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Abstract We investigate properties of the covariance matrix in the framework of non-commutative quantum
mechanics for an one-parameter family of transformations between the familiar Heisenberg–Weyl algebra and a
particular extension of it. Employing as a measure of the Robertson–Schrödinger uncertainty principle the linear
symplectic capacity of theWeyl ellipsoid (and its dual),we determine its corresponding bounds. Inequalities between
the capacities for non-commutative phase-spaces are established. We also present a constructive example based on
a simple model to justify our theoretical predictions.
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1 Introduction

In this article motivated by the work of [1], [2], [3] a number of questions arise in the context of non-commutative
quantum mechanics. Which conditions extend properties of the quantum mechanical covariance matrix for the
conventional Heisenberg-Weyl (H.W.) algebra to the non-commutative one in arbitrary phase-space dimensions?
What criteria the Wigner quasi-probability function should meet so that the transformation of covariance matrices
for the two algebras be legitimate? Do exist bounds for the linear symplectic capacity of the covariance ellipsoid
and its dual in this case? Can we establish any inequalities for the linear symplectic capacities of the corresponding
non-commutative phase-spaces?

In the literature [4], [5] some of the above issues have been addressed and partially studied following different
paths. A brief outlook of the present work which exhibits our contribution is as follows. In Sect. 2 we define
the extended Heisenberg-Weyl algebra of our interest and state the transformation matrix M which connects it
with the familiar H.W. algebra. We focus our attention on a particular one-parameter class of transformations
and discover that the skew-symmetric matrices θi j = θEi j , ηi j = ηE ′

i j of the deformed algebra, should be of
even dimension if one is willing to maintain their symplectic or anti-symplectic structure. Restricting further to
orthogonal Darboux transformations, the one parameter space is forced to obtain only the two values ±1, and
therefore M ∈ SO(4l), l ∈ N. Such kind of transformations will be used in our example exposed at the end of the
manuscript.
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68 A. N. Hatzinikitas

In Sect. 3 we define the quantummechanical covariance matrix with density operator constructed for a pure state.
In order to establish the connection of the covariance matrices between the two algebras, we require the Wigner
quasi-probability measure to transform as in the classical probability theory. In the remainder of this section we
prove (Proposition 1) that if the covariance matrix of the extended algebra is positive semi-definite then the matrix
�W� , with elements the traces of the density operator, is positive definite, independently of the symplectic or anti-
symplectic behaviour of the matrix S(θ, η). This result, according to our knowledge, is new and was first appeared
for the standard symplectic case in [1]. Also, the aforementioned property will assist in proving Proposition 4 of
the next section.

In Sect. 4 the third and fourth questions admit a positive answer if one diagonalizes �W� by an ω-symplectic
matrix (Proposition 4). The proof is based on an extension of Williamson’s diagonalization theorem and applied
to four phase-space dimensions. The reason for this dimensional limitation is due to the technical complexity
associated with the use of Sylvester’s criterion for positive semi-definite matrices. Depending on whether the
matrix S is symplectic or anti-symplectic we derive inclusions between the Wigner ellipsoids and its duals. These
inclusions, by the monotonicity property of the symplectic capacity, imply certain inequalities among them. The
results of this section are also new.

Finally, in Sect. 5 we present an application for a simple model, borrowed from our previous work on non-
commutative harmonic oscillator [6], and justify our theoretical predictions for the ground state of the system.

Conventions: We conclude introduction with a statement of our notations used in the manuscript. Latin indices
take values in the set {1, 2, · · · , n} whereas Greek indices are phase-space indices with values {1, 2, · · · , 2n}. The
superscript “ᵀ” indicates transposition and the over bar denotes complex conjugation. We denote byM(2n,R) the
set of all 2n × 2n real constant matrices and use the compact notations:

S2n = {M ∈ M(2n,R) : M = Mᵀ} (1)

for the real symmetric matrices,

S2n++ = {M ∈ S2n : M � 0} (2)

for the positive definite symmetric matrices,

S2n+ = {M ∈ S2n : M � 0} (3)

for the semi-definite positive symmetric matrices,

Spσ (2n,R) = {M ∈ M(2n,R) : σ(Mu, Mv) = σ(u, v)} (4)

for the standard symplectic group with form σ(u, v) = uᵀ Jv on R
n ⊕ R

n (see 8 for the definition of J) and

Spω(2n,R) = {M ∈ M(2n,R) : ω(Mu, Mv) = ω(u, v)} (5)

for the ω-symplectic group corresponding to the linear transformations which leave the skew-symmetric bilinear
form ω(u, v) = uᵀ�v on Rn ⊕ R

n invariant (� is defined in (12)).

