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Abstract In quantum mechanics, superoscillations, or the more general supershifts, appear as initial conditions
of the time-dependent Schrödinger equation. Already in [5], a unified approach was developed, which yields time
persistence of the supershift property under certain holomorphicity and growth assumptions on the corresponding
Green’s function. While that theory considers the Schrödinger equation on the whole real line R, this paper takes
the natural next step and considersR\{0}, while allowing boundary conditions at x = 0±. In particular, the singular
1
x2
-potential as well as the very important δ and δ′ distributional potentials are covered.

Keywords Superoscillations · Supershift · Schrödinger equation · Fresnel integral · Green’s function

1 Introduction

Superoscillations are functions with the paradoxical behavior to (locally) oscillate faster than their largest Fourier
component. The standard example which illustrates this behavior is the sequence of functions

Fn(x) =
(
cos

( x
n

)
+ ik sin

( x
n

))n =
n∑
j=0

C je
ik j x , x ∈ R, (1.1)

with coefficients

C j =
(
n

j

)(1 + k

2

)n− j(1 − k

2

) j
and k j = 1 − 2 j

n
, (1.2)

where n ∈ N0 and k ∈ R \ [−1, 1]. In particular that F is a certain linear combination of plane waves with
frequencies k j ∈ [−1, 1]. The superoscillatory behavior now comes from the fact that

lim
n→∞ Fn(x) = eikx , x ∈ R, (1.3)

converges to a plane wave with frequency |k| > 1. Note that the convergence (1.3) is understood in the space
A1(C), see [17, Lemma 2.4] and Definition 3.2, which in particular implies uniform convergence on every compact
subset of R. What happens is an almost destructive interference of the plane waves C jeik j x with small frequencies
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344 P. Schlosser

k j ∈ [−1, 1] but large amplitudes C j ∼ |k|n , which leaves a remainder of the form eikx with the small amplitude
1 but high frequency |k| > 1.

In connectionwith quantummechanics, these functionsmainly come as the initial condition of the time-dependent
Schrödinger equation

i
∂

∂t
�(t, x) =

(
− ∂2

∂x2
+ V (t, x)

)
�(t, x), t ∈ (0, T ), x ∈ R, (1.4a)

�(0, x) = F(x), x ∈ R. (1.4b)

for some potential V : (0, T ) × R → C. The question now is the superoscillatory behavior of the solution �(t, x)
at later times t > 0.

The first one addressing this problem was M. Berry who in [12] shows that for free particles, the superoscillatory
behavior occurs within a region |x | < O(n) and within a time t < O(n). In particular in the limit n → ∞ this
property is preserved everywhere and for all times. Thereafter, also for nonvanishing potentials the time persistence
of superoscillations was proven, as for the harmonic oscillator in [8–10,13,14,17], the electric field in [6,8,10,13],
the magnetic field in [8,15], the centrifugal potential in [8,9,16,17], the step potential in [7] and distributional
potentials as δ and δ′ in [3,4,11]. It was also realized in [17] that the precise definition of superoscillations is
for general potentials too narrow to persist in time. Hence, superoscillations were generalized to supershifts as a
consequence.
However, up to this point, only specific potentials were investigated, in particular cases where the corresponding
Green’s function was know explicitly. The first unified approach on the time persistence of supershifts, which
only requires qualitative properties of the Green’s function and no longer its explicit form, was given in [5] for
regular potentials V (t, x), i.e., the Schrödinger equation (1.4a) is defined for all x ∈ R. The topic of this paper
is to continue this argument by considering the Schrödinger equation for x ∈ R \ {0} only, but additionally allow
boundary conditions at x = 0±, i.e., we consider the time-dependent Schrödinger equation

i
∂

∂t
�(t, x) =

(
− ∂2

∂x2
+ V (t, x)

)
�(t, x), t ∈ (0, T ), x ∈ R \ {0}, (1.5a)

M

(
�(t, 0+)

�(t, 0+)

)
= N

(
∂
∂x �(t, 0+)

− ∂
∂x �(t, 0−)

)
, t ∈ (0, T ), (1.5b)

�(0, x) = F(x), x ∈ R \ {0}, (1.5c)

where V : (0, T )× R \ {0} → C is the potential and M, N ∈ C
2×2 describe the boundary conditions at x = 0±. In

particular, potentials with singularities, as for example V (t, x) ∼ 1
x2
, as well as distributional potentials as δ(x) or

δ′(x) are covered by this approach. The key ingredient in the proof of the time persistence will be the representation

�(t, x) =
∫

R

G(t, x, y)F(y)dy (1.6)

via the corresponding Green’s function G. The way how the integral (1.6) will be interpreted is the main topic of
the upcoming Sect. 2.

