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Abstract Both acoustics and electromagnetism represent measurable fields in terms of dynamical potential fields.
Electromagnetic force-fields form a spacetime bivector that is represented by a dynamical energy–momentum 4-
vector potential field. Acoustic pressure and velocity fields form an energy–momentum density 4-vector field that is
represented by a dynamical action scalar potential field. Surprisingly, standard field theory analyses of spin angular
momentum based on these traditional potential representations contradict recent experiments, which motivates a
careful reassessment of both theories. We analyze extensions of both theories that use the full geometric structure
of spacetime to respect essential symmetries enforced by vacuum wave propagation. The resulting extensions
are geometrically complete and phase-invariant (i.e., dual-symmetric) formulations that span all five grades of
spacetime, with dynamical potentials and measurable fields spanning complementary grades that are related by a
spacetime vector derivative (i.e., the quantumDirac operator). These complete representations correct the equations
of motion, energy–momentum tensors, forces experienced by probes, Lagrangian densities, and allowed gauge
freedoms, while making manifest the deep structural connections to relativistic quantum field theories. Finally, we
discuss the implications of these corrections to experimental tests.

Keywords Spacetime geometry · Spin angular momentum · Acoustic fields · Electromagnetic fields · Clifford
algebra

1 Introduction

Recent work in locally measuring the angular momentum of acoustic and optical fields using small probes [1–15]
has prompted a reexamination of the theoretical treatment of intrinsic spin in relativistic fields. The corrections
needed for the field theory calculations to agree with experiment have important implications for the foundations of
both classical and quantum field theory descriptions of natural phenomena. In particular, dynamical potentials that
represent the measurable fields in each theory must be generalized in a geometrically motivated way that respects
structural symmetries.
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28 L. Burns et al.

The energy–momentum and angular momentum tensors that are predicted in classical field theory follow from
Noether’s celebrated theorem that identifies conserved quantities from the continuous symmetries of the Lagrangian
[16], so their prediction critically depends upon the functional structure of the Lagrangian density for the theory.
The canonical tensors derived from the Noether theorem, however, contain contributions from intrinsic spin angular
momentum that are neglected in standard textbook treatments [16,17]. In each reference frame, the total angular
momentum �J = �L+ �S splits into two distinct parts: an extrinsic orbital angular momentum part �L = �r× �P involving
the conserved canonical momentum �P , and an intrinsic spin angular momentum part �S that is formally local to the
infinitesimal volume around each point of the field. Similarly, the derived canonical momentum �P = �PK + �PS splits
into a kinetic contribution �PK and a spin-dependent contribution �PS = −( �∇ × �S)/2 involving the same spin vector
�S [18–22]. Traditionally, the local spin-dependent parts of the canonical momentum and angular momentum are
removed using a symmetrization procedure developed by Belinfante [23], leaving behind just the kinetic momentum
�PK and its contribution to the orbital angular momentum �r × �PK . The historical justification for neglecting the spin
contributions has been that localized angular momentum integrates to zero over a volume due to Stokes’ theorem,
so does not contribute to the integrated total angular momentum of the field [16,23].

However, in the past few decades it has become clear that this omission of the predicted spin contributions was
premature. Localized probes occupying sufficiently small volumes can have boundaries with suitably broken sym-
metries that they retain nonzero spin contributions to the integrated momentum and angular momentum transferred
from the field. The spin contributions to the net force and torque on the local probe can therefore be physically
measured. Indeed, local spin angular momentum densities have recently been measured for both acoustic [1–3,5,6]
and electromagnetic [7–15,24] fields, allowing a direct check for the field theory predictions. Surprisingly, the his-
torically accepted Lagrangian formulations have failed to correctly predict these measured experimental results for
the spin angular momentum densities in both acoustics and electromagnetism, despite their many other successes
over a century of use.

In the case of acoustics, a vanishing spin angular momentum is predicted by the traditional approach using a
dynamical action scalar potential [16,25–27]. Even without the experimental refutation of this prediction, micro-
scopic considerations readily showwhy this prediction is inadequate. The isotropicmedium in acoustics is composed
of individual molecules bouncing around in a chaotic way, with the acoustic field describing themean time-averaged
molecular motion. If a localized region of the medium has molecules undergoing elliptical orbits on average, one
would expect the corresponding mean field to have intrinsic spin in those regions that locally describes the mean
angular momentum of those underlying elliptical orbits [2,3,28,29]. Creating such a situation physically is straight-
forward, since propagating sound waves cause longitudinal oscillations of the molecules on average, so superposing
two sound waves propagating in perpendicular directions will result in elliptical mean orbits locally with the ellip-
ticity dependent upon the relative phase of the two sound waves. Indeed, experimental measurements used precisely
such an acoustic setup to measure nonzero acoustic spin with local probes [1,2,5,6], thus contradicting traditional
field theory predictions.

In the case of electromagnetism, an electrically biased spin angular momentum is predicted by the traditional
Lagrangian approach that uses electric scalar and vector potentials describing energy and momentum per unit
electric charge [18–22], meaning that the predicted spin vector depends only upon the local electric field and not the
magnetic field. However, optical fields far from sources show an egalitarianism between the electric and magnetic
fields, known as dual (electric-magnetic) symmetry [7,18,19,21,30–33], that is related to the conserved helicity of
the propagating optical field [21,34]. An electrically biased prediction thus violates the expected symmetries of the
propagating field. Indeed, contributions from both the electric and magnetic fields are required to correctly predict
the measured spin angular momentum [7,10,11,18,19,21].

Fixing the Lagrangian approach to these theories so that they correctly predict themeasured spin angular momen-
tum densities is a subtle affair, since the many successes of the existing theories tightly constrain any proposed
modification. The key to resolving the dilemma is to reassess how the measurable fields are represented in terms of
dynamical potentials. Changing the potential representation alters the functional form of the Lagrangian and thus
the predicted conserved quantities from Noether’s theorem. However, there is substantial gauge freedom in such
potential representations that leave the equations of motion or other predictions of the theory invariant.
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Spacetime geometry of acoustics and electromagnetism 29

In electromagnetism, a dual-symmetric representation involving both electric and magnetic versions of the
scalar and vector potentials successfully describes themeasured spin angularmomentum [7,18,19,21,31,32,34,35],
which causes an interesting tension with the prior neglect of magnetic potentials that has been motivated by the
apparent lack of magnetic charge. In acoustics, the correct spin angular momentum was first calculated from
microscopic arguments [2,3,27], and agreed with the experimentally measured results. The field theory justification
came afterwards [29] and modified the representation by augmenting the scalar potential with a second bivector
potential field (i.e., with a structure similar to the electromagnetic field) containing information about both the mean
displacement and rotational vorticity of the underlying acoustic medium. To agree with experimental measurements
of spin, the representations of the measurable fields in each theory must involve at least two dynamical potentials.

In this paper, we explore the important role played by the dynamical potentials in both acoustics and electro-
magnetism, while highlighting their many structural analogies for clarity. We build on our previous work [21,29]
to explain the emergence of the multiple dynamical potentials from fundamentally geometric considerations that
both constrain and inform any needed modifications of the traditional theory. As part of this goal, we deliberately
minimize reliance upon particular Lagrangian treatments and instead focus on understanding which quantities nec-
essarily appear from considerations of the geometry alone. Both acoustics and electromagnetism describe waves
with constant speed, so naturally adhere to the symmetries enforced by the geometry of relativistic spacetime,
which tightly constrains the allowed structure of the possible potential representations. We find that expressing both
theories in the geometric language of a Clifford bundle over spacetime significantly clarifies the structure of each
theory while illuminating both their many similarities and their key geometric differences.

We show that the physical content of both acoustics and electromagnetism is tightly constrained when the entire
geometry of spacetime is taken into account. The expanded potential representations and other critical modifications
to each theory can be motivated without appeal to a particular Lagrangian, which in turn constrains which choices
of Lagrangian are physically consistent. Gauge freedoms of each theory also become tightly constrained, with
some traditional gauge choices actually modifying the equations of motion and the forces experienced by probes,
making them experimentally testable and thus not true gauge freedoms. In particular, causal gauge choices (like
the Lorenz–FitzGerald contraint in electromagnetism) become experimentally motivated, rather than an optional
choice.

We also highlight that the geometric language used here for classical acoustic and electromagnetic field theories
has thought-provoking connections to relativistic fields more broadly. Issues with potential representations, gauge
fixing, and degenerate Lagrangian constructions have plagued quantum theories as much as classical theories for
many decades. Our work heremay shed some light on possible routes forward towardsmore geometrically complete
treatments that resolve several long-standing issues in both both classical and quantum relativistic field theories.

2 Acoustic and electromagnetic theories

We first review the traditional formulations of linear acoustics and electromagnetism to highlight their similarities
and geometric structure.

2.1 Acoustic equations in 3D

Recall that the measurable fields in linear acoustics are the pressure (P) and velocity (�v) densities of an isotropic
medium with equilibrium mass-density ρ and compressibility β. The acoustic equations of motion for small per-
turbations are then,

ρ ∂t �v = −�∇P, β ∂t P = −�∇ · �v, (1)
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with an extra irrotational constraint,

�∇ × �v = 0. (2)

Note that ρ�v is a momentum per volume and P is an energy per volume, so the first two equations can be interpreted
as the force and power density constraint equations for themedium,while the third constraint guarantees longitudinal
flow. The Lagrangian density,

L[�v, P] = 1

2
ρ|�v|2 − 1

2
βP2, (3)

has familiar forms of kinetic and potential energy densities that are analogous to a spring. Taking time derivatives
and rearranging the equations of motion yields two wave equations,

0 = [ρβ ∂2t − | �∇|2](ρ�v), 0 = [ρβ ∂2t − | �∇|2]P, (4)

for the momentum and energy densities of the medium, which describe acoustic energy and momentum density
waves with a constant wave speed c ≡ 1/

√
ρβ.

2.2 Electromagnetism in 3D

Similarly, recall that the measurable fields in electromagnetism are the electric �E = �D/ε and magnetic �H = �B/μ

fields in a medium with permittivity ε and permeability μ. The equations of motion are,

ε ∂t �E = �∇ × �H , μ ∂t �H = −�∇ × �E, (5)

with divergence-free constraints imposing transverse flow,

�∇ · �E = �∇ · �H = 0. (6)

The Lagrangian density has a form similar to acoustics,

L[ �E, �H ] = 1

2
ε| �E |2 − 1

2
μ| �H |2. (7)

Taking time derivatives and rearranging the equations of motion and constraints yields two wave equations,

0 = [εμ ∂2t − | �∇|2] �E, 0 = [εμ ∂2t − | �∇|2] �H , (8)

that describe electromagnetic waves with a constant wave speed c ≡ 1/
√

εμ.

2.3 Traditional potential representations

Curiously, both theories cannot derive their respective equations of motion using the Lagrangians as defined in
Eqs. (3) and (7) in terms of the measurable fields directly. Instead, they must introduce related dynamical potential
fields from which the measurable fields are derived. These potential fields must be varied in the Lagrangian in
order to produce the correct equations of motion. Thus, at least from the perspective of the field Lagrangians, the
measurable fields are less fundamental than the dynamical potential fields.
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Spacetime geometry of acoustics and electromagnetism 31

In acoustics, it is customary to introduce a scalar potential φ, satisfying

P ≡ −∂tφ, ρ�v ≡ �∇φ. (9)

The acoustic scalar field φ has units of action density, so these definitions intuitively match the Hamilton-Jacobi
definitions of energy and momentum from an action. In electromagnetism it is customary to introduce a scalar
potential φe and vector potential �Ae, satisfying

�E ≡ −∂t �Ae − �∇φe, μ �H ≡ �∇ × �Ae. (10)

The electromagnetic scalar and vector potentials (φe, �Ae) have units of energy and momentum per unit charge,
respectively.

The electromagnetic potentials have an additional gauge freedom such that the transformations, φe �→ φe − ∂tχ

and �Ae �→ �Ae+ �∇χ , for some scalar field χ , will leave the measurable electromagnetic fields ( �E, �B) invariant. This
freedom generalizes the introductory physics observation that one can shift the zero of potential energy without
affecting the measurable energy differences. Despite this gauge freedom, however, one still must vary the potential
fields in the Lagrangians after making these substitutions in order to derive the equations of motion.

2.4 The problem with spin angular momentum

Getting the correct equations of motion is not the only purpose of a Lagrangian formulation of the theories, however.
A Lagrangian also enables the identification of the conserved quantities of the field from its continuous symmetries
according to Noether’s theorem. For example, the energy–momentum stress tensor arises from translational sym-
metry, while the angular momentum tensor arises from from rotational symmetries. These conserved quantities can
be experimentally verified, providing a check on the validity of the framework.

Without dwelling on the derivation details, the traditional formulations of both theories predict the following.
For electromagnetism, the derived spin angular momentum tensor is fully characterized by a spin vector of local
angularmomentum.Choosing the radiationgauge that sets the scalar potential (energyper charge) to zero everywhere
φe = 0 to focus solely on the vector potential (momentum per charge) yields a spin vector with a simple form
[9,13,16,18,20–22],

�Sem = ε �E × �Ae, (11)

that asymmetrically depends on only the electric field �E , not the magnetic field, and also depends on the vec-
tor potential �Ae itself. Despite appearances, this spin vector is in fact gauge-invariant and measurable, since the
transverse part of the vector potential that contributes to the local spin is not affected by the choice of gauge in
the reference frame of the probe [21]. For monochromatic fields of frequency ω, in particular, the cycle-averaged
spin vector can be expressed with the cycle-averaged complex representation E of the electric field alone as
Se = ε Im(E

∗ × E)/2ω, which avoids the awkward question of apparent gauge-dependence [7,9–11,18,21]. In
contrast, acoustics is described with a scalar potential that predicts a vanishing spin vector [16,25–27],

�Sac = 0. (12)

Neither prediction is experimentally correct!
For electromagnetism, both the electric and magnetic fields contribute symmetrically to the total spin angular

momentum when carefully probed in the laboratory far from sources [7–14,24],
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�Sem = 1

2
[ε �E × �Ae + μ �H × �Am]. (13)

It also involves both electric and magnetic vector potentials, or their cycle-averaged monochromatic forms, Sem =
Im(ε E

∗ × E + μ H
∗ × H)/4ω. Moreover, different choices of probe have been used to isolate and verify the

distinct electric and magnetic contributions to this local spin vector [15]. The traditionally predicted electric-biased
spin vector is experimentally refuted.

For acoustics, recent measurements of intrinsic spin show it to be nonzero [1–3,5,6,27], and indeed match our
recently derived spin-vector expression [29],

�Sac = 1

2
[�x × (ρ�v)], (14)

that involves a mean displacement potential �x satisfying �v = ∂t �x in a vorticity-free choice of gauge. The cycle-
averaged andmonochromatic version of thismodified spin density, Sa = ρ Im(v∗×v)/4ω, was alsomicroscopically
derived [2,3,27,28] by observing that small circular orbits of the molecules in the medium should appear like
localized spin angular momentum after taking the mean field continuum limit. The vanishing spin vector predicted
by the traditional scalar potential is thus experimentally refuted.

These experimental contradictions force the reevaluation of the formalism for both theories so that they naturally
support these conclusions about the intrinsic spin. From the perspective of 3D space, however, it is not obvious
how to resolve this theoretical dilemma. The following sections review the 4D spacetime approach to both theories,
which will make the structural gaps in the traditional theories more readily apparent. By analyzing both theories
without appeal to a Lagrangian formalism a priori, it will become clear how the geometry of spacetime places
strong constraints on the admissible structure, even without focusing specifically on these measured contradictions
regarding the spin angular momentum. The geometric constraints of spacetime give an important clue for how to
proceed rigorously to resolve these longstanding theoretical dilemmas.