2 A class of extended Heisenberg-Weyl algebras

Consider the extended Heisenberg–Weyl algebra in n ≥ 2,

[q̂i , q̂ j ] = iθi j Î , [ p̂i , p̂ j ] = iηi j Î , [q̂i , p̂ j ] = i f (h̄, θ, η)δi j Î , i, j = 1, · · · , n (6)

where f (h̄, θ, η) is a function of Planck’s constant h̄ = h/2π = 6.62607015 × 10−34 J · Hz−1 as well as the
deformation parameters θi j , ηi j which are assumed to form n × n real, skew-symmetric and constant matrices. We
concentrate on the case in which θi j = θEi j , ηi j = ηE ′

i j
1 where Ei j , E ′

i j = ±1 for i �= j and zero otherwise.
The natural units of both q̂’s and p̂’s are to be those of length and momentum respectively. Adopting the notation
ẑα = q̂α, α = 1, · · · , n and ẑα = p̂α−n, α = n + 1, · · · , 2n the commutation relations can be written compactly
in phase-space as

[ẑα, ẑβ ] = i ( f (h̄, θ, η)J + S)αβ Î (7)

1 In n = 2 the square matrices can be written as θi j = θεi j , ηi j = ηεi j , i, j = 1, 2 where εi j is the rank-2 Levi-Civita tensor.
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The non-commutative Robertson–Schrödinger... 69

where J is the standard symplectic matrix

J =
(

0n×n In×n

−In×n 0n×n

)
(8)

and S is given by

S(θ, η) =
(

θn×n 0n×n

0n×n ηn×n .

)
(9)

This algebra is related to the familiar H.W. algebra

[Ẑα, Ẑβ ] = ig(h̄)Jαβ Î (10)

through a non-canonical linear transformation, which is a diffeomorphism of phase space whose Jacobian matrix
is not symplectic at every point. The map

M: Ẑ → ẑ where ẑα = Mαβ Ẑβ, M ∈ GL(2n,R) (11)

is called a Darboux map and induces the matrix equation between the two algebras

g(h̄)MJMᵀ = f (h̄, θ, η)J + S(θ, η) = �(h̄, θ, η). (12)

Relation (12) implies that M is not manifestly a symplectic matrix. If one writes M in block matrix form as

M =
(
An×n Bn×n

Cn×n Dn×n

)
(13)

then (12) leads to the following matrix system

g(h̄)(ADᵀ − BCᵀ) = f (h̄, θ, η)In×n

g(h̄)(ABᵀ − BAᵀ) = θn×n

g(h̄)(CDᵀ − DCᵀ) = ηn×n (14)

with unknowns the submatrices A, B,C, D. Using the possibility ABᵀ, CDᵀ to be both skew-symmetric2, we
obtain the equivalent system

g(h̄)(ADᵀ − BCᵀ) = f (h̄, θ, η)In×n

2g(h̄)ABᵀ = θn×n

2g(h̄)CDᵀ = ηn×n (15)

Tracing the first equation of (15) yields f (h̄, θ, η) = g(h̄)Tr(ADᵀ − BCᵀ)/n. The unique decomposition of a
matrix into symmetric and skew-symmetric parts allows us to search for solutions of the particular form Nn×n =
λIn×n + μEn×n, λ, μ ∈ R. One can verify that a viable set of solutions is

A = aIn×n, B = bEᵀ
n×n, C = cE ′

n×n, D = d In×n, where

ab = θ

2g(h̄)
, cd = η

2g(h̄)
, f (h̄, θ, η) = adg(h̄)

(
1 − θη

4g(h̄)2a2d2

)
(16)

Special attention should be paid to the derivation of f (h̄, θ, η) since the term E ′E equals the identity matrix
on condition that E is nonsingular and therefore invertible. This is true for even dimensional matrices n = 2k
because then an antisymmetric matrix satisfies the relation det E2k×2k = (Pf E2k×2k)

2 > 0 where Pf E =
εi1 j1i2 j2···ik jk Ei1 j1Ei2 j2 · · · Eik jk/2

kk! is the Pfaffian of E [7]. For square matrices with n = 2k + 1 the determinant
vanishes since there are null eigenvalues. Also every 2k×2k antisymmetric matrix can be diagonalized by a unitary
matrix and it has purely imaginary eigenvalues coming in conjugate pairs. Denoting these by ±iλ j , j = 1, · · · , k,

