ) =
∫

W (x, p) ‖∇ ln |W | ‖2 dx dp,

=
∫

W−1(x, p) ‖∇W‖2 dx dp, (61)

which are the counterparts of Eqs. (55) and (57). These alternative definitions seem to suggest that Jr (W ) ≥ 0
similarly as in the classical case, but we do not have a proof of this inequality (neither do we know if it holds).

From Eq. (58), the imaginary part of the complex Fisher information is expressed as

Ji (W ) =
∫

∇W · ∇ argW dx dp,

= π

∫
∇W · ∇χ dx dp, (62)
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where we have defined the Wigner-negativity indicator function

χ(x, p):=1(x,p)∈D =
{
0 if W (x, p) ≥ 0

1 if W (x, p) < 0
(63)

withD being the negative domain ofW in phase space (it may consist of several non-contiguous areas). Applying the
nabla ∇ operator onto an indicator function gives the so-called surface delta-function, which vanishes everywhere
except on the boundary ∂D ofD, where it points in the (inward) normal direction. It is well defined when integrated
over phase space, so using the identity

∇( f G) = ∇ f · G + f ∇G (64)

and substituting f with χ and G with ∇W , we may rewrite Eq. (62) as

Ji (W ) = π

∫
∇(χ ∇W ) dx dp

︸ ︷︷ ︸∮
C∞

χ ∇W · n ds = 0

−π

∫
χ �W dx dp, (65)

where the volume integral
∫ ∇(· · · ) dx dp can be replaced by a contour integral

∮
(· · · ) n ds on the contour C∞ at

infinity, which vanishes since since χ = 0 (and ∇W is finite) on the contour C∞. Thus, the imaginary part of the
Fisher information can be expressed as

Ji (W ) = −π

∫
χ �W dx dp,

= −π

∫
D

�W dx dp,

= −π

∮
∂D

∇W · n ds. (66)

which is a contour integral over the boundary ∂D of the (possibly multiple) negative domain D in phase space.
Here, n is a normal vector to the boundary (conventionally pointing outwards, hence the minus sign) and ds denotes
the infinitesimal element along the boundary. Note that Ji (W ) ≤ 0 since any Wigner function W can only have
(possibly multiple) negative domains in an overall positive infinite domain, thus ∇W always points outwards along
the boundary ∂D.

As expected, the complex Fisher information enjoys invariance under displacements and rotations in phase space
(i.e., passive Gaussian unitaries), but not squeezing operations.

Property 6 The real and imaginary parts of Jc(W ) are invariant under translations and orthogonal symplectic
transformations in phase space.

Proof As in the proof of Property 1, we consider the symplectic transformation X′ = SX + d but we add the
restriction that S is an orhogonal symplectic matrix, that is, S−1 = ST . Then, we use the change of basis formula
for the nabla operator, namely ∇ = ST∇′, which implies ∇′ = S ∇ since S is orthogonal. Therefore,

Jr (W
′) =

∫
(W ′(x ′, p′))−1‖∇′W ′(x ′, p′)‖2 dx ′ dp′

=
∫ |det S|

W (x, p)

‖S∇W (x, p)‖2
|det S|2 |det S| dx dp

= Jr (W ). (67)
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Fig. 6 Complex Fisher information Jc = Jr + i Ji of randomly generated states. Each blue (orange) point is associated with a random
pure (mixed) state. Red stars represent Fock states |n〉 with n = 0, 1, . . . , 9. It appears that Ji decreases monotonically with n for Fock
states

For the imaginary part, we use the second definition in Eq. (66) involving the Laplacian of W and exploit the
invariance of the latter operator under rigid motions, �′ = ∇′T∇′ = ∇TSTS ∇ = ∇T∇ = �, hence

Ji (W
′) = −π

∫
D′

�′W ′(x ′, p′) dx ′ dp′

= −π

∫
D

�W (x, p)

|det S| |det S| dx dp
= Ji (W ). (68)

��
For illustration, the value of the complex Fisher information has been plotted in Fig. 6 for randomly generated

(pure and mixed) states as well as for the first few Fock states.

5.3 Complex de Bruijn’s identity

Let us now prove the complex version of de Bruijn’s identity, which is expressed as

d

dt
hc(W ) = 1

2
Jc(W ). (69)

Proof We must calculate the time derivative of the complex Wigner entropy, namely

d

dt
hc(W ) = − d

dt

∫
W lnW dx dp

= −
∫ (

d

dt
W

)
lnW dx dp −

∫
W

d

dt
lnW dx dp.

︸ ︷︷ ︸
=0

(70)

It is easy to show that both the real and imaginary parts of the second term of Eq. (70) vanish. For the real part,

∫
W

d

dt
ln |W | dx dp =

∫
dW

dt
dx dp = d

dt

∫
W dx dp

︸ ︷︷ ︸
=1

= 0, (71)
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and for the imaginary part

∫
W

d

dt
argW dx dp = π

∫
W

d

dt

(
1

2
− |W |

2W

)
dx dp

= −π

2

∫ (
d|W |
dt

− |W |
W

dW

dt

)
dx dp

= −π

2

∫ (
d|W |
dW

− |W |
W

)

︸ ︷︷ ︸
=0

dW

dt
dx dp

= 0. (72)

This integral is zero simply because W (x, p) vanishes along the boundary ∂D of the negative domain D.
Using the diffusion equation for the Wigner function (which is valid for all Wigner functions inW), namely

d

dt
W = 1

2
�W, (73)

we may rexpress Eq. (70) as

d

dt
hc(W ) = −1

2

∫
�W lnW dx dp

= −1

2

∫
∇(∇W lnW ) dx dp + 1

2

∫
∇W ·∇ lnW dx dp

= −1

2

∮
C∞

lnW ∇W · n ds
︸ ︷︷ ︸

=0

+1

2

∫
∇W ·∇ lnW dx dp

︸ ︷︷ ︸
Jc(W )

, (74)

where we have used the identity (64) substituting f with lnW and G with ∇W . The first term vanishes as it is a
contour integral whose integrand lnW ∇W tends to zero at infinite distance from the origin in phase space. ��

It should be emphasized that this proof, although it looks partly similar to the corresponding one for probability
distributions, applies to the complex plane (all logarithms should be understood as complex logarithms). Let us also
mention that a proof for the real part of the complex de Bruijn’s identity, Eq. (69), has been presented in Appendix
A of Ref. [23].