3 Spacetime formulations

Accommodating the natural symmetries of electromagnetic waves with constant speed cwas the original motivation
for introducing the framework of spacetime with aMinkowski metric in special relativity. That framework naturally
unifies both electromagnetic fields into a single bivector F and unifies both energy and momentum into a single
4-vector. Notably, acoustics has a very similar structure, but with a different wave speed c, and even contains
a natural pair of energy and momentum densities, which similarly motivates the construction of an analogous
acoustic spacetime that respects the symmetries of the wave equation in the acoustic medium [36]. Introducing
similar spacetime geometries in both theories considerably clarifies their common structure.

The following treatment expresses fields as part of the tangent bundle of Clifford algebras over spacetime [37–50],
since this mathematical formalism helps highlight the geometric structure of the theories in a particularly efficient
and illuminating way while maintaining a clear correspondence to standard 3D vector calculus and differential
forms. A brief overview of this mathematical framework is provided in Appendix A for completeness, with a more
expanded pedagogical treatment in Ref. [21]. Tables 1 and 2 also summarize the essential features of the algebras
as a quick reference.

3.1 Acoustic spacetime

In the case of acoustics, the pressure P is an energy density, while ρ�v is a momentum density, so should naturally
combine into an energy–momentum density 4-vector that keeps the equilibrium speed of sound c = 1/

√
ρβ

invariant. However, this mapping should be done carefully so that role of the background medium is correctly
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Table 1 Spacetime Clifford algebra, Cl1,3[R]
Signature + −
Grade-4 I

Grade-3 Iγ1 Iγ2 Iγ3 Iγ0

Grade-2 �σ1 �σ2 �σ3 I �σ1 I �σ2 I �σ3
Grade-1 γ0 γ1 γ2 γ3

Grade-0 1

Shown are the 24 graded basis elements of the algebra generated by unit vectors {γμ}3μ=0 with Minkowski metric γμ · γν = ημν of
signature (+,−,−,−). The Clifford product γμγν = γμ ·γν +γμ∧γν unifies themetric andGrassmannwedge product as the symmetric
and antisymmetric parts of the same associative and invertible product, so orthogonal vectors naturally anticommute γμγν = −γνγμ.
The pseudoscalar I ≡ γ0γ1γ2γ3 satisfies I 2 = −1, commutes with even grades, and anti-commutes with odd grades. Multiplication by
I enacts the Hodge-star operation that maps to the geometric complement. The grade-2 units γkγ0 = γk ∧γ0 ≡ �σk are space-time planes
that are perceived as 3-dimensional spatial unit vectors in a particular reference frame being dragged along the temporal direction γ0, so
are notated with 3-vector arrows accordingly. The grade-2 units like γ2γ3 = γ2 ∧ γ3 ≡ −I �σ1 = −�σ2 �σ3 are spatial planes orthogonal to
an effective 3-vector �σ1 in the frame γ0. The Lorentz group is the group of rotations in spacetime planes, with each unit plane generating
a boost or spatial rotation upon exponentiation. Notably, the Dirac matrices used to represent Dirac spinors in relativistic quantum
theory are matrix representations of the unit vectors γμ in spacetime Clifford algebra

Table 2 3D Clifford subalgebra, Cl3,0[R] ⊂ Cl1,3[R]
Signature + −
Grade-3 I

Grade-2 I �σ1 I �σ2 I �σ3
Grade-1 �σ1 �σ2 �σ3
Grade-0 1

The even-graded subalgebra of the spacetime algebra is closed and has 23 graded basis elements. Choosing a particular reference frame
with timelike direction γ0 splits the 6 planar directions of spacetime into 3 space-time planes {�σk ≡ γkγ0}3k=1 and 3 purely spatial
planes {I �σk = −εki jγiγ j }3k=1. The directions �σk are perceived by the evolving frame as spatial 3D unit vectors since each γk is being
dragged along the temporal axis γ0. The apparent unit 3D volume element is thus counter-intuitively identical to the same unit 4D
spacetime volume element in every reference frame, I = �σ1 �σ2 �σ3 = γ0γ1γ2γ3, which satisfies I 2 = −1 and commutes with the entire
3D subalgebra. Each spatial plane I �σk is geometrically complementary to an orthogonal 3D spatial axis �σk and is oriented to rotate
around that axis in accordance with the right-hand rule by convention, indicated algebraically by (I �σ1)(I �σ2)(I �σ3) = I 4 = 1. They are
notably related to the quaternionic imaginary units, which are the spatial unit planes with left-handed orientation, I �σ1 ≡ i, I �σ2 ≡ −j,
I �σ3 ≡ k, indicated algebraically by i2 = j2 = k2 = ijk = −1. Each 3D Clifford subalgebra is thus equivalent to a biquaternion
algebra that augments the quaternions with an extra imaginary unit I . Notably, the Pauli matrices used to represent both nonrelativistic
spin and lightcone Weyl spinors are matrix representations of the unit vectors �σk in 3D Clifford algebra that conflate the pseudoscalar
I with a generic scalar imaginary unit i

preserved. When the medium is completely at rest and at equilibrium there is still an equilibrium pressure P0 = ρc2

in the medium that acts as a background energy density. Denoting γ0 as the distinguished timelike (γ 2
0 = 1) unit

vector of the rest frame, the equilibrium 4-momentum should be a constant pressure at every point in the medium,
with zero velocity,

p0 ≡ P0
c

γ0 = (ρc)γ0. (15)

Now consider a reference frame of a pointlike observermoving through the medium at a velocity �v relative to that
equilibrium frame. Defining the boost angle tanh α = |�v|/c and the unit space-time plane v̂ = �v/|�v| for the boost
rotation, a Lorentz transformation to the frame of this observer is represented by a half-angle spinor exp(−αv̂/2)
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that acts as a double-sided group automorphism on any element of the spacetime algebra. Performing this hyperbolic
boost rotation by angle α in the unit plane v̂ on the 4-vector p0 yields,

e−αv̂/2 p0e
αv̂/2 = P0

c
e−αv̂γ0,

= P0
c

(cosh α − �v sinh α)γ0,

= (P0/c) − (P0/c2)�v√
1 − |�v/c|2 γ0. (16)

The moving observer sees an increased pressure, P ′ = γv P0, with dilation factor γv = P ′/P0 = 1/
√
1 − |�v/c|2,

as well as a momentum density �p′ = −γvρ�v of the medium flowing past the observer at a velocity −�v with an
effectively increased mass density ρ = P ′/c2.

This increase in apparent pressure and mass density makes sense physically, since the motion of the observer
shortens the effective distances between particles in the medium on average, as long as the inertial observer is
treated as pointlike to avoid symmetry-breaking drag from particle collisions while in motion. In the limit that
the observer moves through the medium near the speed of sound, the background medium will appear to have
no space between its particles, so the effective density and pressure of the medium will appear to diverge for the
moving observer. At the speed of sound c, the observer reaches a shock wave discontinuity where on average all
particles seem to have zero spacing between them and the spacetime description fails. Thus, from an equilibrium
perspective this spacetime formulation of acoustics describes the right behavior for speeds below the speed of
sound c.

The pressure P(x) and velocity �v(x) density fields considered in the 3D case are then deviations away from
this equilibrium background of the medium while still in the stationary reference frame γ0 of the medium, making
the total pressure field Ptot(x) = P0 + P(x). Crucially, this construction allows for the deviation pressure P to
become locally negative during pressure wave propagation, physically indicating a local decrease of the background
particle density relative to the equilibrium state of themedium as a locally negative energy density. The total energy–
momentum 4-vector should then have the form ptot ≡ p0 + p, with deviation,

p ≡ (P/c + ρ�v)γ0 = γ0(P/c − ρ�v), (17)

expressed here as a paravector in the reference frame of themedium γ0. As a deviation from equilibrium, the pressure
P and velocity �v are independent components of the energy–momentum deviation field p with a relationship that
will be determined by their sources. Thus, the deviation field need not have any particular signature a priori, with
p2 = (P/c)2 − |ρ�v|2 allowed to be positive, negative, or zero.

Given this spacetime structure, the source-free acoustic equation of motion and Lagrangian density for this
deviation field then take the laconic forms,

∇ p = 0, Lp = − p2

2ρ
, (18)

where∇ = ∑
μ γ μ∂μ = γ0(∂ct + �∇) = (∂ct − �∇)γ0 is the spacetime vector derivative (known as theDirac operator

in relativistic quantum mechanics). The acoustic equation is thus notably identical in form to the massless Dirac
equation, but involving the 4-vector p.
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The equation of motion in Eq. (18) expands into three independent grades in the rest frame,

∇ p = (∂ct − �∇)γ 2
0 (P/c − ρ�v) = 0,

= (∂t (P/c2) + �∇ · (ρ�v)) (scalar)

− (∂t (ρ�v)/c + �∇P/c) (vector)

+ I �∇ × (ρ�v), (pseudovector) (19)

thus reproducing the expected equations. Here I is the pseudoscalar (unit 4-volume) of spacetime satisfying I 2 =
−1. Moreover, taking another derivative immediately produces a scalar wave equation,

∇2 p = (∂ct − �∇)γ 2
0 (∂ct + �∇)p,

= (∂2t /c2 − | �∇|2)p = 0. (20)

Similarly, the acoustic scalar potential satisfies,

p = −∇φ = γ0(−∂tφ/c − �∇φ) = γ0(P/c − ρ�v), (21)

which implies that the original equation of motion is itself a wave equation for the scalar potential,

∇ p = −∇2φ = −(∂2t /c2 − | �∇|2)φ = 0. (22)

The corresponding Lagrangian density similarly expands into the expected form in the rest frame,

− p2

2ρ
= − 1

2ρ
(P/c + ρ�v)γ 2

0 (P/c − ρ�v),

= − 1

2ρ
(ρβP2 − ρ2|�v|2) = 1

2
(ρ|�v|2 − βP2). (23)

Achieving mathematical expressions that are so compact rarely happens accidentally in physics, which gives strong
support to the formal introduction of acoustic spacetime as being conceptually beneficial.

3.2 Electromagnetic spacetime formulation

In the case of electromagnetism in standard spacetime, the electric and magnetic fields naturally combine into an
electromagnetic field (Faraday) bivector [21,39,48],

F ≡ �E/c + μ �H I, (24)

expressed here as a complex split into its polar and axial 3-vector parts, with speed of light c = 1/
√

εμ. This
naturally complex decomposition of the electromagnetic field is equivalent to the Riemann–Silberstein approach
[51], and is precisely equal to the single photon wave function in quantum electrodynamics [52,53], with the
important replacement of the generic scalar imaginary i with the geometrically meaningful pseudoscalar I to make
F properly frame-invariant [21,39].

The spacetime bivector F is geometrically planar, so is one dimension greater than the linear energy–momentum
density p in acoustics. Nevertheless, the electromagnetic equation of motion and standard Lagrangian density have
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nearly identical laconic forms to the acoustic Eqs. (18),

∇F = 0, Lem = 〈F2〉0
2μ

, (25)

with the same form as the massless Dirac equation for the quantum electron.
The equation of motion expands into four distinct and independent contributions [21],

∇F = γ0(∂ct + �∇)( �E/c + μ �H I ),

= γ0 �∇ · �E/c (scalar)

+ γ0 (∂t �E/c2 − μ �∇ × �H) (vector)

+ γ0 �∇ · (μ �H) I (pseudoscalar)

+ γ0 (∂t (μ �H) + �∇ × �E) I/c (pseudovector), (26)

thus reproducing the expected equations. A second derivative immediately yields the expected wave equation,

∇2F = (∂2t /c2 − �∇2)F = 0. (27)

The Hodge-star complement of the (Faraday) bivector F is its geometrically dual (Maxwell) bivector,

G = F̃ζ−1 I = �H
c

− ε �E I, ζ = μc =
√

μ

ε
, (28)

such that F = ζ GI withwave impedance ζ . Notably, the roles of the magnetic and electric fields are exchanged for
the geometric complement field, yet it obeys identical vacuum equations of motion ∇G = 0, which is a symmetry
called (electric-magnetic) dual symmetry [7,9,18,30–34]. This dual symmetry extends to sources, provided that the
electric and magnetic charges are also swapped in tandem, and plays an important role in constructing a Lagrangian
formulation of the theory that correctly predicts the experimentally confirmed conserved Noether currents for both
spin density and helicity [21].

The electromagnetic scalar and vector potentials combine into an energy–momentum-per-unit-charge 4-vector
potential field ae = γ0(φe/c − �Ae), satisfying,

F = ∇ae = ∇ · ae + ∇ ∧ ae,

= (∂ct − �∇)γ 2
0 (φe/c − �Ae),

= (∂tφe/c
2 + �∇ · �Ae) + (−∂t �Ae − �∇φe)/c + I �∇ × �Ae,

= �E/c + Iμ �H , (29)

which reproduces the expected relations, provided that the Lorenz–FitzGerald gauge condition is satisfied,

∇ · ae = ∂tφe/c
2 + �∇ · �Ae = 0, (30)

which enforces causal evolution for the potential field. With this causal gauge constraint, the original equation of
motion also is itself a wave equation for the potential,

∇F = ∇2ae = ((∂t/c)
2 − | �∇|2)ae = 0. (31)
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The corresponding Lagrangian density also expands into the expected form,

〈F2〉0
2μ

= 1

2μ
〈( �E/c + Iμ �H)( �E/c + Iμ �H)〉0,

= 1

2μ
〈εμ| �E |2 − μ2| �H |2 + 2Iμ( �E · �H)/c〉0,

= 1

2
(ε| �E |2 − μ| �H |2), (32)

but notably requires a different overall sign and an extra scalar projection to neglect the pseudoscalar part of the
invariant square [21]. Notably, this omitted pseudoscalar part involving �E · �H has been revived in recent treatments
of axion contributions to the field [54–56], which is an interesting topic for future study.

4 Dynamical potential representations

Let us now revisit how to introduce and justify dynamical potential representations of the measurable fields. Recall
that the standardmotivation for introducing potential fields in 3D starts from the vector identities curl(grad) = 0 and
div(curl) = 0. That is, in acoustics the irrotational constraint in Eq. (2) is automatically satisfied if �v is the gradient
of a scalar field φ. Similarly, the magnetic divergence-free condition in Eq. (6) is automatically satisfied if �H is the
curl of a vector field �Ae, while Eq. (5) implies −∂t �Ae must contribute to �E , yielding a vanishing curl condition for
the remainder that is automatically satisfied by the gradient of a scalar field. In 4D these basic motivations can be
considerably generalized in a principled way by examining what is allowed by the geometry of spacetime.

4.1 Hodge decomposition into potentials

As detailed in the Appendix A.3, the spacetime vector derivative, ∇ = ∇ · + ∇ ∧ ∼ δ + d, naturally splits into
a grade-raising 4-curl, ∇ ∧ , which is completely equivalent to the exterior derivative d on forms, as well as a
grade-lowering 4-divergence, ∇ · , which is completely equivalent to the codifferential δ = �−1d� on forms, with
multiplication by the spacetime unit volume pseudoscalar I being the equivalent of the grade-inverting Hodge star
� operation on forms. Thus, these independent parts of the derivative satisfy the identities,

(∇∧)(∇∧) = 0 ∼ d2 = 0,

(∇·)(∇·) = 0 ∼ δ2 = 0, (33)

that generalize the 3D vector identities used above and imply that the d’Alembertian (scalar wave operator),

∇2 = (∂ct − �∇)γ 2
0 (∂ct + �∇) = ((∂t/c)

2 − | �∇|2), (34)

has the form of the Hodge Laplacian (δ + d)2 = δd + dδ.
Given these equivalences, the Hodge decomposition theorem from differential forms [57] also holds,

A = ∇ ∧ A− + A0 + ∇ · A+, ∇2A0 = 0, (35)

which states that any multivector object A ∈ Cl1,3[R] in the spacetime Clifford algebra has an exact decomposition
into a 4-curl of a lower-grade object A−, a 4-divergence of a higher-grade object A+, and a harmonic part A0

annihilated by the Laplacian ∇2A0 = 0. This theorem generalizes the Helmholtz theorem for 3D vector calculus
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and justifies the introduction of three potential fields (A−, A0, A+) that are generally needed to represent any
measurable field A.