2 A different case, in which the identity matrix is replaced by a diagonal matrix with different elements along the main diagonal, was
studied in [6].
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70 A. N. Hatzinikitas

with λ j being positive reals, A can be brought into a unique canonical form, by a special orthogonal transformation
O

O−1AO = Ad =
k⊕
j=1

A j , A j =
(

0 ±λ j

∓λ j 0

)
(17)

where ⊕k
j=1A j is the direct sum of skew-symmetric 2 × 2 sub-blocks A j . If in addition A is an orthogonal matrix

then its eigenvalues should have unit modulus and λ j = 1,∀ j = 1, · · · , k. Hence E equipped with antisymmetry
and orthogonality can be written in block diagonal form as

Ed =
k⊕
j=1

A j , A j =
(

0 ±1
∓1 0

)
. (18)

Requiring limθ,η→0 f (h̄, θ, η) = h̄, the real parameters a, d, b, c, f (h̄, θ, η) should satisfy the relations

d = 1

a
, b = θ

2g(h̄)a
, c = ηa

2g(h̄)
, f (h̄, θ, η) = g(h̄)

(
1 − θη

4g(h̄)2

)
(19)

Dimensional analysis and experimental results [8] demand the deformation parameters θ, η to satisfy the relation
|θη| ≈ (εg(h̄))2 where ε ∈ [0, 1).
Remark Regarding the acceptable values of k such that Ed is symplectic or anti-symplectic, we distinguish the
following two cases:

• if k = 2l then E is standard symplectic or anti-symplectic. The relation Eᵀ J E = ±J , when written in blocked
form, simplifies to

Aᵀ
E DE = ±I (20)

which ensures that E is symplectic for AE = DE or anti-symplectic for DE = Aᵀ
E . Notice that every anti-

symplectic matrix can be factorized as the product T S where S ∈ Spσ (2n,R) and

T =
(
In×n 0n×n

0n×n −In×n

)
(21)

• if k = 2l + 1, l ≥ 1 then E is neither symplectic nor anti-symplectic. The reason is based on the simple

observation that after calculating E J Eᵀ there always exists a term of the form A1

(
0 1
0 0

)
A k−1

2
�=

(
0 1
0 0

)
in the

center, at the top of the matrix which destroys the symplectic or anti-symplectic property of E .

If a = d = ±1 and rescaling M by its determinant det M =
√
1 − θη

4g2(h̄)
, the Darboux matrix M ∈ SO(4l), l ∈

N . As a consequence, the Euclidean distance on the phase-space remains rotationally invariant. Finally, observe
that if S ∈ SO(2n) and [S, J ] = 0 then S ∈ Sp(2n,R) whereas if the commutator is replaced by {S, J } = 0 then
S is anti-symplectic.

3 Covariance matrix and the Robertson–Schrödinger uncertainty principle

We start this section by giving the definition of the covariance matrix in quantum mechanics.

Definition 1 The quantum mechanical covariance matrix associated with an �-Wigner quasi-probability measure
W�[ψ] for a pure state ψ ∈ S(Rn)3 and density operator ρ̂ = |ψ〉〈ψ |, is defined by

CovW�(ẑ, ẑ) := EW�

(
(ẑ − EW�(ẑ))(ẑ − EW�(ẑ)ᵀ)

) = �W� + i

2
�, where

(
�W�

)
αβ

=
{ 1

2Tr(ρ̂{ẑα, ẑβ}) − Tr(ρ̂ ẑα)Tr(ρ̂ ẑβ) α �= β

Tr(ρ̂ ẑ2α) − (Tr(ρ̂ ẑα))2 α = β
(22)

3 S(·) is the Schwartz space of test functions whereas S ′(·) its dual.
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The non-commutative Robertson–Schrödinger... 71

where ẑa, a = 1, · · · , 2n is a row vector operator with entries the cartesian coordinates of position and momentum
operators.