Finally, we remark that the diffusion equation obeyed by the Wigner function, Eq. (73), can be used in order to
rewrite the second definition in Eq. (66) as

Ji (W ) = −2π
∫
D

dW

dt
dx dp,

= −2π
d

dt

∫
D
W dx dp,

= 2π
d

dt
Vol−(W ),

= 2
d

dt
hi (W ), (75)

confirming the imaginary part of the complex de Bruijn’s identity, Eq. (69).
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6 Discussion and perspectives

We have defined the complex Wigner entropy of an arbitrary state as the complex continuation of the Shannon
differential entropy of its Wigner-function W (x, p), namely

hc(W ) = −
∫
R2

W (x, p) lnW (x, p) dx dp, (76)

where ln(·) stands for the complex logarithm function. Following the same logic, the complex Fisher information
has been defined as

Jc(W ) =
∫
R2

(
dW

dx

d(lnW )

dx
+ dW

dp

d(lnW )

dp

)
dx dp (77)

These two definitions purposely coincide with the usual ones as soon as the state is Wigner positive, that is,
W (x, p) > 0, ∀x, p, since the Wigner function is then a genuine joint probability distribution. Thus, for such
states, Im(hc) = Im(Jc) = 0, whereasRe(hc) andRe(Jc) inherit all properties of their counterparts in Shannon’s
information theory. For example, the Wigner entropy is then a concave and subadditive functional of the state, and
it obeys a Wigner entropy-power inequality [10].

In contrast, when the state isWigner negative, that is, ∃(x, p) : W (x, p) < 0, its Wigner entropy admits a strictly
positive imaginary part Im(hc), which is proportional to the Wigner negative volume. Although the complex-
valued entropy hc loses some of its properties, such as concavity, it remains invariant when the state undergoes any
Gaussian unitary (i.e., displacement, rotation, or squeezing in phase space). Both the real and imaginary parts of hc
can also be related to the real and imaginary parts of Jc, respectively, when the state undergoes a Gaussian diffusion
process (i.e., a convolution with a Gaussian noise whose variance grows linearly with time). As a consequence of
a complex extension of de Bruijn’s identity, Re(hc) evolves with a rate ∝ Re(Jc) and, similarly, Im(hc) evolves
with a rate ∝ Im(Jc). For a Wigner-positive state, Jc = Re(Jc) ≥ 0 becomes the usual Fisher information, hence
hc = Re(hc) can only increase with time. This translates the fact that the Wigner function W (x, p) expands with
time. For a Wigner-negative state, Im(Jc) < 0, so that Im(hc) can only decrease with time. This is consistent with
the fact that the Wigner negative volume can only decrease along this Gaussian diffusion process, until it reaches
zero. Once the state becomes Wigner-positive, Im(hc) remains equal to zero along further time evolution.

Note that both Im(hc) and Im(Jc) have a straightforward interpretation involving the Wigner negative domain
D. As already mentioned, Im(hc) is proportional to (minus) the volume integral of W over D, i.e., the negative
volume, while Im(Jc) is proportional to (minus) the contour integral of the gradient ofW over the boundary ∂D of
the negative domainD. Just as in Shannon’s information theory, the imaginary Fisher information can thus be linked
to the derivative of the imaginary Wigner entropy. Note also that our analysis in the present paper is restricted to
Wigner functions associated with a single pair of canonically conjugate coordinates (x, p), that is, a single bosonic
mode, but our results should be easily generalizable to a multidimensional (multimode) case.

A possible application of the complex Wigner entropy may arise in the context of entropic uncertainty relations
[13]. For Wigner-positive states, we have

h(ρx ) + h(ρp)
(a)≥ Re(hc(W ))

(b)≥ ln π + 1, (78)

whereRe(hc(W )) = hc(W ) since it is real-valued. More precisely, inequality (a) directly follows from the subaddi-
tivity of Shannon’s differential entropy, while inequality (b) as conjectured in [10] yields a tight entropic uncertainty
relation [12]. Of course, chaining inequalities (a) and (b) yields the entropic uncertainty relation due to Białynicki-
Birula and Mycielski [11]. Clearly, Eq. (78) implies that there is a forbidden zone in the complex entropy plane
along the real axis below ln π + 1. Moving to arbitrary (negative) Wigner functions, this strongly suggests that the
complex Wigner entropy of a physical state is constrained to lie in some allowed area in the complex plane. The
complex entropic uncertainty relation would then be expressed as hc ∈ A, with A being the allowed area. This
topic is worth further investigation.