4.2 Electromagnetic potentials

Starting with electromagnetism, for which these extensions have been more explored historically, the measurable
field F is a grade-2 bivector field, so we expect a complete Hodge decomposition,

F = λ− ∇ ∧ ae + λ0 F0 + λ+ ∇ · (am I ), (36)

into a grade-1 4-vector potential ae, a grade-2 harmonic bivector F0 satisfying ∇2F0 = 0, and a grade-3 pseudo-4-
vector potential am I , allowing for undetermined constants λ−, λ0, λ+, that determine the relative fractions of each
potential contribution to the total measurable field F .

The 4-vector potential ae is precisely the standard electric vector potential representation in Eq. (29), with units
of energy–momentum per electric charge. Similarly, the pseudo-4-vector potential,

am I = ζ γ0(φm/c − �Am)I, (37)

is identifiable as the magnetic potential representation, with impedance ζ as in Eq. (28), and units of energy–
momentum per magnetic charge (using the Ampere-meter convention). This potential contains the magnetic scalar
φm and vector �Am potentials used in magnetostatics as well as more general treatments of electromagnetism that
include magnetic sources. This is precisely the quantity that is needed to reproduce the experimentally confirmed
results for the electromagnetic spin density [7–14,18].

To compute what the contribution of this magnetic potential looks like, first consider its full derivative,

∇(am I ) = ∇ · (am I ) + ∇ ∧ (am I ) = (∇am)I,

= (∇ ∧ am)I + (∇ · am)I, (38)

where product associativity makes the expressions for the grade-2 and grade-4 parts manifestly similar to those
from the electric potential,

∇ · (am I ) = (∇ ∧ am)I,

= μc
[
−�∇ × �Am + I (−∂t �Am − �∇φm)/c

]
, (39)

∇ ∧ (am I ) = (∇ · am)I,

= μc
[
∂tφm/c2 + �∇ · �Am

]
I. (40)

Thus the representation of the electromagnetic field with the pseudo-4-vector potential alone am I is,

�E = −�∇ × �Am/ε, �H = −∂t �Am − �∇φm, (41)

which match the expected magnetic expressions.
Similarly to the electric potential, setting the grade-4 part of the derivative to zero,

∇ ∧ (am I ) = (∇ · am)I = 0, (42)
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enforces a causal constraint like the Lorenz–FitzGerald constraint in Eq. (30). In this case the field representation
takes the analogous laconic form F = ∇am I and Maxwell’s equation becomes a wave equation for the potential,
∇F = (∇2am)I = 0. Thus, the full Hodge decomposition of the measurable field into the three potential fields has
the 3D expansion,

�E = λ−(−∂t �Ae − �∇φe) + λ0 �E0

+ λ+ (−�∇ × �Am/ε), (43)

�H = λ−( �∇ × �Ae/μ) + λ0 �H0

+ λ+ (−∂t �Am − �∇φm), (44)

with the electric and magnetic potentials contributing naturally dual contributions.
The roles of the three potentials are clarified by including sources in the equation of motion,

∇F = μ j = μ( je + ( jm/c)I ). (45)

In principle, the sources can have both electric 4-vector charge-currents and magnetic pseudo-4-vector charge-
currents,

je = γ0(ρec − �Je), jm = γ0(ρmc − �Jm)I, (46)

using the Ampere-meter convention for magnetic charge. Expanding the equation of motion into potentials yields,

λ−∇2ae + λ0 ∇F0 + λ+∇2am I = μ je + μ
jm
c
I, (47)

which has scalar Laplacian operators and thus shows that the electric potential is only affected by electric charge,
while the magnetic potential is only affected by magnetic charge.

In principle the third harmonic field contribution F0 can couple to both types of charge since∇F0 = ∇·F0+∇∧F0
spans both grades; however, from a Lagrangian perspective, directly varying a bivector field like F0 as a dynamical
field will not reproduce the correct equation of motion and so cannot produce such a contribution coupled to sources.
Thus, only two potentials couple to the distinct types of charge independently,

λ−∇2ae = μ je, λ+∇2am I = μ
jm
c
I, (48)

while the third potential can only describe a homogeneous background contribution, λ0∇F0 = 0. Notably, if the
homogeneous potential F0 is dropped as problematic for the Lagrangian formalism, the remaining potentials can
be bundled together as a naturally complex 4-vector potential representation of the field F [21],

F = ∇zem, zem = λ− ae + λ+ am I. (49)

The relative proportionality factors are kept arbitrary here, but will generally become constrained by how the field
couples to sources and probes [21,29]. We will further explore this subtle issue in future work.
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4.3 Acoustic potentials

In the case of acoustics, the measurable field p is a grade-1 4-vector field, one grade lower than electromagnetism,
so has an asymmetric Hodge decomposition,

p = −λ−∇φ + λ0 p
′
0 − λ+

1

3
∇ · M, (50)

for a grade-0 scalar potential field φ, a grade-1 harmonic 4-vector contribution p′
0 satisfying ∇2 p′

0 = 0, and a
grade-2 bivector potential field M . Analogously to the electromagnetic case, the coefficients λ−,0,+ are arbitrary
constants that determine the representation proportions.

The scalar potential contribution is precisely the standard representation in Eq. (21). The harmonic contribution
p′
0 should play a role similar to F0 in electromagnetism and provide a homogeneous contribution to the field, such

as the background pressure p0 of the medium, but is problematic for a Lagrangian treatment of the dynamics. The
representation of an acoustic field with a bivector potential,

M = (ρc)(�x + �y I ) = c �N + �J I, (51)

however, is not commonly seen in the literature. Since p has units of energy–momentum density, φ has units of
action density, while M has units of angular momentum density, which are formally the same as action but with
an important conceptual difference. The factor of 1/3 arises from the observation that a derivative of the orbital
angular momentum, L = p∧r , does recover the linear momentum, −∇ · L = 3p, but with an extra factor of 3. The
bivector potential relation p = −(∇ · M)/3 in Eq. (50) anticipates this overcounting so that M can be interpreted
as an angular momentum density.

Recall more generally that a relativistic angular momentum bivector has two distinct pieces, M = L + S. The
extrinsic orbital angular momentum depends on r and the linear momentum p,

L = p ∧ r = c[t �p − (E/c2)�r ] + �r × �pI, (52)

and splits in a particular frame into a polar mass-moment vector �NL = t �p − (E/c2)�r and axial rotational angular
momentum �L I = �r × �pI . In contrast, the intrinsic spin angular momentum S = c �NS + �SI is independent of the
linear motion. However, it does contribute spin-mass-moment �NS and spin-angular momentum �S contributions to
the total angular momentum, M = c �N + �J I , such that �N = �NL + �NS and �J = �L + �S.

The acoustic potential field M in Eq. (51) generally describes such a total angular momentum density for the
medium. In the rest frame, its polar mass-moment density vector c �N = c(ρ �x) is a space-time boost rotation plane
that is directly proportional to a mass-density displacement field �x describing linear shifts of the density away from
equilibrium. Its rotational angular momentum �J = (ρc)�y is a purely spatial rotation plane that can be similarly
described by an axial rotational displacement field �y I . The axial displacement �y has units of length and is directed
along the axis of rotation, with its magnitude being the effective radius at which the frame-invariant reference
momentum density of the medium, ρc, would produce the angular momentum density | �J |.

Expanding the bivector representation into 3D is illuminating. The derivative of a bivector has the same form as
in Eq. (26) [29], yielding the expansions,

∇ · M = γ0

[
(ρc) �∇ · �x + ρ ∂t �x − (ρc) �∇ × �y

]
, (53)

∇ ∧ M = γ0

[
(ρc) �∇ · �y + ρ ∂t �y + (ρc) �∇ × �x

]
I, (54)
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and thus the acoustic field correspondence,

P = −1

3
(ρc2)( �∇ · �x), ρ�v = ρ

3

[
∂t �x − c( �∇ × �y)

]
. (55)

These expressions confirm that the polar 3-vector �x indeed acts as the usual mean displacement field of the
medium away from its isotropic equilibrium state in the rest frame. This mean displacement field �x has been used
productively for numerical methods in acoustics [58–61] and plays a key role in microscopic derivations of the
equations of motion [16], but its critical role as part of the acoustic angular momentum density potential M seems
underappreciated. The time derivative of this displacement contributes one factor of the mean velocity field �v of
the medium, as expected.

The other two factors of the velocity come from curl of the rotational displacement field �y. Since �y has units of
length, its curl �∇ × �y is a unitless fraction of the speed c that contributes to the net linear velocity �v. Indeed, note
that if (ρc)�y I → �r × �py I were interpreted explicitly as an orbital angular momentum density with some constant
linear momentum �py , then its curl, −c �∇ × �y = −( �∇ × (�r × �py)/ρ = 2 �py/ρ = 2�v, would precisely yield twice
the velocity.

Similarly to the electromagnetic vector potentials, there is also a gauge freedom in the representation p = ∇·M/3,
since ∇ · (∇ · (bI )) = 0 for any pseudo-4-vector field bI . Adding such a field bI = (ρc)γ0(b0/c − �b)I shifts the
bivector potential according to M �→ M + ∇ · (bI ), analogously to the gauge transformations ae �→ ae + ∇χe and
am I �→ am I + ∇ · (χm I ), and expands to the 3D gauge transformation expressions,

�x �→ �x − �∇ × �b, (56)

�y �→ �y − (∂t �b + �∇b0)/c. (57)

Moreover, imposing the condition ∇ ∧ M = 0 yields the simpler form p = −∇M/3 and the 3D constraints,

�∇ · �y = 0, �∇ × �x = −∂t �y/c, (58)

which are the equivalents of the Lorenz–FitzGerald gauge conditions in Eq. (30) and simplify the acoustic equation
to a causal wave equation for the bivector potential, ∇ p = −∇2 M/3 = 0 [21].

Now consider adding the geometrically motivated types of source to the acoustic equation of motion, as done
previously for electromagnetism. The acoustic field p is an energy–momentum density 4-vector, so can have both
scalar and bivector sources,

∇ p = −ν − N ,

= −λ− ∇2φ + λ0 ∇ p0 − λ+
1

3
∇2M. (59)

Similar to electromagnetism, the scalar potential φ couples only to the scalar source ν, while the bivector potential
M couples only to the bivector source N as component-wise wave equations.

Writing the measurable field equations with sources ν = ρ̇ and N = �F/c + ρ ��I in 3D yields,

∂t P = −c2 �∇ · (ρ�v) − ρ̇c2, (60)

∂t (ρ�v) = −�∇P + �F, (61)

�∇ × �v = −��. (62)

These equations can be immediately interpreted to identify the physical meaning of each type of source: ρ̇ is a
mass-density scalar source that directly affects the local particle concentration of the medium, and thus the pressure
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as an energy density; �F is a force density polar vector source, e.g., a directional speaker, that directly displaces the
velocity field to produce boost angular momentum; and, �� is a vorticity density axial vector source, e.g. a spinning
propeller, that directly causes local rotations in the velocity field to produce rotational angular momentum.

In summary, the full Hodge decomposition of the acoustic energy and momentum density fields in terms of the
three possible potentials is,

P = −λ− ∂tφ + λ0 P
′
0 − λ+

1

3
(ρc2) �∇ · �x, (63)

ρ�v = λ− �∇φ + λ0 ρ�v′
0 + λ+

1

3
[ρ ∂t �x − (ρc) �∇ × �y]. (64)

Neglecting the homogeneous background potentials P ′
0 and �v′

0, the sources couple directly to each independent
component of the three dynamical potential fields,

λ− ∇2φ = ρ̇, λ+
1

3
∇2 �x = �F

ρc2
, λ+

1

3
∇2 �y = ��

c
. (65)

5 Completing the geometric descriptions

To this point the discussion has been primarily guided by the traditional representations of both acoustics and elec-
tromagnetism, including the measurable fields and their equations of motion. However, given the natural embedding
of both theories into the geometric constraints imposed by the symmetries of spacetime, we can explore whether
there is any additional freedom in each theory that has been traditionally overlooked but is physically meaningful.
Examining the potential decompositions in the preceding section for each theory motivates their completion to fully
use the available spacetime geometry. For convenience, we summarize our main results in the Tables 3 and 4.

5.1 Electromagnetic spinor field

Observe in the electromagnetic case that the potential representation inEq. (36)motivates augmenting the description
of F with two scalar fields that together form an auxiliary complex scalar field that keeps track of deviations away
from the Lorenz–FitzGerald gauge constraints in Eqs. (30) and (42). That is, given the complex vector potential
zem = λ− ae + λ+ am I in Eq. (49), a full vector derivative yields parts of three distinct grades,

ψem ≡ ∇zem = λ− ∇ae + λ+ ∇(am I ),

= We

c2
+ F + Wm I

c
. (66)

Bundled together with F , the three fields form an even-graded electromagnetic spinor field ψem as a complete
description of the measurable electromagnetic field.

Examining the form of these equations in 3D and recalling that the potential ae describes the field energy–
momentum per electric charge, the scalar field We can be identified as a power per electric charge,

We = λ− c2 ∇ · ae = λ− (∂tφe + c2 �∇ · �Ae). (67)

This power vanishes as a causal continuity condition in the absence of external sources, giving a physical motivation
for imposing the Lorenz–FitzGerald gauge constraint in Eq. (30). In principle, a nonzero We would provide a
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Table 3 Summary of electromagnetic structure, including all geometrically permitted fields and sources

Electromagnetism Spacetime representation 3D frame expansion

Potential fields zem = λ− ae + λ+ am I ae = (φe/c + �Ae)γ0

am = (φm/c + �Am)γ0

Measurable fields ψem = ∇zem = We/c2 + F + Wm I/c F = �E/c + μ �H I

We = λ− c2 ∇ · ae We = λ− (∂tφe + c2 �∇ · �Ae)

F = λ− ∇ ∧ ae + λ+∇ · (am I ) �E = λ−(−∂t �Ae − �∇φe) + λ+(−�∇ × �Am/ε)

�H = λ−( �∇ × �Ae/μ) + λ+(−∂t �Am − �∇φm)

Wm I = λ+ c∇ ∧ (am I ) Wm I = λ+ μ(∂tφm + c2 �∇ · �Am)I

Sources j = je + ( jm/c)I je = (ρec + �Je)γ0
jm = (ρmc + �Jm)γ0 I

Equation of motion ∇ψem = ∇2zem = μj �∇ · �E + ∂t (We/c) = ρe/ε

λ− ∇2ae = μje −∂t �E/c2 + μ �∇ × �H + �∇We/c2 = μ �Je
λ+ ∇2am I = μjm I/c −∂t (μ �H) − �∇ × �E + �∇Wm = μ �Jm

�∇ · (μ �H) + ∂t (Wm/c) = μρm

Energy–momentum Tem(b) = ψ̃em bψem

4μc
+ ψem b ψ̃em

4μc
Tem(γ0) = (Eem/c + �pem)γ0

Eem = 1

2

(
ε| �E |2 + μ| �H |2

)

+ 1

2

(

ε

(
We

c

)2

+ μ

(
Wm

μc

)2
)

�pem = �E × �H
c2

Traditional Lagrangian Lem = −c 〈Tem(1)〉0 = 〈ψ̃emψem〉0
−2μ

Lem = 1

2

(
ε| �E |2 − μ| �H |2

)

− 1

2

(

ε

(
We

c

)2

− μ

(
Wm

μc

)2
)

Symmetric Lagrangian Lems = c
〈ψ̃em,dual ψem〉4

2
Lems = λ2− 〈(∇ae)2〉0 − λ2+ 〈(∇am I )2〉0

2μ
I

Dual field ψ̃em,dual = ζ−1(zem∇)∼ I, ζ = μc ψ̃em,dual = ζ−1∇(λ+ am + λ− ae I )