Recall that the expectation value of a self-adjoint operator for which ρ̂ Â is of trace-class, is given by [9]

EW�( Â) = Tr(ρ̂ Â) =
∫
R2n

W�[ψ](z)σ�(z)dz (23)

where σ�(z) is the Weyl symbol (or transform) of the operator Â. In configuration space it is obtained by

σ�(x, p) = 1

(2π f (h̄, θ, η))n

∫
Rn

e−i<y,p>/ f (h̄,θ,η) < q − y/2| Â|q + y/2 > dy (24)

with < q − y/2| Â|q + y/2 >∈ S ′(Rn × R
n) be the kernel of the operator. Setting Â = ρ̂ in (24) we obtain the

Wigner function

W�[ψ](z) = 1

(2π f (h̄, θ, η))n

∫
Rn

e−i<y,p>/ f (h̄,θ,η)ψ(q − y/2)ψ̄(q + y/2)dy

where q, y, p ∈ R
n (25)

Remarks • The condition which guarantees finiteness of the covariance matrix or equivalently existence up to
the second moments, is

(1 + ‖z‖2)W�[ψ](z) ∈ L1(R2n) (26)

where ‖z‖ is the Euclidean norm on R2n . We also assume that∫
R2n

W�[ψ](z)dz = 1. (27)

The Wigner function is real and supports negative values. The later claim is showed by the following bound

|W�[ψ](z)| ≤
(

2

(π f (h̄, θ, η))

)n

‖�1‖L2‖�2‖L2 where �1(u) = ψ(u)

and �2(u) = ψ̄(u − y)e−i<u,p>/ f (h̄) (28)

where a change of variables and use of the Cauchy-Schwarz inequality have been performed to (25). From the
definition (25) of Wigner function it is evident that all even wave functions reach the upper bound of (28) at
(q, p) = (0, 0), and all odd ones the lower bound.

• The covariance matrix can be casted into the form

CovW�(ẑ, ẑ) = MCovWJ (Ẑ , Ẑ)Mᵀ

where CovWJ (Ẑ , Ẑ) = �WJ (Ẑ , Ẑ) + ig(h̄)

2
J. (29)

This expression is meaningful if we require the Wigner function to behave as a classical distribution function,
therefore obey the transformation rule

W�[ψ](z) = WJ [�](M−1z). (30)

• Themain diagonal entries of the symmetric�W� matrix are identified to be the variancesVarW� Â. Definition (1)
can be extended to incorporate mixed states with density operator ρ̂ = ∑N

k=1 pk |ψk〉〈ψk | where pk ∈ [0, 1]
being the weights of the states which sum up to unity,

∑N
k=1 pk = 1. In the case of H.W. algebra the matrix

�WJ + ig(h̄)
2 J is a non-negative Hermitian matrix [1] and as a consequence its determinant satisfies

det

(
�WJ + ig(h̄)

2
J

)
≥ 0, with

WJ [�](Z)= 1

(2πg(h̄))n

∫
Rn
�

(
Q − Y

2

)
�̄

(
Q + Y

2

)
e

i
g(h̄)

<Y,P>dY. (31)
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72 A. N. Hatzinikitas

In two phase-space dimensions this inequality provides the well-known Robertson-Schrödinger uncertainty
principle (R.S.U.P.)

(VarWJ Q̂)(VarWJ P̂) −
(
1

2
Tr(ρ̂{Q̂, P̂}) − Tr(ρ̂ Q̂)Tr(ρ̂ P̂)

)2

≥ g(h̄)2

4
(32)

which is the strong version of the Heisenberg uncertainty principle.

We now prove a technical but useful proposition which extends Lemma (2.3) of [1] to the non-commutative
phase-space.

Proposition 1 Let �W� ∈ S2n with h̄, θ, η real numbers. Then the following hold:

i) The matrix �W�(ẑ, ẑ) + i
2�(h̄, θ, η) has real eigenvalues.

ii) If there exist real numbers h̄, θ, η �= 0 such that S is symplectic or anti-symplectic, and the covariance matrix
is positive semi-definite then �W� ∈ S2n++ and CovW�(ẑ, ẑ; h̄′, θ ′) � 0, ∀ h̄′ ≤ h̄, θ ′ ≤ θ as long as f (h̄, θ) is
an homogeneous function of degree one.

Proof

i) Using that �W� ∈ S2n as well as the identities (i J )† = −i Jᵀ = i J and (i S)† = i S the hermiticity of the
covariance matrix is an immediate consequence.

ii) Suppose now �W� has a negative eigenvalue λ corresponding to a real eigenvector vλ. Since J, S(θ, η) are
skew-symmetric matrices, vᵀ

λ Jvλ = 0 = v
ᵀ
λ S(θ, η)vλ and the Rayleigh quotient is negative

R(CovW�, vλ) = 〈vλ,CovW�vλ〉
‖vλ‖2 = λ < 0 (33)

This contradicts the assumption CovW�(ẑ, ẑ; h̄, θ, η) � 0 and therefore �W� is a non-negative matrix.
To complete the proof we now show that �W� cannot have a zero eigenvalue. Let v0 be a real eigenvector of
�W� with zero eigenvalue and consider the perturbed complex vector

vλ(εh̄, εθ , εη) = (
I + i( f (εh̄, εθ , εη)J + S(εh̄, εθ , εη))