Arguably, a weakness of our approach is that we miss a fully satisfactory understanding of the physical meaning
behind the complex-valued entropy hc (even its real part is not associated with a well-understood property when

123



N. J. Cerf et al.

the state is Wigner negative). We believe—although we have not been able to do it—that a satisfactory operational
interpretation of the complex Wigner entropy could be obtained by extending the notion of typical volume to the
complex plane. For a Wigner-positive state, Shannon information theory tells us that a sequence of n independent
instances ofW (x, p) populates with high probability a typical volume ∼ exp(n h(W )) in Euclidean space R2n . For
a Wigner-negative state, it is tempting to keep the same expression and conclude that the typical volume becomes
in general complex since the entropy is itself complex, translating the fact that for each instance of the sequence, x
and p cannot be simultaneously defined (unlike two classical variables). Just as the entropy is related to the typical
volume, the Fisher information is related to the surface area of the typical set, hence the complex Fisher information
is another hint at the notion of complex typical volume. If meaningful, this notion should of course be put on firmer
grounds.7

On a more hypothetical note, the analytic continuation of the Shannon entropy functional in the complex plane
suggests that one could go even one step further and consider the entropy of complex-valued functions. Here, the
Wigner function is real-valued (albeit it can be both positive or negative) since the density operator is Hermitian, but
we may possibly define the complex entropy of the complex-valued Weyl transform of non-Hermitian operators.
All tools of complex analysis, such as the residue theorem, could possibly be used here. Yet, there remains to find
a good interpretation of such a complex entropy.
Note added: The early steps of this work have been reported in the Ph.D. thesis of one of us [24], but the present
paper presents a more complete analysis of complex entropies in phase space. After completion of this work, we
have become aware of a few papers where the Shannon differential entropy associated with a Wigner function had
been mentioned, although mostly via numerical investigations, for Wigner-positive [25] andWigner-negative states
[26,27]. Recently, building on the present work, the relative entropy version of the Wigner entropy (including its
complex extension) has also been put forward as a means to measure the non-Gaussianity of a quantum state [23].
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Fig. 7 On the left, plot of the real Wigner entropy hr (W ) as a function of the negative volume Vol−(W ). Blue points are randomly
generated pure states. Red stars are Fock states. As it appears, there exist some pure states which are such that hr (W ) < ln π + 1,
contradicting property 5. On the right, plot of the difference h(ρx ) + h(ρp) − hr (W ) for randomly generated pure states. Since the
quantity is not always non-negative, we conclude that the real entropy hr is not a lower bound on the sum of the marginal entropies,
contradicting property 4

Appendix A: Properties of real-valued extensions of the Wigner entropy

A.1 Numerical exploration of real-valued functionals

In this Appendix, we numerically investigate the properties of the real-valued functionals defined in Sect. 3. For
ease of reading, we recall here the expressions of the real entropy hr , the absolute entropy ha , the positive entropy
h+ and the negative entropy h−:

hr (W ) = −
∫∫

W (x, p) ln|W (x, p)|dxdp, ha(W ) = −
∫∫

|W (x, p)| ln|W (x, p)|dxdp,

h+(W ) = −
∫∫

W (x,p)≥0

W (x, p) ln|W (x, p)|dxdp, h−(W ) =
∫∫

W (x,p)≤0

W (x, p) ln|W (x, p)|dxdp.

In the following, we test whether hr , ha or h+ are lower bounded by ln π + 1 (see property 5 in Sect. 3) and if
they satisfy the subadditivity property (i.e., hr/a/+(W ) ≤ h(ρx )+h(ρp), see property 4 in Sect. 3). We compare the
values taken by the different functionals for a set of randomly generated pure states, namely, random superpositions
of the first ten Fock states. We will only look at pure states here as we expect them to be the most likely to saturate
uncertainty relations. Figures7, 8, 9 display the value taken by the above mentioned functionals (left side of each
figure) and the value of the difference h(ρx )+h(ρp)−hr/a/+(W ) (right side of each figure). We plot each quantity
as a function of the negative volume,8 i.e., Vol−(W ) = − ∫∫

W (x,p)<0 W (x, p)dxdp. The negative entropy h− is
also plotted for illustration in Fig. 10 although we do not expect it to be a possible extension of the Wigner entropy
(nor to be lower bounded by ln π + 1). The functional h− will be a quantity of interest in the following of this
Appendix (see Sect. A2).

A.1.1 Minimum value of the functionals

Let us first look at the values taken by hr/a/+ (left sides of Figs. 7, 8, 9) and see whether any of them is lower
bounded by ln π + 1 (property 5). From the different graphs, it appears that hr sometime takes values strictly lower

8 We make this choice because the imaginary part of the complex-valued Wigner entropy is proportional to Vol−(W ), see Sect. 4.
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Fig. 8 On the left, plot of the positive Wigner entropy h+(W ) as a function of the negative volume Vol−(W ). Blue points are
randomly generated pure states. Red stars are Fock states. We observe empirically that pure states state obey a relation of the type
h+(W ) ≈ ln π + 1 + κVol−(W ), with κ ≈ 4. All of our randomly generated states are such that h+(W ) ≥ ln π + 1, which suggests
that the positive entropy satisfies property 5. On the right, plot of the difference h(ρx ) + h(ρp) − h+(W ) for randomly generated pure
states. Since the quantity is sometimes striclty negative, we conclude that the real entropy h+ is not a lower bound on the sum of the
marginal entropies, contradicting property 4

Fig. 9 On the left, plot of the absolute Wigner entropy entropy ha(W ) as a function of the negative volume Vol−(W ). Blue points
are randomly generated pure states. Red stars are Fock states. All of our randomly generated states are such that ha(W ) ≥ ln π + 1,
which suggests that the absolute entropy satisfies property 5. On the right, plot of the difference h(ρx ) + h(ρp) − ha(W ) for randomly
generated pure states. Since the quantity is not always non-negative, we conclude that the absolute entropy h+ is not a lower bound on
the sum of marginal entropies, contradicting property 4

than ln π +1 (see Fig. 7) whereas both the functionals h+ and ha seem to satisfy the expected lower bound ln π +1
(see Figs. 8 and 9). However, since h+ is always lower than or equal to ha [i.e., h+(W ) ≤ ha(W ), ∀W ∈ W], the
functional h+ should give a tighter bound than ha . Unfortunately, we have not been able to prove these bounds.