Force equation
dpp
dτ

= −c Tem(∇) = −〈ψ̃em j〉1 dpp
dt

=
(Pem

c
+ �Fem

)
γ0

Pem = (qe �E + qm(μ �H)) · �v + qeWe + qmWm

�Fem = qe �E + (qe �v) × (μ �H) + qeWe
�v
c2

+ qm(μ �H) − (qm �v) × �E
c2

+ qmWm
�v
c2

The spinor field ψem augments the Faraday bivector F with a complex scalar field We + Wm I that tracks measurable electromagnetic
power per unit charge and add nontrivial corrections to the standard theory, while the electric and magnetic vector potentials compose
a complex vector potential zem. The constants λ± → 1/2 become symmetrized in vacuum, but are determined more generally by the
coupling to sources [29]. The standard Lagrangian density is shown along with a dual-symmetric alternative explored in Ref. [21],
which introduces a dual spinor field ψ̃em,dual that generalizes the Maxwell bivector G and vanishes on shell
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Table 4 Summary of acoustics structure, including all geometrically permitted fields and sources

Acoustics Spacetime representation 3D frame expansion

Potential fields ψac = λ− φ + λ+ M/3 + λ4 φw I M = (ρc)(�x + �y I ) = c �N + �J I
Measurable fields zac = −∇ψac = p + w I p = (P/c + ρ�v)γ0

w I = (Pw/c + ρ �w)γ0 I

p = −λ− ∂tφ − λ+
1

3
∇ · M P = −λ− ∂tφ − λ+

1

3
(ρc2) �∇ · �x

ρ�v = λ− �∇φ + λ+
1

3

[
ρ∂t �x − (ρc) �∇ × �y

]

w I = −λ+
1

3
∇ ∧ M − λ4∇φw I Pw = −λ+

1

3
(ρc2)( �∇ · �y) − λ4 ∂tφw

ρ �w = λ+
1

3

[
ρ∂t �y + (ρc)( �∇ × �x)

]
+ λ4 �∇φw

Sources ψN = ν + N + νw I ν = ρ̇, νw I = ρ̇w I

N = �F/c + ρ ��I

Equation of motion ∇zac = −∇2ψac = −ψN ∂t P = −c2 �∇ · (ρ�v) − ρ̇c2

λ− ∇2φ = ν ∂t (ρ�v) = −�∇P − �∇ × (ρc �w) + �F
λ+ ∇2M = N ∂t (ρ �w) = −�∇Pw + �∇ × (ρc�v) + ρc ��
λ4 ∇2φw I = νw I ∂t Pw = −c2 �∇ · (ρ �w) − ρ̇wc2

Energy–momentum Tac(b) = z̃ac b zac
4ρc

+ zac b z̃ac
4ρc

Tac(γ0) = (Eac/c + �pac)γ0

Eac = 1

2

(
ρ|�v|2 + βP2

) + 1

2

(
ρ| �w|2 + βP2

w

)

�pac = P

c2
�v + Pw

c2
�w

Traditional Lagrangian Lac = −c 〈Tac(1)〉0 = −〈̃zaczac〉0
2ρ

Lac = 1

2

(
ρ|�v|2 − βP2

) + 1

2

(
ρ| �w|2 − βP2

w

)

Symmetric Lagrangian Lacs = c
〈̃zac,dual zac〉4

2

Lacs = λ2− I
〈(∇φ)2〉0

2ρ
+ λ24 I

〈(∇φw I )2〉0
2ρ

− λ2+ I
〈(∇M/3)2〉0

2ρ

Dual field z̃ac,dual = ζ−1
ac (−ψac∇)∼ I, ζac = ρc z̃ac,dual = ζ−1

ac ∇(λ4 φw + λ+ MI/3 − λ− φ I )

Force equation
dpp
dτ

= −c Tac(∇) = −〈̃zacψN 〉1
ρ

dpp
dt

=
(Pac

c
+ �Fac

)
γ0

Pac = P

ρ
ρ̇ + Pw

ρ
ρ̇w − �v · �F − �w · [c(ρ ��)]

�Fac = − P

ρc2
�F − �v

c
× [c(ρ ��)] + ρ̇�v

− Pw

ρc2
[c(ρ ��)] + �w

c
× �F + ρ̇w �w

In the spinor potentialψac, the scalarsφ+φw I form a complex action density, while the bivectorM is an angular momentum density. The
field zac includes an energy–momentum density 4-vector p dual to a rotational energy–momentum pseudovectorw I . The proportionality
constants λ± = λ4 → 1/2 symmetrize in vacuum, but are determined more generally by source coupling [29]. The standard Lagrangian
density is shown along with a generalization of the dual-symmetric alternative explored in Ref. [29], which involves the dual field z̃ac
that vanishes on shell. In the force equation, the probe interacts with the medium as an effective source ψN that determines the coupling
and thus the back-reaction on the probe
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mechanism to keep track of energy fluctuations in the field in the presence of sources, or when non-causal gauges
are chosen. Similarly, the pseudoscalar field Wm I can be identified as a power per magnetic charge,

Wm = λ+ c∇ · am = λ+ μ(∂tφm + c2 �∇ · �Am), (68)

with an interpretation similar to the electric power potential. This field also vanishes as a continuity condition in
absence of sources, giving a physical motivation to imposing the magnetic version of the Lorenz–FitzGerald gauge
constraint in Eq. (42).

The complete spinor field ψem thus describes both the electromagnetic power and force fields per electric and
magnetic charge. That is, in the presence of a charged probe, these fields will determine the flow of energy and
momentum between the probe and the electromagnetic field. Since this flow of energy andmomentum to a probe can
be monitored, the entire spinor fieldψem is ameasurable physical field for electromagnetism, which implies that the
power fieldsWe andWm must be tightly constrained by existing experimental data. To see what these experimental
constraints imply theoretically, we first showhow the inclusion of non-zero power fieldswouldmodify the traditional
theory, then show why existing experiments tightly constrain these fields so that they do in fact vanish in agreement
with the Maxwell theory.

An important consequence of including the power fieldsWe andWm in the theory, even when they vanish, is that
they restrict the potential gauge freedom of the electromagnetic field. That is, some potential gauge freedoms for
the Faraday bivector F considered in isolation are not in fact gauge freedoms for the full spinor field ψem. More
precisely, the transformations ae �→ ae + ∇χe and am I �→ am I + ∇χm I , do not affect F , but they do affect the
power fields, We �→ We + λ− c2∇2χe and Wm �→ Wm + λ+ c∇2χm I , unless the gauge generators additionally
satisfy vacuum wave equations ∇2χe = ∇2χm = 0. Thus, even vanishing power fields imply nontrivial additional
restrictions for the allowed gauge transformations of the theory compared to the traditional Maxwell theory.

Importantly, the potential equation of motion,

∇ψem = ∇2zem = μ j, (69)

yields the same causal wave equation as in Eq. (48), so this extension to the electromagnetic theory does not change
the dynamics of potential fields satisfying a causal gauge. However, the inclusion of non-zero power fields does
change the force field equations,

∇ · F + ∇We/c
2 = μ je, (70)

(∇ ∧ F)I−1 + ∇Wm/c = μ jm/c, (71)

making them a non-trivial extension to the Maxwell theory for potential gauges that do not satisfy the causal
Lorenz–FitzGerald conditions. Expanding to a particular 3D frame yields the power-corrected Maxwell equations,

�∇ · �E + ∂t (We/c) = ρe/ε, (72)

−∂t �E/c2 + μ �∇ × �H + �∇We/c
2 = μ �Je, (73)

−μ∂t �H − �∇ × �E + �∇Wm = μ �Jm, (74)

μ �∇ · �H + ∂t (Wm/c) = μρm . (75)

That these corrections have been so successfully neglected in practice is strong experimental evidence that the
Lorentz-FitzGerald causal gauge conditions, We = Wm = 0, are actually required physically and are not optional
partial gauge constraints.
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The standard electromagnetic Lagrangian density also gets corrections from the power fields,

Lem = −〈ψ̃emψem〉0
2μ

,

= 1

2

[
ε| �E |2 − μ| �H |2

]
− 1

2

[

ε

(
We

c

)2

− μ

(
Wm

μc

)2
]

. (76)

However, this standard Lagrangian density does not respect all symmetries of the full complex vector potential
zem, so requires more fundamental correction. An alternative Lagrangian density that is properly invariant under
the dual-symmetric gauge symmetry, zem �→ zemeIθ , of its vacuum equation of motion ∇2zem = 0, is [21],

Lems = 〈(∇ z̃em I )(∇zem)〉4
2μ

= c
〈ψ̃em,dualψem〉4

2
,

= λ2− I
〈(∇ae)2〉0

2μ
− λ2+ I

〈(∇am I )2〉0
2μ

. (77)

Note that this alternative is properly a pseudoscalar density that can be integrated over a volume as part of a 4-form,
as discussed in Appendix A.4.

Critically, this alteration involves both the original spinor field ψem = ∇zem = λ− ∇ae + λ+ ∇am I and a dual
spinor field,

ψ̃em,dual = ζ−1∇ z̃em I = ζ−1(zem∇)∼ I,

= ζ−1(λ+ ∇am + λ− ∇ae I ),

= ζ−1 I (λ− ∇ae − λ+ ∇am I ), (78)

where ζ = μc is the wave impedance. This dual field exactly exchanges the roles of the electric and magnetic
potentials and is a generalization of the Maxwell bivector, G = ζ−1 F̃ I = ζ−1(λ+ ∇am − λ− ∇ae I ) in Eq. (28).
Importantly, this dual field ψ̃em,dual vanishes when the electric, ∇ae, and magnetic, ∇am I , contributions to the total
field ψem are equal, unlike the Maxwell bivector G. The dual-symmetric Lagrangian Lems thus vanishes on shell
[21], unlike the traditional Lagrangian, which is precisely what one should expect if the electromagnetic field were
defined analogously to an acoustic field, i.e., as an effective mean field that averages over the microscopic dynamics
of massless point particles with null energy-momenta. The full implications of this alternative Lagrangian will be
explored in forthcoming work.

Returning to the Lagrangian-independent part of electromagnetic theory, the inclusion of nonzero power fields
would also correct the measurable energy and momentum of the field, and thus the Lorentz force on probe charges.
Specifically, the symmetrized (Belinfante) energy–momentum tensor has an intuitive bilinear form,

Tem(b) = ψem b ψ̃em

4μc
+ ψ̃em bψem

4μc
, (79)

satisfying −c〈Tem(1)〉0 = Lem. Notably, this has precisely the same form as the spinor automorphism seen in
Dirac’s theory of the relativistic quantum electron. Picking a timelike flux direction γ0, this tensor yields,

Tem(γ0) = (Eem/c + �pem)γ0, (80)
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resulting in frame-dependent energy and momentum,

Eem = 1

2

(
ε| �E |2 + μ| �H |2

)

+ 1

2

(

ε

(
We

c

)2

+ μ

(
Wm

μc

)2
)

, (81)

�pem = �E × �H
c2

, (82)

with the energy modified by the power fields.
The energy–momentum continuity condition for a probe along an arbitrary direction b is then [21],

d(b · pp)
d(cτ)

+ ∇ · Tem(b) = 0, (83)

where pp = mu = mγv(c + �v)γ0 is the probe particle momentum with 4-velocity u satisfying u2 = c2, τ is its
proper time, and γv = dt/dτ = (1−|�v/c|)−1/2 is the Lorentz factor relative to a frame moving at velocity �v. After
using ∇ψem = μ jp, this condition yields the modified Lorentz force,

dpp
dτ

= −c Tem(∇) = − ψ̃em jp + j̃pψem

2
. (84)

Here jp = qu = qγv(c + �v)γ0 is the charge-current of the probe with a complex charge q = μ(qe − qm I/c), that
includes both electric and magnetic parts in general [21].

Expanding this in a particular reference frame yields modified power and force equations for the probe,

dpp
dt

= dpp
dτ

γv =
(Pem

c
+ �Fem

)
γ0, (85)

where,

Pem = (qe �E + qm(μ �H)) · �v + qeWe + qmWm, (86)

�Fem = qe �E + (qe�v) × (μ �H)

+ qm(μ �H) − (qm �v) × �E
c2

+ qeWe
�v
c2

+ qmWm
�v
c2

, (87)

are the observed power and force on the probe in the frame γ0. Here the roles of We and Wm as transferable power
per unit charge are particularly clear. These relations are summarized for convenience in Table 3.

To reiterate, these modified force and power equations imply that any non-zero power fields We and Wm should
be experimentally measurable by weak probe charges just like the usual electromagnetic force fields �E and �H .
The extra force terms that depend on the power fields are parallel to the probe velocity, so should be qualitatively
distinguishable from the magnetic forces that are perpendicular to the velocity and the electric forces that are
independent of velocity. These extra force terms would cause a probe charge to brake or accelerate along its
direction of motion. Evidently, such an effect has not been necessary to include in order to describe experimental
observations, implying that the power fields vanish physically, which is no surprise given their omission from the
traditional Maxwell theory.
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Importantly, however, the absence of these technically possible force terms has an added significance in this
extended formulation, since verifying that the power fields are zero is an experimental confirmation of the Lorenz–
Fitzgerald causal gauge conditions ∇ · ae = ∇ ∧ am = 0 that set We = Wm = 0. In the traditional Maxwell theory,
these conditions are optional partial gauge constraints; however, in this extended formulation the causal gauge
constraints are an experimentallymotivated necessity. Put another way, this geometrically complete electromagnetic
theory is more tightly constrained by existing experimental data than the traditional electromagnetic theory.

As an intriguing side note, the possibility of consistently having a nonzero power-induced self-braking force
term in the theory could be related to the long-standing problem of radiation back-reaction on a charged particle
from its own emitted field. Including such self-interaction in the traditional Maxwell theory yields a problematic
self-acceleration term that seems to contradict experiment [62], and is notably derived by integrating the radiated
power. It may be the case that including the nonzero power fields We and Wm near the charged particle, along with
their corresponding force term parallel to the velocity, could help resolve this consistency issue for the traditional
electromagnetic theory, which is an intriguing question for future investigation.

5.2 Acoustic complex 4-vector field

Similarly to electromagnetism, the acoustic potential representation in Eq. (50)motivates a geometric completion by
augmenting the 4-vector field p with a pseudo-4-vector field w I . This addition corresponds to the unused bivector
potential contribution ∇ ∧ M and becomes part of a complex 4-vector field,

zac ≡ p + w I, (88)

that is analogous to the electromagnetic spinor field ψem in Eq. (66). The Hodge decomposition of the introduced
fieldw I then motivates adding two more potentials,w0 I and φw I , to yield a geometrically complete representation
of zac,

−zac ≡ λ−∇φ + λ0 p
′
0 + λ+

3
∇M + λ3w

′
0 I + λ4∇φw I,

with five acoustic potentials.
However, much like the electromagnetic potential F0, the two potentials p′

0 and w′
0 must obey homogeneous

equations and are not dynamical variables in a Lagrangian description, leaving only the three even-graded potentials
(φ, M/3, φw) as dynamically fundamental, similarly to how the odd-graded potentials (ae,am) are fundamental in
the electromagnetic case. Keeping only the dynamical potentials yields a spinor potential representation for the
acoustic complex 4-vector field,

zac = −∇ψac, ψac = λ− φ + λ+
1

3
M + λ4 φw I. (89)

Taken together, the five fields in zac and ψac fully span all five geometric grades of the acoustic spacetime, just like
the five fields in zem and ψem for electromagnetism span the grades of normal spacetime. The two theories are thus
grade-complements of one another.

To understand the meaning of w I , consider its relation to the potential fields,

w I = −λ+
1

3
∇ ∧ M − λ4 ∇φw I. (90)
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The contribution of M to this field has the form in Eq. (54), which immediately clarifies the meaning of the
components of w I = γ0(Pw/c − ρ �w)I ,

Pw = −λ+
1

3
(ρc2)( �∇ · �y) − λ4 ∂tφw, (91)

ρ �w = λ+
ρ

3

[
∂t �y + c( �∇ × �x)

]
+ λ4 �∇φw. (92)

Since �y I is a rotational displacement field, �w I evidently describes a rotational velocity field. That is, the axial
vector �w is a characteristic speed of rotational deformations directed along the axis of rotation. It is also notably
characterized by the rotation vector �∇×�x that is used in geophysics to describeS-wavepropagation fromearthquakes
[63]. The quantity (ρc) �w I can also be understood as a torque density for the medium, much like (ρc)�v is a directed
work density. The pseudoscalar pressure Pw correspondingly describes a rotational energy density for the medium,
much like the pressure P is an energy density for linear motion (work).