)
v0

= (I + i( f (ε)J + S(ε)) v0 (34)

where in brief we denote by f (ε) = f (εh̄, εθ , εη) and by S(ε) = S(εh̄, εθ , εη). Performing a lengthy but
straightforward calculation and taking into account:

• θi j = −ηi j (S is anti-symplectic)
• the identities: �W�v0 = v

ᵀ
0 �W� = 0, v

ᵀ
0 Jv0 = 0 = v

ᵀ
0 Sv0, ‖Jv0‖2 = ‖v0‖2, v

ᵀ
0 S(θ, η)S(ε)v0 =

−θεθ‖v0‖2 and
• disregarding terms but linear in ε’s

we end up with the expression

v̄
ᵀ
λCovW�(ẑ, ẑ; h̄, θ)vλ = ( f (εh̄, εθ ) f (h̄, θ) + εθ θ)‖v0‖2 (35)

For both |εh̄ |, |εθ | small enough and f (εh̄, εθ ) f (h̄, θ), θεθ < 0 we get a negative result which again contradicts
the hypothesis of positive semi-definiteness. If we relax the condition of S being anti-symplectic then it appears
the extra contribution

− 1

2
v

ᵀ
0 ( f (ε){S(θ, η), J } + f (h̄, θ){J, S(ε)})v0 = −( f (ε)θ + f (h̄, θ)εθ )v

ᵀ
0 SJv0 (36)

where SJ is symmetric with a minimum eigenvalue λmin.(SJ ) = −1 < 0. Therefore the above expression is
again negative for f (ε)θ < 0, f (h̄, θ)εθ < 0 and leads to a contradiction.
By hypothesis, f (sh̄, sθ) = s f (h̄, θ), s ∈ (0, 1], and
CovW�(ẑ, ẑ; h̄′, θ ′) = �W� + i

2
s( f (h̄, θ)J + θ S)

= (1 − s)�W� + s(�W� + i

2
( f (h̄, θ)J + θ S) � 0. (37)

Relation (37) is true since (1 − s)�W� � 0 and CovW�(ẑ, ẑ; h̄, θ) � 0.
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The non-commutative Robertson–Schrödinger... 73

Another useful observation, which clarifies the interplay of semi-definite positivity for the covariance matrices of
the corresponding algebras, is stated by the following proposition.

Proposition 2 Let Pω ∈ Spω(2n,R) and Pω = MSMᵀ where the Darboux transformation M ∈ SO(4l) satisfies
g(h̄)MJMᵀ = � and S ∈ Spσ (2n,R). The matrixPᵀ

ω�W�(ẑ, ẑ)Pω+ i
2� is positive semi-definite iff�WJ (Ẑ , Ẑ)+

ig(h̄)
2 J is positive semi-definite.

Proof Theorem (2.2) of [1] guarantees �WJ (Ẑ , Ẑ) + ig(h̄)
2 J � 0 and Williamson’s standard symplectic theorem

implies the existence of S ∈ Spσ (2n,R) which diagonalizes �WJ . Therefore we have the following relations

Sᵀ
(

�WJ + i

2
g(h̄)J

)
S � 0 ⇐⇒ M

(
Sᵀ�WJ S + i

2
g(h̄)J

)
Mᵀ � 0

⇐⇒ (MSᵀMᵀ)

(
�W� + i

2
�

)
(MSMᵀ) � 0

⇐⇒ Pᵀ
ω�W�Pω + i

2
� � 0 (38)

��
which proves the claim. A point that requires attention is the particular Pω which does not diagonalize �W� as
one might suspect. This situation will be partly encountered in our toy model since there �WJ will be diagonal by
construction.

The decomposition of an ω-symplectic matrix into a Darboux and a standard symplectic matrix was also pointed
out by [5]. In our case M ∈ SO(4l) as explained in Sect. 3. Also Pω turns out to be a special orthogonal matrix as
well, since PωPᵀ

ω = I and detPω = (det M)2 det S = 1. Recall that a standard symplectic matrix always has unit
determinant.