2 Fresnel integrals

In this section, we develop the so called Fresnel integral technique, which will be the way to interpret the integral
(1.6). Roughly speaking, it is a method to make sense of integrals of the form
∫

R

eiy
2
f (y)dy, (2.1)
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Time evolution of superoscillations... 345

also in situations where the function f itself is not integrable. The basic idea is to use the Cauchy theorem to rotate
the domain of integration into the complex plain and consequently make the oscillating prefactor eiy

2
a Gaussian

ei(ye
iα)2 , whose decay at infinity ensures integrability.

Note that the subsequent Fresnel integral technique is in two ways an improvement of the version in [5]. The first
improvement lies in the fact that we allow an exponential growth of order p ∈ (0, 2) in (2.3) and (2.13), while in [5]
only p = 1 was considered. The second improvement lies roughly speaking in the fact that in [5], the function f
had to be holomorphic in a neighborhood of the closed cone S+

α ∪ {0}, in particular holomorphic in a neighborhood
of [0,∞). In contrast, here it is enough for f to be holomorphic in the interior of S+

α with a continuous extension
to S+

α .

Proposition 2.1 Let a > 0, x ∈ R. Consider for α ∈ (0, π
2 ) the sector

Re(z)

Im(z)

α
S+
α S+

α :={z ∈ C \ {0} |Arg(z) ∈ [0, α]}, (2.2)

and a continuous function f : S+
α → C which is holomorphic on int(S+

α ) and satisfies the estimate

| f (z)| ≤ AeB|z|p , z ∈ S+
α , (2.3)

for some and A, B ≥ 0 and p ∈ (0, 2). Then, for every y0 ∈ R, we get

lim
ε→0+

∫ ∞

0
e−ε(y−y0)2eia(y−x)2 f (y)dy = eiα

∫ ∞

0
eia(yeiα−x)2 f (yeiα)dy, (2.4)

where both integrands are absolute integrable. Moreover, for 0 < ε < 2a
tan(α)

, we also get

∫ ∞

0
e−ε(y−y0)2eia(y−x)2 f (y)dy = eiα

∫ ∞

0
e−ε(yeiα−y0)2eia(yeiα−x)2 f (yeiα)dy. (2.5)

Proof Since the calculation is the same, we will for simplicity only consider x = 0, a = 1 and y0 = 0. For any
η ∈ int(S+

α ) with |η| ≤ 1, we define the shifted function

fη(z):= f (z + η), z ∈ S+
α − η. (2.6)

Then, fη is holomorphic on int(S+
α ) − η and, by (2.3), admits the exponential bound

| fη(z) | ≤ AeB|z+η|p ≤ AeB2
p(|z|p+|η|p) ≤ AeB2

p(|z|p+1) = ÃeB̃|z|p , z ∈ S+
α − η, (2.7)

using the new constants Ã:=AeB2
p
and B̃ = B2p. Fixing R > 0, we then consider the integration path

γ1:={y | 0 ≤ y ≤ R},
γ2:={yeiα | 0 ≤ y ≤ R

cos(α)
},

γ3:={R + iy | R tan(α) ≥ y ≥ 0}.
Re(z)

Im(z)

γ1

γ3γ2

α

α R

S+
α

S+
α − η

−η

Since the paths γ1, γ2, γ3 lie inside int(S+
α −η), where fη is holomorphic, Cauchy’s theorem yields for every ε > 0

∫

γ1

e(i−ε)z2 fη(z)dz =
∫

γ2

e(i−ε)z2 fη(z)dz +
∫

γ3

e(i−ε)z2 fη(z)dz. (2.8)
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346 P. Schlosser

Using the exponential bound (2.7), we can estimate the integral along γ3 as

∣∣∣
∫

γ3

e(i−ε)z2 fη(z)dz
∣∣∣ ≤ Ãe−εR2

∫ R tan(α)

0
eεy2−2Ry+B̃|R+iy|pdy

≤ Ãe−εR2+ B̃ R p

cosp (α)

∫ R tan(α)

0
e−y(2R−εy)dy

≤ ÃR tan(α)e−εR2+ B̃ R p

cosp (α) ,

where in the last line we restricted ε < 2
tan(α)

to conclude 2R − εy > 0. This estimate proves the convergence

lim
R→∞

∫

γ3

e(i−ε)z2 fη(z)dz = 0.