It is interesting to note in Fig. 8 the apparent almost-linear relation between the negative volume Vol−(W ) and
the positive entropy h+(W ) for pure states. It is not very surprising to observe that, for pure states, h+(W ) grows
with Vol−(W ): indeed, the negative volume is known to be a witness of nonclassicality, while classical pure states
(coherent states) minimize most uncertainty relations. Nonclassical states are thus more likely to yield a higher
uncertainty.

Moreover, we note in Figs. 8, 9, and 10 that Fock states generally seem to have the have the lowest possible value
of h+, ha , and h− for a fixed value of the negative volume Vol−(W ). This is reminiscent to the known property
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Fig. 10 Plot of the negativeWigner entropy h−(W ) as a function of the negative volume Vol−(W ). Blue points are randomly generated
pure states. Red stars are Fock states

that Fock states are minimum-uncertainty states for a given degree of non-Gaussianity [28]. Indeed, by considering
uncertainty relations under some Gaussianity constraint, it was shown in Ref. [28] that saturation is achieved by all
Fock states and some specific mixtures of subsequent Fock states. Here, the negative volume Vol−(W ) plays the
role of such a measure of non-Gaussianity (which, for pure states, goes together with Wigner negativity). However,
we have not been able to prove this property here.

A.1.2 Comparison with the sum of the marginal entropies

Let us now look at the values taken by h(ρx ) + h(ρp) − hr/+/a (right sides of Figs. 7, 8, 9) to see if any of these
functionals could be a lower bound on the sum of the marginal entropies (property 4). In each case, it clearly appears
that counterexamples can be found such that hr , h+ or ha is not a lower bound on h(ρx ) + h(ρp). The case of the
real entropy hr is the more subtle, as it is most of the time a lower-bound on the sum of the marginal entropies,
except for some rare counterexamples. Also, the violation h(ρx ) + h(ρp) − hr (W ) < 0 for these counterexamples
is rather small. This contrasts with the case of h+ and ha which appear to be greater than h(ρx )+ h(ρp) in general.
Note however that by squeezing the Wigner function along an axis not aligned with x or p, it is possible to increase
arbitrarily the value of h(ρx ) + h(ρp) while keeping h+(W ) and ha(W ) fixed, so that neither h+ or ha can be an
upper bound to the sum of the marginal entropies.

A.2 Relating the positive entropy to the sum of marginal entropies

Here, we make an attempt to show a relation between the positive entropy h+(W ) and the sum of the marginal
entropies h(ρx ) + h(ρp). We saw in the previous section that the value h+(W ) alone is not a lower bound on
h(ρx )+h(ρp), but it could be possible to find a correcting term�(W ) such that h(ρx )+h(ρp) ≥ h+(W )+�(W ).
We choose to focus on h+ because its almost-linear relation with the negative volume suggests it is a quantity of
interest.

A.2.1 Splitting the positive and negative parts of the Wigner function

Any Wigner function can be considered as the sum of its positive parts and negative parts. With this in mind, we
define W+ and W− as follows:

W+(x, p) = max{W (x, p), 0}, W−(x, p) = −min{W (x, p), 0}.
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We can then write W as W (x, p) = W+(x, p) − W−(x, p). The distribution W+(x, p) and W−(x, p) are non-
negative and normalized to respectively Vol+(W ) and Vol−(W ). Also, note that the positive entropy h+(W ) simply
corresponds to the entropy of the (non-normalized) distribution W+, so that we have h+(W ) = h(W+). Similarly,
the negative entropy h−(W ) is the entropy of the (non-normalized) distributionW− and we have h−(W ) = h(W−).
We now define the marginal distributions of W , W+ and W− along the x and p axis as follows:

ρx (x) =
∫

W (x, p)dp, ρp(p) =
∫

W (x, p)dx,

ρ+
x (x) =

∫
W+(x, p)dp, ρ+

p (p) =
∫

W+(x, p)dx,

ρ−
x (x) =

∫
W−(x, p)dp, ρ−

p (p) =
∫

W−(x, p)dx .

These differentmarginal distributions are related asρx (x) = ρ+
x (x)−ρ−

x (x) andρp(p) = ρ+
p (p)−ρ−

p (p). Also, the
marginal distributions are normalized according to the positive and negative volume:

∫
ρ+
x (x)dx = ∫

ρ+
p (p)dp =

Vol+(W ) and
∫

ρ−
x (x)dx = ∫

ρ−
p (p)dp = Vol−(W ).

A.2.2 Relating the marginal entropies

Let us define the following marginal entropies:

h(ρx ) = −
∫

ρx (x) ln ρx (x)dx, h(ρp) = −
∫

ρp(x) ln ρp(p)dp,

h(ρ+
x ) = −

∫
ρ+
x (x) ln ρ+

x (x)dx, h(ρ+
p ) = −

∫
ρ+
p (p) ln ρ+

p (p)dp,

h(ρ−
x ) = −

∫
ρ−
x (x) ln ρ−

x (x)dx, h(ρ−
p ) = −

∫
ρ−
p (p) ln ρ−

p (p)dp.