The determinant and trace of the covariance matrices for the corresponding algebras are related through the
following expressions

det CovW�(ẑ, ẑ) = det CovWJ (Ẑ , Ẑ) ≥ 0 (39)

Tr(CovW�(ẑ, ẑ; h̄, θ)) = Tr(CovWJ (Ẑ , Ẑ; h̄, θ)) ≥ 0. (40)

In the θ → 0 limit and slightly modifying the notation, namely Ẑᵀ = (Q̂1, P̂1; · · · ; Q̂n, P̂n)ᵀ, the covariance
matrix is easily recognizable.

4 Symplectic capacity and R.S.U.P.

In paper [10] the R.S.U.P., in two phase-space dimensions (n = 1), was expressed in terms of the area of the

covariance ellipse. It was then proved that Area(B) = 2π
√
det(CovWJ (Ẑ , Ẑ)) ≥ h/2. The same idea can be

extended in higher dimensions but again in terms of areas of the intersections of the conjugate planes q j , p j with
the covariance (or Wigner) ellipsoid. In general it is defined as follows:

Definition 2 The Wigner ellipsoid associated to �W� is defined by the quadratic form

E�W�
≡ {z ∈ R

2n : 1

2
〈z, �−1

W�
z〉 ≤ 1} (41)

and its Legendre transform (or dual) in phase-space, is defined by

E∗
�W�

≡ {ζ ∈ R
2n : 1

2
〈ζ,�W�ζ 〉 ≤ 1} (42)

We now introduce the notion of symplectic capacity [3], [11] and study its connection to R.S.U.P.

123



74 A. N. Hatzinikitas

Definition 3 For a symplectic manifold (Rn ⊕ R
n, σ ) of fixed dimension 2n it is defined through the map

(A, σ ) → c(A) ∈ [0,+∞], ∀A ⊂ R
n ⊕ R

n (43)

which satisfies the following properties:

(3.1) Monotonicity: If there exists a symplectic embedding: φ : A1 → R
2n such that φ(A1) ⊂ A2 then c(A1) ≤

c(A2)

(3.2) Conformality: c(λA) = λ2c(A), for λ ∈ R

(3.3) Nontriviality: c(B2n(1), σ0) > 0, c(Z2n(1) < ∞ for the open unit ball B2n(1) and the open symplectic
cylinder Z2n(1) in the standard space (R2n, σ0).

The last property for c(B2n(1), σ0) = π = c(Z2n(1) is equivalent to Gromov’s nonsqueezing theorem. In what
follows we will consider the linear symplectic capacity which obeys the extra property

clin.(φ(A)) = clin.(A), ∀φ ∈ ASp(2n,R) (44)

where ASp(2n,R) is the affine symplectic group consisting of translations accompanied by symplectic transfor-
mations on phase-space.

Williamson’s ω-symplectic diagonalization theorem plays a prominent role in proving Proposition 4. Its proof
follows similar steps to the standard case [12], [13] and states:

Theorem 3 Let A ∈ S2n++, then there exists Pω ∈ Spω(2n,R) such that

Pᵀ
ω APω =

(
�ω 0
0 �ω

)
= Wω (45)

where �ω = diag(λ1,ω, · · · , λn,ω) and the λ j,ω > 0 being the ω-symplectic eigenvalues of A satisfying

det (�A ± iλ j,ω I ) = 0, j = 1, · · · , n (46)

The diagonal matrix Wω is called the “ω-Williamson form” of A. We denote by

Specω(A) = {λ1,ω, · · · , λn,ω}, λ1,ω ≥ · · · ≥ λn,ω > 0 (47)

the decreasing sequence of the symplectic eigenvalues of A and is called the ω-symplectic spectrum of A. The
symplectic spectrum of A coincides to its Euclidean spectrum only if Pω is supplemented by orthogonality.

We continue our study by proving the following geometric result for the non-commutative four-dimensional
phase-space (n = 2).

Proposition 4 Let �W� + i
2� � 0. This condition is equivalent to the following two:

i) The linear symplectic capacity of the ellipsoid E�W�
, in four phase-space dimensions, is such that

clin.(E�W�
) ≥ π

√
f 2(h̄, θ) + θ2 (48)

ii) The linear symplectic capacity of the dual ellipsoid E∗
�W�

, in four phase-space dimensions, is such that

clin.(E∗
�W�

) ≤ 2π√
f 2(h̄, θ) + θ2

(49)

Proof �W� ∈ S2n by construction, and moreover it is positive definite by Proposition 1. Setting B = �−1
W�

/2 in
the first condition of Proposition 4 and applying Williamson’s Theorem (3) we get