The pseudoscalar potential φw I , in turn, evidently acts as a pseudoscalar action density. That is, the pseudovector
(rotational) momentum density ρ �w I = ∇(φw I ) is defined via a gradient while the pseudoscalar (rotational) energy
density Pw I = −∂t (φw I ) is defined via a negative time derivative, in the same way that the vector momentum
and scalar energy are defined by derivatives of a scalar action density in Hamilton-Jacobi theory. Incidentally,
this natural appearance of both scalar and pseudoscalar action densities in acoustics gives strong motivation for
considering complex scalar actions more generally. Indeed, such a complex action also naturally appears in the
Hamiltonian-Jacobi approach to quantum theory [64], which is an interesting connection that will be explored in
future work.

Like with the electromagnetic case, an important corollary of this geometric completion is that the gauge freedom
of the theory is more tightly constrained. More specifically, given p = −∇ · M/3, there is a gauge freedom
M �→ M + ∇ · (bI ) that leaves p unaffected. However, this transformation does affect w I , which contains the
contribution,

w I = 1

3
∇ ∧ M �→ 1

3
∇ ∧ (M + ∇ · (bI )),

= 1

3
∇ ∧ M + 1

3
∇ ∧ (∇ · (bI )), (93)

unless the transformation generator bI also satisfies ∇ · (∇ ∧ b) = 0. This replacement of some gauge freedom
with the explicit inclusion of previously neglected information using additional fields is entirely analogous to the
electric and magnetic external power densities We and Wm that appear in the extended spinor description ψem for
electromagnetism in Eq. (69).

The geometrically complete acoustic equation that includes all five grades of spacetime is,

∇zac = ∇ p + ∇w I = −ψN , ψN = ν + N + νw I, (94)

and accommodates a previously neglected pseudoscalar source νw I . The primary potentials couple directly to these
distinct types of sources,

∇zac = −λ− ∇2φ − λ+
1

3
∇2M − λ4∇2φw I, (95)
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yielding independent component-wise wave equations. In terms of the measurable energy–momentum fields, this
source correspondence becomes,

∇ · p = −ν, (96)

∇ ∧ p + ∇ · (w I ) = −N , (97)

∇ ∧ (w I ) = −νw I. (98)

Expanding into 3D fields, using ν = ρ̇, N = �F/c + ρ ��I , and νw I = ρ̇w I yields the equations of motion,

∂t P = −c2 �∇ · (ρ�v) − ρ̇c2, (99)

∂t (ρ�v) = −�∇P − �∇ × (ρc �w) + �F, (100)

∂t (ρ �w) = −�∇Pw + �∇ × (ρc�v) + ρc ��, (101)

∂t Pw = −c2 �∇ · (ρ �w) − ρ̇wc
2, (102)

which are the acoustic equivalents of the extended 3D Maxwell Eqs. (72)–(75) for electromagnetism. Notably, the
physical meaning of these equations can be unambiguously interpreted as power and force equations.

The traditional acoustic Lagrangian similarly acquires corrections from the pseudovector field w I ,

Lac = 〈̃zaczac〉0
2ρ

,

= 1

2

(
ρ|�v|2 − βP2

)
+ 1

2

(
ρ| �w|2 − βP2

w

)
. (103)

However, much like in the electromagnetic case, the vacuum acoustic equation ∇zac = −∇2ψac = 0 now supports
an additional gauge symmetry, ψac �→ ψaceIθ that is not respected by this scalar Lagrangian. To address this, we
proposed an alternative (pseudoscalar) Lagrangian that does respect this symmetry in Ref. [29],

Lacs = 〈(∇ψ̃ac I )(∇ψac)〉4
2ρ

= c
〈̃zac,dual zac〉4

2
,

= λ2−〈(∇φ)2 I 〉4 + λ24〈(∇φw I )2 I 〉4 − λ2+〈(∇M/3)2 I 〉4
2ρ

. (104)

As in the electromagnetic case, this involves both the vector field zac = −∇ψac and a dual vector field,

z̃ac,dual = −ζ−1
ac ∇ψ̃ac I = ζ−1

ac (−ψac∇)∼ I,

= ζ−1
ac ∇(λ4 φw + λ+ MI/3 − λ− φ I ),

= ζ−1
ac ∇(−λ4 φw I + λ+ M/3 − λ− φ)I, (105)

where the momentum density ζac = ρc = √
ρ/β is the acoustic version of the electromagnetic wave impedance.

When the contributions of the complex scalar potential and the bivector potential to the total vector field zac are equal,
this dual field vanishes on shell, just as in the electromagnetic case [29]. The Lagrangian correspondingly vanishes,
as expected for massless phonons with null energy-momenta composing the acoustic field. The full implications of
this alternative acoustic Lagrangian will be explored in forthcoming work.

Returning to Lagrangian-independent aspects of the acoustic theory, and leveraging the analogies between
acoustics and electromagnetism, we can observe that the symmetrized (Belinfante) acoustic energy–momentum
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tensor should have a bilinear form analogous to Eq. (79),

Tac(b) = zac b z̃ac
4ρc

+ z̃ac b zac
4ρc

, (106)

involving an automorphism by the complete measurable field zac and satisfying −c〈Tac(1)〉0 = Lac. Computing
the energy–momentum density from this symmetrized tensor indeed yields,

Tac(γ0) =
[Eac

c
+ �pac

]
γ0, (107)

with the expected energy and momentum densities,

Eac = 1

2
ρ|�v|2 + 1

2
βP2 + 1

2
ρ| �w|2 + 1

2
βP2

w, (108)

�pac = P

c2
�v + Pw

c2
�w, (109)

that include contributions from both linear motion in p and rotational motion in w I .
The energy–momentum continuity condition for a probe particle then yields an acoustic force analogous to the

Lorentz force. After using −∇zac = ψN = ν + N + νw I for sources associated with the probe,

dpp
dτ

= −cTac(∇) = − 1

ρ
〈̃zacψN 〉1,

= νp + νww

ρ
+ pN − Np

2ρ
− wN + Nw

2ρ
I, (110)

is the net force felt by the probe from an acoustic field. Expanding this relation into 3D using ν = ρ̇p, N =
�Fp/c + (ρ ��)p I , and νw I = ρ̇w,p I yields,

dpp
dτ

= (Pac/c + �Fac)γ0, (111)

Pac = P

ρ
ρ̇p + Pw

ρ
ρ̇w,p − �v · �Fp − �w · [c(ρ ��)p], (112)

�Fac = − P

ρc2
�Fp − �v

c
× [c(ρ ��)p] + ρ̇p�v

− Pw

ρc2
[c(ρ ��)p] + �w

c
× �Fp + ρ̇w,p �w. (113)

Thus, up to a density factor coupling the probe to the medium, the force applied to the probe is opposite the force
it applies to the medium, as expected. Using more specific expressions relating these applied forces to the motion
of the probe will then yield the appropriate probe equation of motion, in complete analogy to the electromagnetic
Lorentz force prescription. These relations are summarized for convenience in Table 4.

6 Wave solutions

We now give explicit examples of wave solutions far from sources, to show the essential interplay between the
various potential and measurable fields in the complete geometric arena of spacetime. These explicit solutions give
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strong support for the complete geometric picture being physically motivated and necessary, while also clarifying
the role of the pseudoscalar phase freedom of the geometrically complete fields.

6.1 Complex exponential waves

Wave solutions will rely upon an interesting property of spacetime that has been used implicitly up to this point:
complementary pairs of geometric objects can be combined into complex objects that support intrinsic phases.
The behavior of these phases is quite subtle for non-scalar grades and warrants a more careful discussion here. In
particular, non-scalar grades admit null objects that have a global phase freedom that only becomes constrained
locally by the equations of motion in the form of propagating waves.

A general spacetime multivector M can be factored,

M = α + a + F + bI + β I,

= (α + β I ) + (a + bI ) + F,

= (ζ + F) + z, (114)

where α, β are real scalars, a, b are 4-vectors, F is a bivector, and I is the spacetime pseudoscalar. The odd-graded
part, z, can thus be understood as a complex 4-vector, while the even-graded part, ψ = ζ + F , can be understood as
a spinor decomposed into a complex scalar ζ and bivector F . That these even and odd grades naturally combine in
these ways has been essential for the preceding discussion of potentials and measurable fields, which underscores
their physical importance.

The complex scalar part behaves exactly as a standard complex scalar, so it can be written in polar form,

ζ = α + β I = |ζ | eIϕζ , (115)

with an intrinsic magnitude and phase,

|ζ |2 = α2 + β2, tan ϕζ = β

α
. (116)

A conjugate can then be defined, ζ ∗ ≡ |ζ | e−Iϕζ , by flipping the sign of the phase so that ζ ∗ζ = |ζ |2 is a pure
scalar with no pseudoscalar part. At least for scalars, this flip in sign of the phase is equivalent to flipping the sign
of I in the Cartesian form as a sum of the two grades. This linear property of the conjugate will fail, however, for
other grades.

The complex vector part behaves analogously; however, I anti-commutes with vectors, so z = a+bI = a− I b.
The reverse z̃ = a + I b = a − bI then seems like a conjugate (as we erroneously thought in Ref. [21]); however,
it contracts with z to produce a complex scalar in two distinct ways,

z̃z = (a2 − b2) + 2(a · b)I = |z|2 eIϕz , (117)

z̃z = (a2 − b2) − 2(a · b)I = |z|2 e−Iϕz . (118)

Each scalar is reversion invariant, (̃zz)∼ = z̃z, and can be written in a polar form with the same squared magnitude
|z|2 = [a2 − b2]2 + [2(a · b)]2 but opposite phases tan ϕz = 2(a · b)/(a2 − b2).

It follows that z should have a polar decomposition much like a complex scalar,

z = z0 e
Iϕz/2, z̃ = eIϕz/2 z̃0, (119)
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with some canonical part z0 satisfying, z̃0z0 = z0̃z0 = |z|2. Interestingly, however, squaring z yields,

z2 = zz = z0 e
Iϕz/2 z0 e

Iϕz/2 = z20,

= (a + bI )(a + bI ) = (a2 + b2) + 2(a ∧ b)I, (120)

which is phase-invariant but with a bivector part, (z2 − z̃2)/2 = 2(a∧b)I . The structure of z0 is thus not generally
a single-grade of vector, as one might expect. Instead, a zero phase implies that a · b = 0, so the two halves of the
remaining factor z0 must not share any parallel overlap. This canonical vector can always be computed explicitly
by inverting the phase of z: z0 = z e−Iϕz/2.

A bivector F behaves analogously to a complex vector z, except I commutes with bivectors and the reversion
F̃ = −F is a simple negation. Consider a 3D expansion of a bivector F = �A + �BI for simplicity. It then follows
that the square,

F2 = [| �A|2 − | �B|2] + 2( �A · �B)I = F2
0 eIϕF , (121)

is a complex scalar similar to z̃z, so can be written similarly in terms of a canonical part F0 and a phase tan ϕF =
2( �A · �B)/[| �A|2 − | �B|2] [21]. Similarly to z, the canonical part can be computed directly by removing the phase,
F0 = F exp(−IϕF/2). Unlike for z, however, the canonical part F0 always squares either to zero or a pure scalar
by construction.

Combining the three independently complex grade sectors, a general multivector thus decomposes,

M = |ζ | eIϕζ + F0 e
IϕF/2 + z0 e

Iϕz/2, (122)

into a sum of distinct polar decompositions. Common phases can be factored out as an overall global phase for the
multivector. The relative phases between each sector ofM then determine the canonical part of the total multivector.

Critically, both complex vectors z and bivectors F can have null factors as their canonical parts, making their
intrinsic phases degenerate. That is, if z̃z = 0 then z = z0 eIϕz/2 with null z0 satisfying z̃0z0 = 0 and arbitrary ϕz .
Similarly, if F2 = 0 then F = F0 eIϕF/2 with null F0 satisfying F2

0 = 0 and arbitrary ϕF . It is precisely this global
phase freedom of null fields that permits wave solutions for first-order vacuum equations. Their phases are initially
unconstrained until they are related locally to phases at nearby points via the equations of motion and then fixed by
boundary conditions.

Indeed, consider a simple spacetime-dependent phase like ϕ = k · r for some wave vector k = (ω/c + �k)γ0 and
displacement r = (ct + �r)γ0. A complex scalar field with a constant amplitude and exponential phase,

ζ(r) = α e−I (k·r),
= α[cos(�k · �r − ωt) + sin(�k · �r − ωt)I ], (123)

contains traveling waves that oscillate with constant overall amplitude α between complementary geometric grades
as part of a rotation in an effective complex phase plane. A derivative of this phase factor produces,

∇ζ(r) = ∇(α e−I (k·r)) = α I k e−I (k·r), (124)

and cannot vanish unless k = 0, which prevents wave behavior. However, a second derivative,

∇2ζ(r) = ∇2(α e−I (k·r)) = −α k2 e−I (k·r). (125)
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shows that ζ can satisfy the source-free wave equation if k2 = 0. That is, the wave vector k must be null,

k = (ω/c)(1 + k̂)γ0, k2 = (ω/c)2(1 − k̂2) = 0, (126)

and determined only by its frequency ω/c and a spatial unit vector k̂ satisfying k̂2 = 1 in a particular frame γ0.
Boosting to a different frame can scale the frequency ω/c (as a Doppler effect) and rotate the unit vector k̂, but not
affect the nullity k2 = 0. It then follows from,

k · r = (ω/c)(ct − k̂ · �r) = ωt − �k · �r , (127)

that we can identify the source-free dispersion relation ω = c|�k| and wave vector �k = (ω/c)k̂ in frame γ0.
A consequence of this necessary form for a complex scalar solution to a source-free wave equation is that its

first derivative is a null complex vector,

z(r) = ∇ζ(r) = α I k e−I (k·r), (128)

since z̃z = −α2e−I (k·r) k2 e−I (k·r) = 0. This null factor enables the first-order source-free equation, ∇z = 0, to
have an nontrivial wave solution.

Unlike the scalar imaginary i used in traditional ad hoc introductions of complex exponentials to describe wave
behavior, the spacetime pseudoscalar I acts as a Hodge star operation to relate two geometrically complementary
grades, making both “real” and “imaginary” parts of a complex exponential physically significant. The following
sections explore the consequences of this natural complex exponential wave structure of spacetime more concretely
in both electromagnetism and acoustics, which in turn clarifies why it is essential to include fields of all spacetime
grades.

6.2 Electromagnetic waves

Consider the electromagnetic equation far from sources, ∇ψem = ∇2zem = 0. Since the quadratic wave operator
acts on the complex vector potential, any wave solution with constant amplitude must have the form,

zem(r) = −z0 I e
∓I (k·r)+Iϕ0 = e±I (k·r)−Iϕ0 I z0, (129)

with an intrinsic phase ϕ0 when r = 0 and a null wave vector ±k = ±(ω/c)[1 + k̂]γ0 that has two choices of sign
for its characteristic frequency ±ω. Its canonical vector potential,

z0 = λ− ae,0 + λ+ am,0 I, (130)

then has zero phase by construction, meaning z̃0z0 = z0̃z0, and thus ae,0 · am,0 = 0 according to Eq. (117). Since
the phase factor causes rotations between the two parts of the canonical potentials, their contributions to the total
field should symmetrize, which forces λ− = λ+ = 1/2.