Consequently, in the limit R → ∞, the integrals (2.8) become∫ ∞

0
e(i−ε)y2 fη(y)dy = eiα

∫ ∞

0
e(i−ε)(yeiα)2 fη(ye

iα)dy. (2.9)

Here, both integrals are absolute convergent, the left hand side because of the factor e−εy2 and the right hand side
due to the estimate

∣∣e(i−ε)(yeiα)2 fη(ye
iα)

∣∣ ≤ Ãe−(sin(2α)+ε cos(2α))y2+B̃ y p ≤ Ãe−( 2
tan(α)

−ε) sin2(α)y2+B̃ y p
, (2.10)

which is integrable for every ε < 2
tan(α)

. Moreover, since the upper bound (2.10) is η-independent, we can apply
the dominated convergence theorem to both sides of (2.9) and obtain∫ ∞

0
e(i−ε)y2 f (y)dy = eiα

∫ ∞

0
e(i−ε)(yeiα)2 f (yeiα)dy, (2.11)

which is exactly the identity (2.5). Finally, we want to apply the limit ε → 0+ to this equation. By the estimate
(2.10) for f instead of fη, i.e., formally putting η = 0, the integrand on the right hand side of (2.11) is bounded
by some majorant which decreases as ε → 0+. By the dominated convergence theorem, we then obtain the stated
limit (2.4). 
�

The Fresnel integral technique of Proposition 2.1 can also be applied on the negative semi axis, which leads to
the following corollary.

Corollary 2.2 Let a > 0, x ∈ R. Consider for some α ∈ (0, π
2 ) the double sector

Re(z)

Im(z)

α
α

Sα

Sα:={z ∈ C \ {0} | Arg(z) ∈ [0, α] ∪ [π, π + α]}, (2.12)

and a continuous function f : Sα → C which is holomorphic on int(Sα) and satisfies the estimate

| f (z)| ≤ AeB|z|p , z ∈ Sα, (2.13)

for some A, B ≥ 0 and p ∈ (0, 2). Then, for every y0 ∈ R, we get

lim
ε→0+

∫

R

e−ε(y−y0)2eia(y−x)2 f (y)dy = eiα
∫

R

eia(yeiα−x)2 f (yeiα)dy, (2.14)

where both integrands are absolute integrable. Moreover, for 0 < ε < 2a
tan(α)

, we also get
∫

R

e−ε(y−y0)2eia(y−x)2 f (y)dy = eiα
∫

R

e−ε(yeiα−y0)2eia(yeiα−x)2 f (yeiα)dy. (2.15)
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Time evolution of superoscillations... 347

3 Schrödinger equation on R \ {0}

The central topic of this paper is the investigation of the Cauchy problem (1.5). In particular, we consider the Green’s
function approach (1.6). The main result of this section will then be Theorem 3.3, which puts the integral (1.6) into
a mathematical rigorous framework and also provides a continuous dependency between the initial condition F and
the solution �. This continuous dependency result will then be the main ingredient in Sect. 4 to conclude the time
persistence of the supershift property.

We start by specifying in detail in which sense we want to understand the Cauchy problem (1.5). It will be
convenient to view the solution (and its derivatives) in the context of absolute continuous functions. The linear
space of absolute continuous functions on some open interval I ⊆ R will be denoted by AC(I ). Recall that
f ∈ AC(I ) if and only if there exists some g ∈ L1

loc(I ), such that

f (y) − f (x) =
∫ y

x
g(s)ds, x, y ∈ I. (3.1)

Also observe that f ∈ AC(I ) is differentiable almost everywhere and its derivative f ′ coincides almost everywhere
with g in (3.1). Moreover, we understand the space of absolute continuous functions on Ṙ:=R \ {0} as
AC(Ṙ):={ f : Ṙ → C | f |(−∞,0) ∈ AC((−∞, 0)) and f | (0,∞) ∈ AC((0,∞))}.
For T ∈ (0,∞], we shall now work with the space

AC1,2((0, T ) × Ṙ):=
{
� : (0, T ) × Ṙ → C

∣∣∣∣
�( ·, x) ∈ AC((0, T )), ∀x ∈ Ṙ

�(t, · ),�x (t, · ) ∈ AC(Ṙ), ∀t ∈ (0, T )

}
. (3.2)

Let V : (0, T ) × Ṙ → C be some potential, M, N ∈ C
2×2 matrices describing the transmission condition and

F : Ṙ → C the initial condition. We call a function � ∈ AC1,2((0, T ) × Ṙ) a solution of the time-dependent
Schrödinger equation, if it satisfies

i
∂

∂t
�(t, x) =

(
− ∂2

∂x2
+ V (t, x)

)
�(t, x), f.a.e. t ∈ (0, T ), x ∈ Ṙ, (3.3a)

M

(
�(t, 0+)

�(t, 0+)

)
= N

(
�x (t, 0+)

−�x (t, 0−)

)
, t ∈ (0, T ), (3.3b)

lim
t→0+ �(t, x) = F(x), x ∈ Ṙ. (3.3c)

The corresponding Green’s function is a function G : (0, T ) × Ṙ × Ṙ → C, which depends on the potential V
and the boundary matrices M, N , but not on the initial condition F , such that the solution � admits the (formal)
representation

�(t, x) =
∫

R

G(t, x, y)F(y)dy, t ∈ (0, T ), x ∈ Ṙ. (3.4)

In the following Assumptions 3.1, we provide a set of properties for the Green’s function G, to give meaning to the
integral (3.4) and ensure that �(t, x) indeed is a solution of the Cauchy problem (3.3).