1

2
Pᵀ

ω B−1Pω + i

2
� = 1

2
D−1

ω + i

2
� � 0 (50)
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where D−1
ω = diag((λ1,ω)−1, (λ2,ω)−1; (λ1,ω)−1, (λ2,ω)−1) and the eigenvalues λ−1

j,ω are of order at least h̄. The
characteristic polynomial is then given by

det

(
1

2
D−1

ω + i

2
� − μI

)
=

2∏
j=1

Fj (μ; h̄, θ) + θ2

16

(
1

λ1,ω
− 1

λ2,ω

)2

= 0, where

Fj (μ; h̄, θ) = μ2 − μ

λ j,ω
+ 1

4

(
1

(λ j,ω)2
− ( f 2(h̄, θ) + θ2)

)
. (51)

��
It has degree four inμ and its coefficients appearwith alternating sign. To prove this propertywe combine Sylvester’s
criterion for Hermitian, positive semi-definite matrices [14] with the ordering of eigenvalues. The no negativity of
the principal minors4 of size three leads to

f 2(h̄, θ) + θ2 ≤ 1

λ21,ω
≤ 1

λ1,ωλ2,ω
≤ 1

λ22,ω
(52)

which proves the claim. Moreover, using Descarte’s sign rule, the characteristic polynomial has four positive real
roots, explicitly given by

μ(±,±),ω(h̄, θ) = 1

4

⎛
⎝ 1

λ1,ω
+ 1

λ2,ω
±

√(
1

λ1,ω
− 1

λ2,ω
± 2 f (h̄, θ)

)2

+ 4θ2

⎞
⎠ ,

λ1,ω �= λ2,ω (53)

In view of Proposition (94) of [3], we find that

clin.(E�W�
) = π

λmax .,ω
≥ π

√
f 2(h̄, θ) + θ2 (54)

clin.(E∗
�W�

) = 2πλmin.,ω ≤ 2π√
f 2(h̄, θ) + θ2

(55)

Remarks • From (54) and using (19) we have

clin.(E�W�
) ≥ π

√
g2(h̄)(1 − θη

4g(h̄)2
)2 + θ2. (56)

One can derive the following inclusions E�W
�S

⊆ E�WJ
⊆ E�W

�A
where �S(A) denotes the case in which �

contains a symplectic (θ = η) or an anti-symplectic (θ = −η) S matrix respectively.
• In n ≥ 8 phase-space dimensions the analysis is more involved but standard.

5 Application to a toy model

As an example [6] consider the non-commutative, isotropic, harmonic oscillator in four phase-space dimensions

satisfying the algebra ( f (h̄) = h̄, g(h̄, θ) =
√
h̄2 + θ2 according to the notation used in Sect. (2))

[q̂i , p̂ j ] = i h̄δi j Î , [q̂1, q̂2] = iθ Î , [ p̂1, p̂2] = −iθ Î , i, j = 1, 2 (57)

The connection of this extended algebra with the H.W. one, is given through the orthogonal Darboux matrix

M =

⎛
⎜⎜⎜⎜⎝

1 0 0 0
0 h̄√

h̄2+θ2
− θ√

h̄2+θ2
0

0 θ√
h̄2+θ2

h̄√
h̄2+θ2

0

0 0 0 1

⎞
⎟⎟⎟⎟⎠ (58)

4 There are 22n−1 principal minors including the determinant det
(
D−1

ω + i�
)
. In our case, n = 2, there are four non-negative principal

minors of size three, producing three independent inequalities.
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The energy eigenvalues are found to be E(n1,n2) = ω̃
√
h̄2 + θ2

∑2
i=1 (ni + 1/2) and the trajectories on phase-

space with E(n1,n2) energy satisfy the equation of an ellipsoid which is rotationally invariant. The intersection of

this ellipsoid by a plane of conjugate variables qi , pi is an ellipse with area 2π
√
h̄2 + θ2(n1 + n2 + 1), n1, n2 =

0, 1, 2, · · · . This area has a lower bound, corresponding to the ground state, and given by

Areamin. = 2π
√
h̄2 + θ2. (59)

The Wigner function for this system, in terms of the Laguerre’s polynomials [6]

Lni (Z̃i ) = 1

ni !e
Z̃i dni

dni Z̃i

(
e−Z̃i Z̃ ni

i

)
, Z̃i = 2

(
1

α2 Q
2
i + α2

h̄2 + θ2
P2
i

)

where i = 1, 2, α2 =
√
h̄2 + θ2

mω̃
, (60)

is given by

WJ [�(n1,n2)](Z̃1, Z̃2) = Ce− 1
2 (Z̃1+Z̃2)Ln1(Z̃1)Ln2(Z̃2) (61)

where C is the normalization constant determined by

∫
R4

WJ [�(n1,n2)](Z)dZ = 1. (62)

Notice that the Wigner function is an even function with respect to Qi , Pi and therefore the off-diagonal elements
of �WJ vanish.