The electromagnetic spinor field then has the form,

ψem(r) = ∇zem(r) = ±k I zem = ψ0 e
∓I (k·r)+Iϕ0 , (131)
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with constant canonical spinor,

ψ0 = ∓k z0 = ±(ζ0 + F0), (132)

ζ0 = − (ae,0 · k) + (am,0 · k)I
2

= We,0

2c2
+ Wm,0

2c
I, (133)

F0 = (ae,0 ∧ k)

2
+ (am,0 ∧ k)I

2
= Fe,0 + Fm,0

2
, (134)

so the second derivative yields,

∇ψem(r) = ∇2zem(r) = ±I k ψ0 e
∓I (k·r)+Iϕ0 = 0, (135)

with the prefactor vanishing as required,

±I k ψ0 = −I k2 z0 = 0. (136)

Notably, the scalar power fields in ζ0 will vanish only when the vector potentials are transverse to the wave
propagation, ae,0 · k = am,0 · k = 0, making the triplet, (k, ae,0, am,0), an orthogonal set. This transversality is
preserved by the phase factor, which only rotates between two vector potentials without altering their directionality.
However, these solutions also admit longitudinal waves where the power fields in ζ0 do not vanish. This possibility
of longitudinal waves is neglected in traditional treatments of source-free electromagnetism that omit the possibility
of scalar power fields.

To understanding this point more clearly in a particular frame, consider the terms involving the electric potential,
ae,0 = (φe,0/c + �Ae,0)γ0,

k · ae,0 = ±[(ωφe)/c
2 − �k · �Ae,0], (137)

ae,0 ∧ k = ±[(ω/c) �Ae,0 − (φe,0/c)�k + �k × �Ae,0 I ]. (138)

In the transverse case with k · ae,0 = 0, it follows that φe,0/c = k̂ · �Ae,0, so

ae,0 ∧ k → ±ω

c

[ �Ae,0 − ( �Ae,0 · k̂)k̂
]

± �k × �Ae,0 I,

= Fe,0 = �Ee,0/c + μ �He,0 I, (139)

is orthogonal to the propagation direction �k. The polar electric field �Ee,0 is the frequency-scaled component of �Ae,0

orthogonal to �k, while the rotational magnetic field �He,0 = μck̂ × �Ee,0 is an axial vector orthogonal to both �k and
�Ae,0. The phase evolution of the wave then rotates these electric and magnetic fields around the propagation axis,
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naturally producing a circularly polarized electromagnetic wave [21,39],

F = F0 e
∓I (k·r)+Iϕ0 ,

= [ �E0/c + μk̂ × �E0 I ]e∓I (k·r)+Iϕ0 ,

=
[ �E0

c
cos(−k · r ± ϕ0)∓μk̂ × �E0 sin(−k · r ± ϕ0)

]

+
[

μk̂ × �E0 cos(−k · r ± ϕ0) ± �E0

c
sin(−k · r ± ϕ0)

]

I,

= �E(r)/c + μ �H(r)I, (140)

with the direction of helical circulation of the fields around the propagation axis determined by the sign of the
frequency ±ω in the wave vector k. That the two circularly polarized helicities of an electromagnetic wave can be
expressed so naturally as complex exponentials with signed frequencies is encouraging.

In the case that a longitudinal part of the wave is admitted, the power field no longer vanishes,

We,0/c
2 = −(k · ae,0) = ±[�k · �Ae,0 − (ωφe,0)/c

2]. (141)

That is, solving for φe,0 and simplifying Eq. (138) shows that such a nonzero power field affects the electric field,

�Ee,0 → ±
[
ω

c
�Ae,0 −

(
�Ae,0 · �k − We,0

c2

)
k̂

]
, (142)

by restoring a longitudinal part parallel to �k.
The complex structure of both the spinor field ψem and the vector potential zem is critical for the treatment of

electromagnetic waves using only invariant spacetime objects. Since the wave propagation itself exchanges the
roles of the geometrically dual fields, all grades of field must be considered together on equal footing. The intrinsic
phase-symmetry of the theory (i.e., electric-magnetic dual-symmetry) cannot be neglected, which in turn justifies
correcting the fundamental Lagrangian density of the theory to the dual-symmetric form in Eq. (77) that correctly
respects the global phase freedom of vacuum null field propagation.

6.3 Acoustic waves

The treatment of acoustic waves is equally enlightening. Consider the acoustic equation far from sources, ∇zac =
−∇2ψac = 0. The complex vector field vanishes with a single derivative, which implies that its constant canonical
part z0,ac should be annihilated by the null wave vector k = (ω/c)(1 + k̂)γ0 for the wave motion,

zac(r) = z0,ac e
∓I (k·r), k z0,ac = 0. (143)

It follows that the canonical part has the form,

z0,ac = P̄‖
ω

k eIϕ0,‖ − P̄⊥
ω

kâ eIϕ0,⊥ , (144)

with a pressure amplitude P̄‖ for the longitudinal part of the wave aligned with the wave direction k̂ and a pressure
amplitude P̄⊥ for the transverse part of the wave aligned with the direction â such that k̂ · â = 0. Noting that
−kâ = −(ω/c)(1 + k̂)γ0â = (ω/c)(â + k̂ × â I )γ0, the transverse wave helically rotates in the spatial plane
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spanned by the reference unit vector â and its orthogonal complement k̂ × â, in close analogy to the transverse
electromagnetic waves in Eq. (140).

After factoring out a common reference null four-vector energy–momentum density for the wave,

p̄ ≡ P̄

ω
k =

[
P̄

c
+ ρ�v0

]
γ0, �v0 = P̄

ρc
k̂, (145)

using real proportions σ‖,⊥ such that,

P̄‖ = σ‖ P̄, P̄⊥ = σ⊥ P̄, (146)

the constant wave amplitude has the laconic form,

z0,ac = p̄
[
σ‖eIϕ0,‖ − σ⊥âeIϕ0,⊥

]
, (147)

with the relative amplitudes, phases, and reference transverse direction relegated to a spinor transformation factor
scaling p̄. This spinor can be understood as a natural extension of the Jones polarization vector for transverse
electromagnetic waves, so characterizes both longitudinal and transverse parts of an acoustic wave.

The associated potential spinor is related with a derivative, zac(r) = −∇ψac(r). Assuming a wave solution
ψac(r) = ψ0 exp(∓I (k · r)) with constant spinor amplitude ψ0 thus yields the condition,

±kψ0 I = z0,ac = p̄
[
σ‖eIϕ0,‖ − σ⊥âeIϕ0,⊥

]
. (148)

For purely longitudinal waves with σ‖ = 0 and σ⊥ = 0, this constraint has two natural solutions. First, ψ0,‖ can be
a complex scalar,

ψ0,s = ± P̄

ω
I eIϕ0,‖ ≡ φ0,‖ + φw,0,‖ I. (149)

Second, ψac,‖ can be a pure bivector potential, after noting the eigenvalue relation kk̂ = −k,

ψ0,‖,b = ∓ P̄

ω
I k̂eIϕ0,‖ = −ψ0,s k̂, (150)

that is proportional to the complex scalar action potential but explicitly alignedwith the direction ofwave propagation
k̂. For purely transverse waves with c⊥ = 1 and c‖ = 0, on the other hand, there is no scalar potential solution but
there is a pure bivector potential,

ψ0,⊥,b = ± P̄

ω
I âeIϕ0,⊥ = ψ0,se

I (ϕ0,⊥−ϕ0,‖) â, (151)

that is also proportional to the form of the scalar action potential but instead aligned with a transverse direction â
orthogonal to k̂. The scalar potential is not sufficient in isolation to include this important directional information.
A general wave will be a linear combination of these longitudinal and transverse contributions.
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Notably, however, there is also a nontrivial internal gauge freedom in the spinor potential that doesn’t contribute
to the measurable energy–momentum field z0,ac. Noting that k2 = 0,

ψ0,g = P̄

ω
k(rn + rs I ) = p̄ (rn + rs I ), (152)

satisfies kψ0,g = 0 for any constant 4-vectors rn and rs with units of length. This degree of freedom is an irreducible
spinor so has both a complex scalar part, p̄ · rn + ( p̄ · rs)I and a corresponding bivector part, p̄ ∧ rn + ( p̄ ∧ rs)I ,
that only together satisfy kψ0,g = 0. This extra freedom is notable because the canonical bivector part matches the
anticipated form of an angular momentum, but as an r -independent intrinsic (spin) part that does not contribute
directly to the pressure and velocity fields.

The complete potential representation of a constant amplitude acoustic wave thus has the form,

ψ0 = P̄

ω

[
±σ‖(λs − λbk̂)I e

Iϕ0,‖ ± σ⊥â I eIϕ0,⊥

+k(rn + rs I )] , (153)

where the λs and λb factors determine the representation proportions for the longitudinal part of the wave. For
simplicity, let us focus on the bivector-biased representation with λs = 0 and λb = 1 and fix the relative phases so
∓I eIϕ0,‖ = ∓I eIϕ0,⊥ = 1 in order to examine the basic structure of the bivector magnitude as a natural angular
momentum density. With these simplifications, the bivector part has the form,

〈ψ0〉2 → P̄

ω

[
σ‖k̂ − σ⊥â

]
+ p̄ ∧ rn + ( p̄ ∧ rs)I. (154)

Assuming the suggestive forms rn = (cτn + �rn)γ0 and rs = (cτs + �rs)γ0, the gauge terms become,

p̄ ∧ rn = (ρc)

[
�v0τn − |�v0|

c
�rn + �rn × �v0

c
I

]
, (155)

( p̄ ∧ rs)I = (ρc)

[
−�rs × �v0

c
+ �v0τs I − |�v0|

c
�rs I

]
. (156)

Thus, after adding the non-gauge terms, the displacement fields in the potential 〈ψ0〉2 = (ρc)[�x0 + �y0 I ] are,

�x0 =
[σ‖

ω
+ τn

]
�v0 − |�v0|

c

[σ⊥c
ω

â + �rn
]

− �rs × �v0
c

, (157)

�y0 = �rn × �v0
c

+ �v0τs − |�v0|
c

�rs . (158)

These linear and rotational displacements determine the corresponding mass-moment �N0 = ρ �x0 and rotational
angular momentum �J0 = (ρc)�y0 described by the bivector potential, and are precisely what one would expect as
angular momentum given the momentum density ρ�v0 in the characteristic null energy–momentum density p̄ for
the wave augmented by an internal spin-angular momentum density.

Finally, if we also consider non-constant amplitudes in the potential relation zac = −∇ψac, then longitudinal
waves z0,ac,‖ = p̄eIϕ0,‖ also admit an r -dependent irreducible spinor potential,

ψ0,orb(r) = P̄‖
ω

(±I − kr

3

)
eIϕ0,‖ , (159)
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using∇(kr) = −2k, since∇(rk) = 4k and∇(r∧k) = 3k. This r -dependent longitudinal spinor potential augments
the scalar potential to include orbital angular momentum. That is, for ϕ0,‖ = 0, the bivector part of this potential
has the form ( p̄ ∧ r)/3 = (c �N + �L I )/3 with mass-moment �N = ρ�v0t − ρ|�v0|�r and rotational angular momentum
�L = �r × (ρ�v0) in the expected orbital forms.
All five grades of spacetime play important roles in this analysis of acoustic waves. Similarly to the electromag-

netic case, the phase evolution of the wave makes manifest the need for dual (linear-rotational) exchange-symmetry
for the physical quantities in the theory. This observation in turn motivates correcting the acoustic Lagrangian to the
dual-symmetric form in Eq. (104) that respects this phase freedom of null fields in vacuum, which will be further
explored in future work. Most importantly, the potentials and measurable fields of every grade of spacetime have
physically intuitive meanings. The acoustic spinor potential has a particularly rich structure that can accommodate
both orbital and spin-angular momentum contributions. Which forms of the spinor potential are physically relevant
will depend on its direct coupling to the sources and probes as boundary conditions.

7 Conclusion

In this paper we have provided a detailed overview of both acoustics and electromagnetism, using the same mathe-
matical language of a spacetime Clifford bundle to highlight their many structural similarities and key differences.
This convenient formalism naturally respects the strict geometric constraints of each theory, while also simplifying
derivations and streamlining translations between frame-invariant and frame-dependent descriptions for clarity.
Notably, acoustics and electromagnetism have a complementary grade structure, so taken together the two theories
provide a comprehensive overview of how measurable relativistic fields can be represented by associated potential
fields.

In the process of carefully exploring the complete formulations of each theory permitted by the constraints of
spacetime, we highlighted a number of important generalizations and corrections to each theory. Some of these
corrections are quite subtle, so have only become apparent by systematically following what is required by the
geometry. These extensions also suggest several intriguing avenues of future research that may shed light on long-
standing controversies and problems with each theory. We now briefly summarize a few of the notable observations
and corrections.

The complete set of measurable fields for acoustics form an odd-graded complex 4-vector field, which includes
a vector energy–momentum density combining the usual pressure and velocity fields, as well as a pseudovector
rotational energy–momentum density. The complete set of dynamical potential field of acoustics form an even-
graded spinor field, which includes a complex scalar action potential density and an angular momentum potential
density. Thus, all five grades of spacetime house meaningful field contributions that are physically relevant to the
description of acoustic phenomena. Notably, the concreteness of acoustics as a mean field model for microscopic
dynamics in the mediummakes the interpretation of the derived fields straightforward, which thus provides a useful
analogy to other relativistic field theories are traditionally less easily interpretable.

In particular, the dynamical gauge fields have clear physical interpretations at every stage of our development of
acoustics, which directly refutes the commonly held belief that gauge fields are physically meaningless just because
theyhavegauge freedoms.As a concrete example, oneof the gaugefields for acoustics is amass-density displacement
vector field away from the equilibrium configuration of the medium, with its gauge freedom corresponding to
the freedom of choice of origin for displacements. Just as introductory physics students are not told that spatial
displacements are physically meaningless just because the choice of origin is arbitrary, we should also not tell
ourselves that gauge fields are physicallymeaningless just because they have similarly arbitrary choices of reference.

The grade structure of electromagnetism is geometrically complementary to acoustics, making the comparison
of the two theories illuminating. The complete set of dynamical potentials form an odd-graded complex vector field,
which includes an electric vector potential describing energy–momentum per charge and a magnetic pseudovector
potential describing rotational energy–momentum per charge. The complete set of measurable electromagnetic
fields form an even-graded spinor field, which includes the expected Faraday bivector field describing force per
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charge, butmay also include two additional scalar and pseudoscalar fields describing power per electric andmagnetic
charge, respectively. These added power fields directly keep track of any local deviations away from the causal
Lorenz–FitzGerald gauge constraints.

The technical possibility of these extra power fields has been seemingly overlooked in standard treatments of
electromagnetism, and their inclusion modifies the equations of motion as well as the Lorentz force felt by probe
charges to make the electromagnetic force and power fields both experimentally testable. Importantly, the additional
Lorentz force terms are parallel to the velocity, so are qualitatively different from the other forces and thus easily
distinguishable as anomalous braking or self-acceleration effects, which implies that existing experimental data can
already tightly constrain the values of the power fields. The clear absence of these power correction terms in existing
lab data thus provides experimental support for the Lorenz–FitzGerald causal gauge conditions being satisfied in
this geometrically complete treatment of electromagnetism, which contrasts with their interpretation as optional
partial gauge constraints in traditional Maxwell electromagnetism.

As important examples, we analyzed in detail how wave solutions appear in each theory, without appealing to ad
hoc complex exponentials using a scalar imaginary. Instead, we emphasize that wave solutions naturally involve the
spacetime pseudoscalar as an effective imaginary unit, such that thewaves produce phase rotations that continuously
exchange information between pairs of complementary grades, in the sense of a Hodge-star grade-inversion duality.
We highlighted that these intrinsic and frame-independent phase rotations are enabled by the phase-degeneracy
of null bivector fields and null complex vector fields, which complement the usual complex scalar fields to give
three distinct phase-rotation sectors of the spacetime geometry. Our detailed analysis of such wave propagation also
shows why a geometrically complete description of each theory that includes all complementary grades is not just
aesthetically pleasing, but physically necessary.