We are going to derive a lower-bound on h(ρx ) as a function of h(ρ+
x ) and h(ρ−

x ).

h(ρx ) = −
∫

ρx (x) ln ρx (x)dx

= −
∫ (

ρ+
x (x) − ρ−

x (x)
)
ln

(
ρ+
x (x) − ρ−

x (x)
)
dx

≥ −
∫ (

ρ+
x (x) − ρ−

x (x)
)
ln ρ+

x (x)dx

= −
∫

ρ+
x (x) ln ρ+

x (x)dx +
∫

ρ−
x (x) ln ρ+

x (x)dx

= h(ρ+
x ) +

∫
ρ−
x (x) ln ρ+

x (x)dx

≥ h(ρ+
x ) +

∫
ρ−
x (x) ln ρ−

x (x)dx

= h(ρ+
x ) − h(ρ−

x )

For both inequalities, we have used the monotonicity of logarithm and the fact that ρ+
x (x) ≥ ρ−

x (x) ≥ 0. Note
that the same development can be done for h(ρp), so that we also have h(ρp) ≥ h(ρ+

p ) − h(ρ−
p ). In conclusion, it
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follows that:

h(ρx ) + h(ρp) ≥ h(ρ+
x ) + h(ρ+

p ) − h(ρ−
x ) − h(ρ−

p ). (A1)

A.2.3 Subadditivity of entropy for non-normalized distributions

The subadditivity of entropy establishes an inequality between the entropy of a joint probability distribution and
the entropy of its marginal distributions. As we are going to show, it is possible to derive a similar relation for
distributions which are non-negative but not normalized to 1. Let us consider the function W+(x, p) which is
non-negative and normalized to Vol+(W ). It is associated with the marginal distributions ρ+

x (x) and ρ+
p (p). Of

course, keep in mind that the entropy of W+ is the positive entropy of W , i.e., h(W+) = h+(W ). In the following
development, we will refer to it as h(W+) because we focus on the distribution W+.

Reference [14] provides a simple proof based on Jensen’s inequality for the subbadditivity of entropy. We follow
the same lines, and generalize hereafter the proof to non-normalized distributions. The entropy ofW+ is written as:

h(W+) = −
∫∫

W+(x, p) lnW+(x, p)dxdp, (A2)

and the sum of the entropies of ρ+
x and ρ+

p is:

h(ρ+
x ) + h(ρ+

p ) = −
∫

ρ+
x (x) ln ρ+

x (x)dx −
∫

ρ+
p (p) ln ρ+

p (p)dp

= −
∫∫

W+(x, p)dp ln ρ+
x (x)dx −

∫∫
W+(x, p)dx ln ρ+

p (p)dp

= −
∫∫

W+(x, p)
(
ln(ρ+

x (x)) + ln(ρ+
p (p))

)
dxdp

= −
∫∫

W+(x, p) ln
(
ρ+
x (x)ρ+

p (p)
)
dxdp.

We can then compute the difference of these two quantities as follows:

h(ρ+
x ) + h(ρ+

p ) − h(W+) = −
∫∫

W+(x, p) ln
(
ρ+
x (x)ρ+

p (p)
)
dxdp +

∫∫
W+(x, p) lnW+(x, p)dxdp

= −
∫∫

W+(x, p)
(
ln

(
ρ+
x (x)ρ+

p (p)
)

− lnW+(x, p)
)
dxdp

= −
∫∫

W+(x, p) ln

(
ρ+
x (x)ρ+

p (p)

W+(x, p)

)
dxdp

= −Vol+(W )

∫∫
W+(x, p)

Vol+(W )
ln

(
ρ+
x (x)ρ+

p (p)

W+(x, p)

)
dxdp

≥ −Vol+(W ) ln

(∫∫
W+(x, p)

Vol+(W )

ρ+
x (x)ρ+

p (p)

W+(x, p)
dxdp

)

= −Vol+(W ) ln

(∫∫
ρ+
x (x)ρ+

p (p)

Vol+(W )
dxdp

)

= −Vol+(W ) ln

(
1

Vol+(W )

∫
ρ+
x (x)dx

∫
ρ+
p (p)dp

)
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= −Vol+(W ) ln

(
Vol+(W )2

Vol+(W )

)

= −Vol+(W ) ln Vol+(W )

where the inequality follows from Jensen’s inequality. A similar development can be done for h(W−), which proves
the two following relations:

h(ρ+
x ) + h(ρ+

p ) ≥ h(W+) − Vol+(W ) ln Vol+(W ), (A3)

h(ρ−
x ) + h(ρ−

p ) ≥ h(W−) − Vol−(W ) ln Vol−(W ). (A4)

A.2.4 Expression of a lower-bound on the sum of the marginal entropies

Remember that, fromEq. (A1), wewould like to find a lower bound to the quantity h(ρ+
x )+h(ρ+

p )−h(ρ−
x )−h(ρ−

p ).
To do so, it would be sufficient to lower bound h(ρ+

x ) + h(ρ+
p ) and upper bound h(ρ−

x ) + h(ρ−
p ). We can use Eq.

(A3) to lower bound h(ρ+
x )+ h(ρ+

p ). However, Eq. (A4) provides us with a lower bound on h(ρ−
x )+ h(ρ−

p ), which
is not what we are looking for.

If we combine our precedent observations, we can write the following:

h(ρx ) + h(ρp) ≥ h(ρ+
x ) + h(ρ+

p ) − h(ρ−
x ) − h(ρ−

p ) (A5)

≥ h(W+) − Vol+(W ) ln Vol+(W ) − h(ρ−
x ) − h(ρ−

p ) (A6)

= h+(W ) − Vol+(W ) ln Vol+(W )︸ ︷︷ ︸
symmetric

−h(ρ−
x ) − h(ρ−

p )︸ ︷︷ ︸
not symmetric

(A7)

The lower bound that we have derived on the sum of the marginal entropies is constituted of two main terms. The
first term h+(W ) − Vol+(W ) ln Vol+(W ) is the sum of the positive entropy and a function of the positive volume.
That first term is thus symmetric, i.e., invariant under area-preserving transformation. However, the second term
−h(ρ−

x )−h(ρ−
p ) is not symmetric. Indeed, the sum of the marginal entropies of a distribution is not invariant under

area-preserving transformations. For example, by squeezing the distribution W− along an axis that is not aligned
with either the x or p axis, the value of h(ρ−

x ) + h(ρ−
p ) can be set to an arbitrarily high value.