The ground state is given by the Gaussian density function

�(0,0)(Q) =
(

1

π1/4
√
a

)2

e
− 1

2a2
Q2

(63)

and the normalized Wigner function is then found to be

WJ [�(0,0)](Q, P) = 1

(π
√
h̄2 + θ2)2

e
− 1

a2
Q2

e
− a2

h̄2+θ2
P2

. (64)

This result is in agreement with Hudson [15] and Soto, Claverie theorem [16] according to which the Wigner
measure of a state vector � ∈ L2(R2n) is non-negative iff � is a Gaussian state. The diagonal elements of �WJ

with multiplicity two are given by

λ1,max . = VarWJ (Qi ) =
√
h̄2 + θ2

2mω̃
> 0

λ2,min = VarWJ (Pi ) = mω̃

2

√
h̄2 + θ2 > 0, i = 1, 2 (65)

assuming the system to be in the ground state. If mω̃ = 1 then the ellipsoid degenerates to a sphere of radius

R = √
2(h̄2+θ2)1/4 and then λ1,max . = λ2,min =

√
h̄2 + θ2/2.We can check that the R.S.U.P. in four phase-space

dimensions, namely,
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2∏
i=1

(VarQiVar Pi ) − 1

4
(h̄2 + θ2)

2∑
i=1

(VarQiVar Pi ) + (h̄2 + θ2)2

16
≥ 0 (66)

is saturated by �(0,0) and det(CovW�(ẑ, ẑ)) = 0 using (39).
Exploiting Proposition 4 for the ordinary H.W. algebra we find the product of the eigenvalues to be given by

2∏
j=1

1

4

(
1

(λ j,J )2
− (h̄2 + θ2)

)
(67)

and thus the linear symplectic capacity of the Wigner ellipsoid and its dual, satisfy the predicted bounds. The
covariance matrix of the extended algebra using (29) is

�W� =

⎛
⎜⎜⎜⎝

λ1 0 0 0

0 θ2λ1+h̄2λ2
h̄2+θ2

(λ2−λ1)h̄θ

h̄2+θ2
0

0 (λ2−λ1)h̄θ

h̄2+θ2
h̄2λ1+θ2λ2

h̄2+θ2
0

0 0 0 λ2

⎞
⎟⎟⎟⎠ (68)

We distinguish the following two cases:

• mω̃ = 1. The matrix �W� is diagonal and has one eigenvalue with multiplicity four. As a consequence
clin.(E�W�

) = clin.(E�WJ
).

• mω̃ �= 1. The ω-symplectic spectrum of �W� is

Specω(�W�) = {λω, λω, λω, λω}, λω =
√

(h̄2 + θ2)λ1λ2 = 1

2
(h̄2 + θ2) (69)

where (65) have been used. This result is also in agreement with the bounds predicted by Proposition 4.

Remark The ordering of the eigenvalues

λ2,min ≤ λ1,max ≤ λω (70)

implies the inequalities for the linearized symplectic capacities

clin.(E�WJ
) ≥ clin.(E�W�

), clin.(E∗
�WJ

) ≤ clin.(E∗
�W�

) (71)

6 Conclusion

In the present work for a particular one-parameter family of extended H.W. algebra we study the conditions under
which the Darboux matrix is symplectic or anti-symplectic. It turns out that for specific values of the a-parameter,
it belongs to the special orthogonal group SO(4l), l ∈ N.

The covariance matrices of the extended and ordinary H.W. algebras are meaningful provided the Wigner quasi-
probability measure transforms like a classical distribution function under symplectic automorphisms. In Propo-
sition 1 we have proved that the symmetric part of the covariance matrix is positive definite by imposing precise
algebraic conditions.

The connection of the linear symplecic capacity with the R.S.U.P. is derived in Proposition 4 with the assistance
of theWilliamson’s ω-symplectic diagonalization Theorem 3. Although the investigation is restricted in four phase-
space dimensions it can also be extended to higher ones. Inclusions of the Weyl ellipsoids which depend on the
symplectic or anti-symplectic nature of S(θ, η) lead to inequalities for the corresponding linear symplecic capacities.

Finally, the rigorous agreement of our theoretical results is exposed by explicitly studying a toy model inspired
by our previous work on non-commutative harmonic oscillator.
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