This global phase-freedom of fields in spacetime is an important gauge symmetry of each theory, which is
underappreciated. In electromagnetism, this dual (phase-rotation) symmetry exchanges the electric and magnetic
sectors of the theory in a continuous way. Properly preserving this gauge symmetry in the Lagrangian densities
requires nontrivial modifications that symmetrize the contributions of each potential to the measured fields. The
predictions of physically conserved currents are determined by the symmetries of the Lagrangians, so these needed
modifications have nontrivial experimental consequences. Indeed, recent measurements of local spin density in both
electromagnetic and acoustic fields have been performed using small probe particles, and refute the spin angular
momentum predictions of the standard dual-asymmetric Lagrangian densities as being experimentally incorrect.
The common structure of the corrected dual-symmetric Lagrangians is intriguing, with each theory requiring the
introduction of a dual field that vanishes on shell in vacuum. The dual-symmetric Lagrangian then also vanishes on
shell, as should be expected for a mean-field average of massless (null) particles like phonons and photons.

As a final observation, the many important connections and clarifications that we presented throughout this
work are a testament to the calculational efficiency, conceptual clarity, and comprehensive scope provided by the
spacetime Clifford bundle formalism. Indeed, important concepts like the grade-rotating phase freedom of dual
fields are difficult to see and express using standard mathematical frameworks for each theory, such as tensor
component analysis or differential forms. We hope that this work will provide a useful reference for how to apply
the Clifford bundle formalism to relativistic field theories more broadly, in both classical and quantum settings.
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Appendix A: The geometric algebra of spacetime

To discuss the geometric structure of both electromagnetism and acoustics, it is instructive to use a mathematical
language of geometrically invariant objects that is coordinate-free. The Clifford algebra Cl1,3[R] of spacetime is
a powerful choice of mathematical language suitable for this purpose [37–50]. It is the largest associative algebra
generated by unit vectors {γμ}3μ=0 over the real numbersR that satisfy theMinkowski spacetimemetric η(γμ, γν) =
ημν with signature (+,−,−,−). As such, it conveniently contains and unifies many other disparate mathematical
frameworks while also clarifying subtle connections between them. This algebraic framework also makes manifest
the deep connections between geometry and the treatment of spin in quantum mechanics, since the Dirac matrices
are matrix representations of spacetime unit vectors and the Clifford product. A detailed and pedagogical exposition
of this spacetime algebra as applied to electromagnetism can be found in Ref. [21].

A.1: Spacetime Clifford algebra

As a brief reminder, the Clifford product between spacetime vectors a = ∑
μ aμγμ and b = ∑

ν b
νγν is associative,

(ab)c = a(bc) and contains both the Minkowski metric and the Grassmann wedge product

ab = a · b + a ∧ b, (160)

as its symmetric and antisymmetric parts, respectively,

a · b = η(a, b) = ab + ba

2
, a ∧ b = ab − ba

2
. (161)

The full product ab is thus generally noncommutative, ab �= ba, and is invertible for factors of nonzero magnitude,
a−1 = a/a2.

The metric a · b contracts the vectors to a scalar point by projecting b onto the direction of a, then projecting
that product of lengths with shared direction onto the point at the origin of a. Conversely, the wedge product a ∧ b
expands the vectors by dragging b along a and attaching its tail to the head of a, resulting in a plane segment with
magnitude equal to the dragged parallelogram area and a sign that indicates a circulating orientation along a, then
along b, then back along −a, then back along −b.

The full product ab thus spans grades and can be written as a rotor generalization of a complex number in polar
form,

ab = C2|a||b| exp(θ C), C ≡ a ∧ b

|a ∧ b| , (162)

that indicates that a rotates in the unit planeC by an angle θ to reach b, with the signature (C2) ofC dictatingwhether
the rotation is hyperbolic or elliptic. The inverse of a product is (ab)−1 = (ab)∼/(a2b2) = exp(−θC)/(C2|a||b|),
where (ab)∼ ≡ ba is the reversion operation that reverses (or transposes) the order of all Clifford products.

Successive wedge products like a∧b∧ c are associative (a∧b)∧ c = a∧ (b∧ c) and create higher-dimensional
volumes in spacetime with similarly defined circulating orientations. Successive Clifford products like abc thus
generally have multi-grade content, but also have natural inverses (abc)−1 = (abc)∼/(a2b2c2). For reference,
Table 1 gives a compact summary of the full graded basis of 24 orthogonal unit elements that span the five distinct
grades of spacetime, from points to 4-volumes.
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The spacetime algebra formalism has the notable advantage of simplifying the translation between geometrically
invariant 4D quantities and their relative 3D decompositions observed in particular reference frames. The spatial
frame {γk}3k=1 of each observer in spacetime is dragged along a particular temporal direction γ0, creating 3 space-
time planes γkγ0 = γk ∧ γ0 ≡ �σk that are perceived as 3D spatial unit vectors by observers within the evolving
frame. Each of the remaining 3 spatial planes γiγ j ≡ −εi jk(I �σk) = −�σi �σ j = −�σi ∧ �σ j is orthogonal to a 3D axis
�σk around which its orientation rotates. For reference, Table 2 gives a compact overview of the closed 3D Clifford
subalgebra of a particular frame and highlights its formal equivalence to the algebra of biquaternions, as well as the
complex Pauli matrix algebra for nonrelativistic spin.

This natural embedding of 3D reference frameswithin the algebra permits invariant 4-vectors to be easily factored
and expressed as frame-dependent paravectors. For example, energy–momentum factors,

p = [E/c + �p]γ0 = γ0[E/c − �p], (163)

into its relative scalar energy E/c and3-vectormomentum �p = ∑
k pk �σk components. Similarly, the six components

of invariant bivectors straightforwardly split into a complex representation involving relative polar and axial 3-
vectors. For example, the electromagnetic field F = 1

2

∑3
μ,ν=0 F

μνγμ ∧ γν is a bivector that splits,

F = �E/c + Iμ �H , (164)

into a polar electric field �E and axial magnetic field �H .
This formalism also handles group transformations in a natural way. For example, the Hodge duality between a

spatial plane and an orthogonal axis in relative 3D space defines the Gibbs 3-vector cross product,

�σi × �σ j ≡ −I (�σi ∧ �σ j ) = εi jk �σk, (165)

that is closed for grade-1 3D vectors at the expense of breaking the associativity of the wedge product, but this
definition is identical to the spin-(1/2) rotation group commutator relations for the Pauli spin-matrices,

�σi �σ j − �σ j �σi = εi jk 2I �σk, (166)

if the pseudoscalar I is identified with the scalar imaginary i when restricted to 3D space.
More generally, the six unit planes of spacetime form a closed subalgebra under the wedge product, which is

then precisely the Lie bracket for the Lorentz group of spacetime rotations generated by the unit planes directly.
That is, the three space-time planes �σk ∼ −iKk with positive signature generate hyperbolic boost rotations,

exp(θ �σk) = cosh θ + �σk sinh θ, (167)

while the three purely spatial planes I �σk ∼ −iJk with negative signature generate elliptical spatial rotations,

exp(θ I �σk) = cos θ + I �σk sin θ. (168)

Thus, Eq. (165) is also equivalent to the Lorentz group Lie bracket relations [Ki ,K j ] = −iεi jkJk , with the other
relations, [Ji , J j ] = iεi jkJk and [Ji ,K j ] = iεi jkKk , obtained as variations with extra factors of the pseudoscalar I .
It follows that any Lorentz transformation of an element A of the algebra has the form of a group inner automorphism
with half-angle rotors generated by a unit spacetime plane B,

A �→ R(θ)AR(θ)−1, R(θ) ≡ exp(θ B/2), (169)
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where the rotor inverse is R(θ)−1 = R(θ)∼ = R(−θ). In particular, rotations in purely spatial planes R(θ) =
exp(I �n θ/2) around a 3D spatial unit vector �n = ∑

k nk �σk have precisely the same form used for Pauli spin-
rotations.

A.2: Spacetime Clifford bundle

The preceding treatment holds for a particular spacetime volume containing all geometric content in the spacetime
Clifford algebra. However, each point in spacetime has an infinitesimal volume around it that can contain local
geometric objects at that point, forming a Clifford bundle over spacetime in which fields �(x) can be defined of
arbitrary geometric grade. The dynamics of these spacetime fields both enact local geometric transformations at
each point x and connect the geometric content of nearby points by parallel transporting elements of their tangent
algebras along curves connecting those points.

More precisely, given a flat spacetime manifoldM, each point x ∈ M has a tangent space T M(x) spanned by a
local tangent vector basis {γμ(x)}3μ=0. Products of these tangent vectors construct a spacetime algebra Cl1,3[R](x)
that is local to the point x . Each tangent space formally has a dual cotangent space of functions T ∗M(x) =
T M(x) → R that is spanned by a basis of one-forms {ωμ(x)}3μ=0 defined from the tangent vectors γμ(x) to

jointly satisfy the Euclidean metric ωμ(x)[γν(x)] = δ
μ
ν . The one-form basis is in one-to-one correspondence with

a reciprocal vector basis {γ μ(x) = (γμ(x))−1}3μ=0 in the tangent space, defined such that γ μ(x) · γν(x) = δ
μ
ν ,

according to the identity ωμ(x)[v(x)] ≡ γ μ(x) · v(x) for any tangent vector v(x) ∈ T M(x). This correspondence
means that any one-form α(x)[v(x)] = ∑

μ αμωμ(x)[v(x)] = (
∑

μ αμγ μ(x)) · v(x) ∈ T ∗M(x) can be identified
with a tangent vector a(x) = ∑

μ αμγ μ(x) ∈ T M(x) with the same components αμ in the reciprocal basis. This
corresponding vector also has the component expansion a(x) = ∑

μ aμγμ(x), so γμ(x) · a(x) = aμ = aμημμ

and the two component expansions of the same geometric object are related by the metric as expected from tensor
component analysis. In a similar way, the entire Grassmann algebra of forms in the cotangent space can be identified
with geometric objects in the graded structure of the tangent space, which is a useful simplification.

These independent tangent Clifford algebras and associated cotangent spaces of forms at each point x must then
be connected by linear translations between nearby points. The 4-vector derivative (or Dirac operator, familiar
from the Dirac equation for the quantum electron),

∇x ≡
3∑

μ=0

γ μ(x)
∂

∂xμ(x)
(170)

is the appropriate generator of translations along the spacetime manifold, potentially modified by adding an appro-
priate connection Dx = ∇x +A(x) that enacts the parallel transport of relevant geometric content during translation.
Note the natural expansion of ∇x into reciprocal (dual) basis vectors, which will be clarified in the next section.
Each ∂/∂xμ(x) is the partial derivative along a particular coordinate function xμ(x) evaluated at the point x . Also
note that the point r = ∑3

μ=0 x
μ(x)γμ(x) can itself be expressed in terms of these same coordinate functions as

a 4-vector displacement r from the origin, assuming a flat manifold with parallelized tangent vector directions for
simplicity, which conveniently lifts a vector representation of the manifold points into the same tangent Clifford
algebra for ease of calculation.

It is customary to omit the point x for brevity in ∇x and write the partial derivatives more compactly as ∂μ,
yielding the simpler form ∇ = ∑

μ γ μ∂μ. Further noting that γ k = (γk)
−1 = −γk for k = 1, 2, 3 and γ 0 = γ0

then yields convenient relative frame expansions of the (covariant) vector derivative,

∇ = γ0(∂ct + �∇) = (∂ct − �∇)γ0, (171)
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which differ in sign from similar expansions of (contravariant) 4-vectors like the displacement r = γ0(ct − �x) =
(ct + �x)γ0 in the tangent space.

A.3: Spacetime differential forms

Given a scalar field φ(x) on the manifold, the exterior derivative d creates a differential one-form,

dφ(x)[v(x)] = v(x) · ∇φ(x), (172)

that takes a tangent vector v(x) and returns a linear approximation to a change in φ(x), in the form of a directional
(partial) derivative along v(x). Note that the differential is entirely characterized by the total vector derivative
∇φ(x) of the field. This identification between the exterior derivative d acting in the cotangent space T ∗M and the
vector derivative ∇ acting in the tangent space T M is convenient, and is why the partial derivative components in
Eq. (170) are naturally expressed in the reciprocal basis.

Taking the exterior derivative d of a one-form field such as ω(x)[v(x)] = a(x) · v(x) similarly raises its grade,

dω(x)[v(x), w(x)] = [[∇ ∧ a(x)] · v(x)] · w(x), (173)

and can be identified with the 4-curl ∇ ∧ a(x) of the object a(x) in the tangent space that corresponds to ω(x)
in the cotangent space. This identification between the exterior derivative d and the 4-curl ∇∧ holds generally for
differential forms of any grade in the cotangent bundle, including grade-0 scalar fields where ∇ ∧ φ(x) = ∇φ(x)
is identified with the gradient. The exterior derivative satisfies the useful identity d2(·) = 0 (equivalent to a Bianchi
identity), which is also satisfied by the corresponding four-curl, ∇ ∧ (∇ ∧ (·)) = 0.

Given the metric and the Hodge star operation �, the codifferential δ ≡ �−1d� can also be defined on differ-
ential forms, which lowers the grade by one rather than raising the grade like the exterior derivative. Using the
correspondence between � in the cotangent space and I in the tangent space, this definition yields

δω(x) = �−1d � ω(x) = I−1∇ ∧ (I a(x)) = ∇ · a(x), (174)

so is equivalent to the grade-lowering 4-divergence∇·.Moreover, the codifferential satisfies another useful (Bianchi)
identity δ2(·) = �−1d2 � (·) = 0, which is also satisfied by the corresponding four-divergence, ∇ · (∇ · (·)) = 0.

It then follows that the vector derivative under the Clifford product precisely unifies both the grade-raising
exterior derivative and the grade-lowering codifferential of the cotangent space of forms, but is expressed in the
tangent algebra,

(δ + d)ω(x) ∼ ∇a(x) = ∇ · a(x) + ∇ ∧ a(x). (175)

It then naturally follows that the square of the vector derivative gives the correct 4-Laplacian, or scalar wave operator,

(δ + d)2ω(x) = (δd + dδ)ω(x)

∼ ∇2a(x) = [∂2ct − | �∇|2]a(x). (176)

By working with the vector derivative in the tangent Clifford bundle, all the convenience and clarity provided
by differential forms is preserved, but without the complication of excess function arguments as is necessary with
forms. This simplification enables much closer correspondence to standard notations and vector calculus methods,
as used in the main text. In fact, one can argue that the unification of the exterior derivative and codifferential
encourages more structurally transparent calculations than with differential forms alone.
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For example, the Maxwell electromagnetic equations of motion can be written as the single Clifford algebra
equation ∇F = j , where F is a bivector and j = je + ( jm/c)I is a complex 4-vector containing both electric
and magnetic sources. This contrasts with the pair of equations commonly seen in treatments that use differential
forms, δF = μ je and δG = μ jm/c, where F is the Faraday 2-form and G = �F is the dual Maxwell 2-form
treated separately, with the currents je and jm both treated as one-forms despite the magnetic current jm properly
having the character of a pseudo-4-vector geometrically. One can fix this standard differential forms treatment by
writing instead, (δ + d)F = μ ( je + � jm/c), which then becomes identical in the cotangent bundle to the content
of the spacetime Clifford algebra formulation in the tangent bundle, ∇F = μ j , albeit using less compact notation.

A.4: Lagrangian densities

Recall that a Lagrangian density properly is a 4-volume integration measure that is a function of the dynamical
fields; extremizing the action as the integrated Lagrangian density with respect to variations of the dynamical fields
then produce the classical equations of motion. Thus, the Lagrangian density should geometrically correspond to a
volume 4-form on spacetime that is invariant under the correct physical symmetries, including those of spacetime
itself.