In conclusion, even if Eq. (A7) is an encouraging result as it provides an analytical lower bound on the sum of
the marginal entropies for any Wigner function (possibly taking negative values), work still remains to be done in
order to make that lower bound completely symmetric.

Appendix B: Complex Wigner entropy of Schrödinger cat states at the large-amplitude limit

Any binary superposition of coherent states can be converted to the following canonical expression through some
Gaussian unitary (displacement and rotation):

|ψ〉 = 1√
C

(√
m|α〉 + eiϕ

√
1 − m|−α〉

)
, (B1)

where α ∈ R+, ϕ ∈ [0, 2π) and m ∈ [0, 1]. C is computed to C = 1 + 2
√
m(1 − m) exp(−2α2) cos(ϕ). Let us

insist on the fact that we consider the parameter α to be real-valued and non-negative. The projector of the state
|ψ〉 is then:

|ψ〉〈ψ | = 1

C

(
m|α〉〈α| + (1 − m)|−α〉〈−α| + √

m(1 − m)eiϕ |−α〉〈α| + √
m(1 − m)e−iϕ |α〉〈−α|

)
(B2)
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In this Appendix, we are going to compute the Wigner function of |ψ〉〈ψ |. Then, we will compute the real and
imaginary parts of the complex Wigner entropy in the limit of large α.

B.1 Wigner function

Let us define Wαβ(x, p) has the Wigner function of the operator |α〉〈β| (in the coherent basis). The expression of
Wαβ can be found in [29] and reads as follows:

Wαβ(x, p) = 1

π
exp

(
−1

2

(
|α|2 + |β|2 − 2αβ∗) −

(
x − α + β∗

√
2

)2

−
(
p − α − β∗

√
2i

)2
)

(B3)

We can then use the above expression to compute theWigner function of the operators |α〉〈α|, |−α〉〈−α|, |α〉〈−α|
and |−α〉〈α|. The Wigner function of |ψ〉〈ψ | will then be the corresponding mixture (with complex coefficients)
as defined from Eq. (B2). Note that since |ψ〉〈ψ | is Hermitian, its Wigner function is real-valued. This yields the
following expression:

W (x, p) = 1

πC

(
m exp(−(x − √

2α)2 − p2) + (1 − m) exp(−(x + √
2α)2 − p2)

+ 2
√
m(1 − m) exp(−x2 − p2) cos

(
2
√
2αp + ϕ

) )
(B4)

= m

C
W0

(
x − √

2α, p
)

+ 1 − m

C
W0

(
x + √

2α, p
)

+ 2
√
m(1 − m)

C
W0(x, p) cos(2

√
2αp + ϕ) (B5)

where in the second expression we have used the Wigner function of vacuum W0(x, p) = exp(−x2 − p2)/π .

B.2 Complex Wigner entropy in the large α approximation

Equation (B5) is the exact Wigner function of a state |ψ〉 in the form of Eq. (B1). At this point, we will now make
the assumption that α � 1. This implies then that C ≈ 1. We can then approximate Eq. (B5) as follows:

W (x, p) ≈ mW0

(
x − √

2α, p
)

︸ ︷︷ ︸
WA

+ (1 − m)W0

(
x + √

2α, p
)

︸ ︷︷ ︸
WB

+ 2
√
m(1 − m)W0(x, p) cos(2

√
2αp + ϕ)︸ ︷︷ ︸

WC

(B6)

Observe that the above expression contains three distinct terms.Notice that the sumof the twofirst term (WA+WB)
is the Wigner function of the mixture of coherent states ρ̂ = m|α〉〈α| + (1 − m)|−α〉〈−α|. We can then interpret
the term WC as the interference term of the cat state.

The term WA is located around the point (x = √
2α, p = 0), the term WB is located around the the point

(x = −√
2α, p = 0) and the term WC around the point (x = 0, p = 0). In the large α approximation, the

distributionsWA(x, p),WB(x, p) andWC (x, p) are thus well separated over phase space, so that we may consider
that they do not overlap. In other words, we can make the approximation that whenever one takes non-zero values,
then the two others are assumed to be zero. We will use that approximation to compute the complexWigner entropy
of the cat state.

h(W ) = h(WA + WB + WC ) (B7)

= −
∫∫

W lnWdxdp (B8)
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= −
∫∫

(WA + WB + WC ) ln (WA + WB + WC ) dxdp (B9)

≈ −
∫∫

WA �=0

WA lnWAdxdp −
∫∫

WB �=0

WB lnWBdxdp −
∫∫

WC �=0

WC lnWCdxdp (B10)

= h(WA) + h(WB) + h(WC ) (B11)

For distributions that do not overlap, the entropy of the sum of the distributions is the sum of the entropy of each
distribution. Using the fact that h(W0) = ln π + 1 and that h(aW ) = ah(W ) − a ln a (for a > 0), we find that
h(WA) = m(ln π + 1) − m lnm and h(WB) = (1 − m)(ln π + 1) − (1 − m) ln(1 − m). We have then:

h(WA + WB) ≈ h(WA) + h(WB) + h(WC ) (B12)

= ln π + 1 − m lnm − (1 − m) ln(1 − m) (B13)

= h(W0) + h2(m) (B14)

where h2(m) := −m lnm − (1 − m) ln(1 − m) is the binary entropy of m ∈ [0, 1]. As we noticed previously, the
entropy of h(WA + WB) is simply the Wigner entropy of a mixture of coherent states. Let us now focus on the
entropy of the interference term, i.e. h(WC ).