To make explicit how this idea connects to the tangent Clifford bundle used here, a 4-form is a local linear map
d4 S(x)[v0(x), v1(x), v2(x), v3(x)] = L(x) · (v0(x) ∧ v1(x) ∧ v2(x) ∧ v3(x)) in the cotangent space at a point
x that takes four 4-vector arguments in the tangent space at x , constructs an invariant pseudoscalar 4-volume in
the tangent space out of them, then contracts that volume with another local 4-volume L(x) to produce a scalar
measured value. The 4-volume L(x) is a grade-4 object in the tangent Clifford algebra, so is proportional to the
local unit pseudoscalar I (x) at the point x . A spacetime Riemann sum,

∑
k d

4S(x)[δVk(x)], implicitly passes in
small vector increments (δx)μγμ(x) along independent vector directions to construct small invariant 4-volumes
δVk(x) = (

∏
μ(δx)μ)I (x) that are proportional to the local pseudoscalar I (x), then evaluates the 4-form measure

d4S(x)[δVk(x)] on each such local volume, and sums those measured values over a grid of small volumes that
partition the spacetime volume being integrated. Taking the limit as the small volumes δVk(x) become infinitesimal
in magnitude yields a spacetime action integral S = ∫

d4 S(x) = ∫
L(x) · d4V (x) as the limiting value of the

Riemann sum, with resulting directed volume measure d4V (x) = |d4V |I (x).
The important takeaway is that such a integrationmeasure 4-form is fully characterized by a grade-4 pseudoscalar

field L(x) in the tangent Clifford bundle, which we can identify as the geometric content of the Lagrangian density.
For the action S to yield an invariant scalar value, as usually assumed, the density L(x) must be proportional to the
unit 4-volume field I (x). The traditional scalar Lagrangians in Eqs. (23) and (32) leave out this volume factor as
implicit.

References

1. Long, Y., Ren, J., Chen, H.: Intrinsic spin of elastic waves. Proc. Natl. Acad. Sci. USA 115(40), 9951–9955 (2018). https://doi.org/
10.1073/pnas.1808534115

2. Shi, C., Zhao, R., Long, Y., Yang, S., Wang, Y., Chen, H., Ren, J., Zhang, X.: Observation of acoustic spin. Natl. Sci. Rev. 6(4),
707–712 (2019). https://doi.org/10.1093/nsr/nwz059

3. Bliokh, K.Y., Nori, F.: Transverse spin and surface waves in acoustic metamaterials. Phys. Rev. B Condens. Matter 99(2), 020301
(2019). https://doi.org/10.1103/PhysRevB.99.020301

4. Bliokh, K.Y., Nori, F.: Spin and orbital angular momenta of acoustic beams. Phys. Rev. B Condens. Matter 99(17), 174310 (2019).
https://doi.org/10.1103/PhysRevB.99.174310

5. Toftul, I.D., Bliokh, K.Y., Petrov, M.I., Nori, F.: Acoustic radiation force and torque on small particles as measures of the canonical
momentum and spin densities. Phys. Rev. Lett. 123(18), 183901 (2019). https://doi.org/10.1103/PhysRevLett.123.183901

6. Rondón, I., Leykam, D.: Acoustic vortex beams in synthetic magnetic fields. J. Phys. Condens. Matter Inst. Phys. J. 32(10), 104001
(2020). https://doi.org/10.1088/1361-648X/ab55f4

7. Berry, M.V.: Optical currents. J. Opt. A Pure Appl. Opt. 11(9), 094001 (2009). https://doi.org/10.1088/1464-4258/11/9/094001

123

https://doi.org/10.1073/pnas.1808534115
https://doi.org/10.1073/pnas.1808534115
https://doi.org/10.1093/nsr/nwz059
https://doi.org/10.1103/PhysRevB.99.020301
https://doi.org/10.1103/PhysRevB.99.174310
https://doi.org/10.1103/PhysRevLett.123.183901
https://doi.org/10.1088/1361-648X/ab55f4
https://doi.org/10.1088/1464-4258/11/9/094001


66 L. Burns et al.

8. Canaguier-Durand, A., Cuche, A., Genet, C., Ebbesen, T.W.: Force and torque on an electric dipole by spinning light fields. Phys.
Rev. A 88(3), 033831 (2013). https://doi.org/10.1103/PhysRevA.88.033831

9. Bliokh, K.Y., Bekshaev, A.Y., Nori, F.: Extraordinary momentum and spin in evanescent waves. Nat. Commun. 5, 3300 (2014).
https://doi.org/10.1038/ncomms4300

10. Bliokh, K.Y., Kivshar, Y.S., Nori, F.: Magnetoelectric effects in local light-matter interactions. Phys. Rev. Lett. 113(3), 033601
(2014). https://doi.org/10.1103/PhysRevLett.113.033601

11. Bliokh, K.Y., Nori, F.: Transverse and longitudinal angular momenta of light. Phys. Rep. 592, 1–38 (2015). https://doi.org/10.1016/
j.physrep.2015.06.003

12. Aiello, A., Banzer, P., Neugebauer, M., Leuchs, G.: From transverse angular momentum to photonic wheels. Nat. Photonics 9(12),
789–795 (2015). https://doi.org/10.1038/nphoton.2015.203

13. Nieto-Vesperinas,M.:Optical torque: electromagnetic spin and orbital-angular-momentumconservation laws and their significance.
Phys. Rev. A 92(4), 043843 (2015). https://doi.org/10.1103/PhysRevA.92.043843

14. Leader, E.: The photon angular momentum controversy: Resolution of a conflict between laser optics and particle physics. Phys.
Lett. Part B 756, 303–308 (2016). https://doi.org/10.1016/j.physletb.2016.03.023

15. Neugebauer, M., Eismann, J.S., Bauer, T., Banzer, P.: Magnetic and electric transverse spin density of spatially confined light. Phys.
Rev. X 8(2), 021042 (2018). https://doi.org/10.1103/PhysRevX.8.021042

16. Soper, D.E.: Classical Field Theory. Dover Books on Physics. Dover Publications, Mineola (2008)
17. Jackson, J.D.: Classical Electrodynamics, 3rd edn. Wiley, New York (1999)
18. Bliokh, K.Y., Bekshaev, A.Y., Nori, F.: Dual electromagnetism: helicity, spin, momentum and angular momentum. New J. Phys.

15(3), 033026 (2013). https://doi.org/10.1088/1367-2630/15/3/033026
19. Bliokh, K.Y., Dressel, J., Nori, F.: Conservation of the spin and orbital angular momenta in electromagnetism. New J. Phys. 16(9),

093037 (2014). https://doi.org/10.1088/1367-2630/16/9/093037
20. Leader, E., Lorcé, C.: The angular momentum controversy: what’s it all about and does it matter? Phys. Rep. 541, 163248 (2014)
21. Dressel, J., Bliokh, K.Y., Nori, F.: Spacetime algebra as a powerful tool for electromagnetism. Phys. Rep. 589, 1–71 (2015). https://

doi.org/10.1016/j.physrep.2015.06.001
22. Cameron, R.P., Speirits, F.C., Gilson, C.R., Allen, L., Barnett, S.M.: The azimuthal component of Poynting’s vector and the angular

momentum of light. J. Opt. 17(12), 125–610 (2015). https://doi.org/10.1088/2040-8978/17/12/125610
23. Belinfante, F.J.: On the current and the density of the electric charge, the energy, the linear momentum and the angular momentum

of arbitrary fields. Physica 7(5), 449–474 (1940). https://doi.org/10.1016/S0031-8914(40)90091-X
24. Bliokh, K.Y., Bekshaev, A.Y., Kofman, A.G., Nori, F.: Photon trajectories, anomalous velocities andweakmeasurements: a classical

interpretation. New J. Phys. 15(7), 073022 (2013). https://doi.org/10.1088/1367-2630/15/7/073022
25. Landau, L.D., Lifshits, E.M., Lifshitz, E.M.: Fluid Mechanics. Course of Theoretical Physics. Butterworth-Heinemann, Oxford

(1987)
26. Bruneau, M.: Fundamentals of Acoustics, 1st edn. ISTE, London (2013). https://doi.org/10.1002/9780470612439
27. Bliokh, K.Y., Nori, F.: Klein–Gordon representation of acoustic waves and topological origin of surface acoustic modes. Phys. Rev.

Lett. 123(5), 054–301 (2019). https://doi.org/10.1103/PhysRevLett.123.054301
28. Francois, N., Xia, H., Punzmann,H., Fontana, P.W., Shats,M.:Wave-based liquid-interfacemetamaterials. Nat. Commun. 8, 14–325

(2017). https://doi.org/10.1038/ncomms14325
29. Burns, L., Bliokh, K.Y., Nori, F., Dressel, J.: Acoustic versus electromagnetic field theory: scalar, vector, spinor representations

and the emergence of acoustic spin. New J. Phys. 22(5), 053050 (2020). https://doi.org/10.1088/1367-2630/ab7f91
30. Calkin, M.G.: An invariance property of the free electromagnetic field. Am. J. Phys. 33, 958–960 (1965). https://doi.org/10.1119/

1.1971089
31. Barnett, S.M.: Rotation of electromagnetic fields and the nature of optical angular momentum. J. Mod. Opt. 57(14–15), 1339–1343

(2010). https://doi.org/10.1080/09500341003654427
32. Cameron, R.P., Barnett, S.M., Yao, A.M.: Optical helicity, optical spin and related quantities in electromagnetic theory. New J.

Phys. 14, 053050 (2012). https://doi.org/10.1088/1367-2630/14/5/053050
33. Fernandez-Corbaton, I., Zambrana-Puyalto, X., Tischler, N., Vidal, X., Juan, M.L., Molina-Terriza, G.: Electromagnetic duality

symmetry and helicity conservation for the macroscopic Maxwell’s equations. Phys. Rev. Lett. 111(6), 060401 (2013). https://doi.
org/10.1103/PhysRevLett.111.060401

34. Cameron, R.P., Barnett, S.M.: Electric-magnetic symmetry and Noether’s theorem. New J. Phys. 14, 123019 (2012). https://doi.
org/10.1088/1367-2630/14/12/123019

35. Cameron, R.P.: On the ‘second potential’ in electrodynamics. J. Opt. 16, 015708 (2014). https://doi.org/10.1088/2040-8978/16/1/
015708

36. Gregory, A.L., Sinayoko, S., Agarwal, A., Lasenby, J.: An acoustic space-time and the lorentz transformation in aeroacoustics. Int.
J. Aeroacoust. 14(7), 977–1003 (2015). https://doi.org/10.1260/1475-472X.14.7.977

37. Doran, C., Lasenby, A.: Geometric Algebra for Physicists. Cambridge University Press, Cambridge (2003). https://doi.org/10.
1017/CBO9780511807497

38. Hestenes, D., Sobczyk, G.: Clifford Algebra to Geometric Calculus. Springer, Amsterdam (1984). https://doi.org/10.1007/
978-94-009-6292-7

39. Hestenes, D., Lasenby, A.N.: Space-time Algebra, vol. 1. Springer, Berlin (1966)
40. Hestenes, D.: Real spinor fields. J. Math. Phys. 8(4), 798–808 (1967). https://doi.org/10.1063/1.1705279

123

https://doi.org/10.1103/PhysRevA.88.033831
https://doi.org/10.1038/ncomms4300
https://doi.org/10.1103/PhysRevLett.113.033601
https://doi.org/10.1016/j.physrep.2015.06.003
https://doi.org/10.1016/j.physrep.2015.06.003
https://doi.org/10.1038/nphoton.2015.203
https://doi.org/10.1103/PhysRevA.92.043843
https://doi.org/10.1016/j.physletb.2016.03.023
https://doi.org/10.1103/PhysRevX.8.021042
https://doi.org/10.1088/1367-2630/15/3/033026
https://doi.org/10.1088/1367-2630/16/9/093037
https://doi.org/10.1016/j.physrep.2015.06.001
https://doi.org/10.1016/j.physrep.2015.06.001
https://doi.org/10.1088/2040-8978/17/12/125610
https://doi.org/10.1016/S0031-8914(40)90091-X
https://doi.org/10.1088/1367-2630/15/7/073022
https://doi.org/10.1002/9780470612439
https://doi.org/10.1103/PhysRevLett.123.054301
https://doi.org/10.1038/ncomms14325
https://doi.org/10.1088/1367-2630/ab7f91
https://doi.org/10.1119/1.1971089
https://doi.org/10.1119/1.1971089
https://doi.org/10.1080/09500341003654427
https://doi.org/10.1088/1367-2630/14/5/053050
https://doi.org/10.1103/PhysRevLett.111.060401
https://doi.org/10.1103/PhysRevLett.111.060401
https://doi.org/10.1088/1367-2630/14/12/123019
https://doi.org/10.1088/1367-2630/14/12/123019
https://doi.org/10.1088/2040-8978/16/1/015708
https://doi.org/10.1088/2040-8978/16/1/015708
https://doi.org/10.1260/1475-472X.14.7.977
https://doi.org/10.1017/CBO9780511807497
https://doi.org/10.1017/CBO9780511807497
https://doi.org/10.1007/978-94-009-6292-7
https://doi.org/10.1007/978-94-009-6292-7
https://doi.org/10.1063/1.1705279


Spacetime geometry of acoustics and electromagnetism 67

41. Crumeyrolle, A.: Orthogonal and Symplectic Clifford Algebras: Spinor Structures, vol. 57. Springer Science & Business Media,
Berlin (2013)

42. Macdonald, A.: Linear and Geometric Algebra. Alan Macdonald, Nottingham (2010)
43. Macdonald, A.: Vector and Geometric Calculus. CreateSpace Independent Publishing Platform, Scotts Valley (2012)
44. Lounesto, P.: Clifford Algebras and Spinors, vol. 286. Cambridge University Press, Cambridge (2001)
45. Dorst, L., Fontijne, D., Mann, S.: Geometric Algebra for Computer Science: An Object-oriented Approach to Geometry. Elsevier,

New York (2010)
46. Felsberg, M., Sommer, G.: The monogenic signal. IEEE Trans. Signal Process. Publ. IEEE Signal Process. Soc. 49(12), 3136–3144

(2001). https://doi.org/10.1109/78.969520
47. Hiley, B.J., Callaghan, R.E.: The Clifford algebra approach to quantum mechanics b: the dirac particle and its relation to the Bohm

approach (2010). arXiv:1011.4033
48. Hestenes, D.: Spacetime physics with geometric algebra. Am. J. Phys. 71(7), 691–714 (2003). https://doi.org/10.1119/1.1571836
49. Thompson, J.M.T., Lasenby, J., Lasenby, A.N., Doran, C.J.L.: A unified mathematical language for physics and engineering in

the 21st century. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 358(1765), 21–39 (2000). https://doi.org/10.1098/rsta.
2000.0517

50. Simons, J.P., Lasenby, A., Doran, C., Gull, S.: Gravity, gauge theories and geometric algebra. Philos. Trans. R. Soc. Lond. Ser. A
Math. Phys. Eng. Sci. 356(1737), 487–582 (1998). https://doi.org/10.1098/rsta.1998.0178

51. Bialynicki-Birula, I., Bialynicka-Birula, Z.: The role of the Riemann–Silberstein vector in classical and quantum theories of
electromagnetism. J. Phys. A Math. Theor. 46(5), 053001 (2012). https://doi.org/10.1088/1751-8113/46/5/053001

52. Bialynicki-Birula, I.: V photon wave function. Prog. Opt. 36, 245–294 (1996). https://doi.org/10.1016/S0079-6638(08)70316-0
53. Smith, B.J., Raymer, M.G.: Photon wave functions, wave-packet quantization of light, and coherence theory. New J. Phys. 9(11),

414 (2007). https://doi.org/10.1088/1367-2630/9/11/414
54. Alexander, S., Sims, R.: Detecting axions via induced electron spin precession. Phys. Rev. D 98(1), 015011 (2018). https://doi.org/

10.1103/PhysRevD.98.015011
55. Alexander, S., McDonough, E.: Axion-dilaton destabilization and the Hubble tension. Phys. Lett. B 797, 134830 (2019). https://

doi.org/10.1016/j.physletb.2019.134830
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