Starting from the expression of WC :

WC (x, p) = 2

π

√
m(1 − m) exp(−x2) exp(−p2) cos(2

√
2αp + ϕ), (B15)

we compute the entropy of WC as follows:

h(WC ) = −
∫∫

2

π

√
m(1 − m) exp(−x2) exp(−p2) cos(2

√
2αp + ϕ)

× ln

(
2

π

√
m(1 − m) exp(−x2) exp(−p2) cos(2

√
2αp + ϕ)

)
dxdp (B16)

= −
∫∫

2

π

√
m(1 − m) exp(−x2) exp(−p2) cos(2

√
2αp + ϕ)

×
[
ln

(
2

π

√
m(1 − m)

)
− x2 − p2 + ln cos(2

√
2αp + ϕ)

]
dxdp (B17)

= − 2

π

√
m(1 − m) ln

(
2

π

√
m(1 − m)

) ∫
exp(−x2)dx

︸ ︷︷ ︸√
π

∫
exp(−p2) cos(2

√
2αp + ϕ)dp

︸ ︷︷ ︸
exp(−2α2)

√
π cosϕ

+ 2

π

√
m(1 − m)

∫
x2 exp(−x2)dx

︸ ︷︷ ︸
1
2
√

π

∫
exp(−p2) cos(2

√
2αp + ϕ)dp

︸ ︷︷ ︸
exp(−2α2)

√
π cosϕ

+ 2

π

√
m(1 − m)

∫
exp(−x2)dx︸ ︷︷ ︸√

π

∫
p2 exp(−p2) cos(2

√
2αp + ϕ)dp

︸ ︷︷ ︸
1
2 (1−4α2) exp(−2α2)

√
π cosϕ

− 2

π

√
m(1 − m)

∫
exp(−x2)dx

︸ ︷︷ ︸√
π

exp(−p2) ln cos(2
√
2αp + ϕ) cos(2

√
2αp + ϕ)dp (B18)
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= √
m(1 − m) exp(−2α2) cosϕ

(
−2 ln

(
2

π

√
m(1 − m)

)
+ 2 − 4α2

)

− 2√
π

√
m(1 − m)

∫
exp(−p2) ln cos(2

√
2αp + ϕ) cos(2

√
2αp + ϕ)dp (B19)

Now, in the limit α → ∞, we have exp(−2α2) → 0. In the large α approximation, only the second term of Eq.
(B19) survives and we have:

h(WC ) ≈ − 2√
π

√
m(1 − m)

∫
exp(−p2) ln cos(2

√
2αp + ϕ) cos(2

√
2αp + ϕ)dp. (B20)

In the following, we are going to split the real and imaginary parts of h(WC ). We will use the relation ln z =
ln|z| + i arg(z). Also, we set q = 2

√
2αp + ϕ, so that p = (q − ϕ)/(2

√
2α). We have then dp = dq/(2

√
2α).

Using this and starting from Eq. (B20), we find:

h(WC ) ≈ − 2√
π

√
m(1 − m)

∫
ln cos(q) exp(−

(
q − ϕ

2
√
2α

)2

) cos(q)
dq

2
√
2α

(B21)

= − 1

α

√
m(1 − m)

2π

∫
exp(−

(
q − ϕ

2
√
2α

)2

) cos(q) ln cos(q)dq (B22)

= − 1

α

√
m(1 − m)

2π

∫
exp(−

(
q − ϕ

2
√
2α

)2

) cos(q) ln|cos(q)|dq

− i

α

√
m(1 − m)

2π

∫
exp(−

(
q − ϕ

2
√
2α

)2

) cos(q) arg(cos(q))dq (B23)

We are going to evaluate the real part and the imaginary part of this integral separately. To do so, we are going
to split the domain of integration of the variable p (which is R) as an infinite countable union of subsets of length
2π . We divide the real line as follows: Ak = [

2kπ, 2(k + 1)π
)
, which is such that

⋃
k∈Z Ak = R.

B.2.1 Real part

Starting from Eq. (B23), we can express the real part of h(WC ) (in the large α approximation) as follows:

Re [h(WC )] ≈ − 1

α

√
m(1 − m)

2π

∫
exp(−

(
q − ϕ

2
√
2α

)2

) cos(q) ln|cos(q)|dq (B24)

= − 1

α

√
m(1 − m)

2π

∑
k∈Z

∫
Ak

exp(−
(
q − ϕ

2
√
2α

)2

) cos(q) ln|cos(q)|dq (B25)

When α is very large, the Gaussian exp(−((q −ϕ)/(2
√
2α))2) varies very slowly, so that we can assume that on

a single interval Ak it keeps the same value. The middle value of the interval Ak is (2k + 1)π . We can then write:

Re [h(WC )] ≈ − 1

α

√
m(1 − m)

2π

∑
k∈Z

exp(−
(

(2k + 1)π − ϕ

2
√
2α

)2

)

∫

Ak

cos(q) ln|cos(q)|dq
︸ ︷︷ ︸

=0

(B26)

= 0 (B27)
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where we have use the fact that the function φ(x) = x ln(|x |) is odd, so that φ(cos(x)) is on average equal to zero
over a period of cosine.

B.2.2 Imaginary part

We proceed similarly for the imaginary part.

Im [h(WC )] ≈ − 1

α

√
m(1 − m)

2π

∫
exp(−

(
q − ϕ

2
√
2α

)2

) cos(q) arg(cos(q))dq (B28)

= − 1

α

√
m(1 − m)

2π

∑
k∈Z

∫

Ak

exp(−
(
q − ϕ

2
√
2α

)2

) cos(q) arg(cos(q))dq (B29)

≈ − 1

α

√
m(1 − m)

2π

∑
k∈Z

exp(−
(

(2k + 1)π − ϕ

2
√
2α

)2

)

∫

Ak

cos(q) arg(cos(q))dq (B30)

= − 1

α

√
m(1 − m)

2π

∑
k∈Z

exp(−
(

(2k + 1)π − ϕ

2
√
2α

)2

)

︸ ︷︷ ︸√
2
π

αϑ3

(
π−ϕ
2 ,exp(−2α2)

)

3π
2∫

π
2

cos(q)πdq

︸ ︷︷ ︸
−2π

(B31)

= 2
√
m(1 − m) ϑ3

(
π − ϕ

2
, exp(−2α2)

)
, (B32)

where ϑ3(u, q) = 1 + ∑∞
n=1 q

n2 cos(2nu) is the third Jacobi elliptic theta function. Observe that ϑ3(u, 0) = 1, so
that in the limit α → ∞ we have Im [h(WC )] → 2

√
m(1 − m).

Let us now conclude. In the limit of α � 1, we have found that Re [h(WC )] → 0 and Im [h(WC )] →
2
√
m(1 − m). Since we also know that in the limit α � 1, we can write hc(W ) ≈ hc(WA) + hc(WB) + hc(WC ),

we have the following:

hc(W ) ≈ ln π + 1 − m lnm − (1 − m) ln(1 − m) + 2i
√
m(1 − m) (B33)

= hc(W0) + h2(m) + 2i
√
m(1 − m) (B34)

where W0 is the Wigner function of vacuum and h2 is the binary entropy. Observe that Eq. (B34) does not depend
on ϕ. Also, the imaginary part is maximized for m = 1/2, so that for a balanced superposition of coherent states
(cat state), we find the following expression:

h(Wcat) ≈ ln π + 1 + ln 2 + i, (B35)

where Wcat is the Wigner function of a balanced cat state |ψcat〉 ∝ |α〉 + eiϕ |−α〉 (for any phase ϕ ∈ [0, 2π)).

B.3 Generalization to a balanced superposition of many coherent states

Interestingly, the expression we obtained for the complex Wigner entropy of a cat state (balanced superposition of
two coherent states), see Eq. (B35), can be generalized to a balanced superposition of N coherent states. Let us
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consider the following pure state:

|ψ〉 = 1√
Cα,ϕ

N∑
n=1

eiϕn |αi 〉 (B36)

which is defines from a coherent amplitudes vector α ∈ C
N and a phase vector ϕ ∈ [0, 2π)N . The normalization

constant Cα,ϕ ∈ R+ depends on both α and ϕ. The density operator associated to that state is:

|ψ〉〈ψ | = 1

Cα,ϕ

N∑
n=1

N∑
m=1

ei(ϕn−ϕm )|αn〉〈αm |, (B37)

= 1

Cα,ϕ

∑
n

|αn〉〈αn| + 1

Cα,ϕ

∑
n �=m

ei(ϕn−ϕm )|αn〉〈αm |, (B38)

= 1

Cα,ϕ

∑
n

|αn〉〈αn|
︸ ︷︷ ︸

mixture

+ 1

Cα,ϕ

∑
m<n

[
ei(ϕn−ϕm )|αn〉〈αm | + h.c.

]

︸ ︷︷ ︸
interference

. (B39)

Observe that there are N mixture terms and N (N −1)/2 interference terms. In the approximation where none of
the mixture terms and interference terms overlap, we will be able to use a similar reasoning as we did in B 2. There
are in total N (N + 1)/2 terms (mixture and interference) that shouldn’t overlap for the approximation to hold. This
amount to checking (N − 1)N (N + 1)(N + 2)/8 conditions (distances between each terms).

Notice now that every mixture term is located around the phase-space location αn (for n = 1, .., N ), and every
interference term is located at the location (αn + αm)/2 (for n = 1, . . . , N and m = 1, .., n − 1). We define the
matrixA ∈ C

N×N with components Amn = (αm +αn)/2. The conditions that have to be satisfied are the following,

|Amn − Apq | � 1 ∀m ≥ n > p ≥ q, (B40)

or equivalently,

|αm + αn − αp − αq | � 1 ∀m ≥ n > p ≥ q. (B41)

When the above approximation holds, we can compute the total complex Wigner entropy of |ψ〉 as the sum of
the complex entropy of each terms. Following the same lines as in B 2, we find that the normalization constant Cα,ϕ

then tends to N . The complexWigner entropy of the sum of the mixture terms becomes h(W0)+ ln N (no imaginary
part). The complex Wigner entropy of the operator |αm〉〈αn| (where |αm − αn| � 1) is 2i (no real part), so that the
complex Wigner entropy of the sum of the N (N − 1)/2 interference terms is 2i × N (N − 1)/(2N ) = i(N − 1).
This yields the following approximation for the complex Wigner entropy of |ψ〉:

hc(Wψ) ≈ ln π + 1 + ln N︸ ︷︷ ︸
mixture

+ i (N − 1)︸ ︷︷ ︸
interference

. (B42)

In our example, it appears that the real part of hc measures the phase-space uncertainty of the state when all the
quantum interferences have been lost (in which case the state is quasiclassical, i.e., a mixture of coherent states).
On the other hand, the imaginary part of hc measures the average number of almost distinguishable quasiclassical
components that are interfering with any quasiclassical component of the superposition state.
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