Assumption 3.1 Let T ∈ (0,∞] and G : (0, T ) × Ṙ × Ṙ → C. For some α ∈ (0, π
2 ), let Sα be the double sector

(2.12), and suppose that G admits a continuation to a function G : (0, T ) × Ṙ × Sα → C, such that for every fixed
t ∈ (0, T ), x ∈ Ṙ the mapping G(t, x, · ) is continuous on Sα and holomorphic on int(Sα). Moreover, it will be
assumed that G satisfies the following properties (i)–(iii).

(i) For every fixed z ∈ Sα , the function G( ·, ·, z) ∈ AC1,2((0, T ) × Ṙ) is a solution of the time-dependent
Schrödinger equation

i
∂

∂t
G(t, x, z) =

(
− ∂2

∂x2
+ V (t, x)

)
G(t, x, z), f.a.e. t ∈ (0, T ), x ∈ Ṙ, (3.5)
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348 P. Schlosser

with V : (0, T ) × Ṙ → C the considered potential. Moreover, for every y ∈ Ṙ the Green’s function satisfies
the transmission condition

M

(
G(t, 0+, y)
G(t, 0−, y)

)
= N

(
Gx (t, 0+, y)

−Gx (t, 0−, y)

)
, t ∈ (0, T ), (3.6)

with matrices M, N ∈ C
2×2.

(ii) For every x ∈ Ṙ, there exists some x0 > |x |, such that

lim
t→0+

∫ x0

−x0
G(t, x, y)ϕ(y)dy = ϕ(x), ϕ ∈ C∞([−x0, x0]). (3.7)

(iii) There exists a ∈ AC((0, T )) with a(t) > 0 and limt→0+ a(t) = ∞, such that G̃ in the decomposition

G(t, x, z) = eia(t)(z−x)2 G̃(t, x, z), t ∈ (0, T ), x ∈ Ṙ, z ∈ Sα, (3.8)

is for every t ∈ (0, T ), x ∈ Ṙ exponentially bounded as

∣∣G̃(t, x, z)
∣∣ ≤ A0(t, x)e

B0(t,x)|z|p , z ∈ Sα, (3.9a)
∣∣∣ ∂

∂x
G̃(t, x, z)

∣∣∣ ≤ A1(t, x)e
B1(t,x)|z|p , z ∈ Sα, (3.9b)

∣∣∣ ∂2

∂x2
G̃(t, x, z)

∣∣∣,
∣∣∣ ∂

∂t
G̃(t, x, z)

∣∣∣ ≤ A2(t, x)e
B2(t,x)|z|p , z ∈ Sα. (3.9c)

Here, p ∈ (0, 2) and A0, A1, A2, B0, B1, B2 : (0, T ) × Ṙ → [0,∞) are continuous and for every x ∈ Ṙ

A0( ·, x)√
a(t)

and B0( ·, x) are bounded as t → 0+, (3.10)

and for every t ∈ (0, T ):

◦ If M = N = 0, no further assumptions.
◦ If M �= 0, N = 0, then A0(t, · ), B0(t, · ) are bounded as x → 0±.
◦ If N �= 0, then A0(t, · ), A1(t, · ), B0(t, · ), B1(t, · ) are bounded as x → 0±.

Once we fixed the assumptions on the Green’s function, we still need to specify the allowed initial conditions F in
(3.3c). The following space Aq(C) is natural in the sense that it fits with the assumptions (2.13) and also contains
the superoscillating functions (1.1) for p = 1 as well as the supershift functions of Definition 4.1.

Definition 3.2 Let H(C) denote the set of all entire functions. Then, for every q > 0 define the space of entire
functions with exponential growth of order q as

Aq(C):={F ∈ H(C) | ∃A, B ≥ 0 such that |F(z)| ≤ AeB|z|q for all z ∈ C}. (3.11)

A sequence of functions (Fn)n ∈ Aq(C) converges to F0 ∈ Aq(C) in Aq(C), if and only if there exists some
B ≥ 0, such that

lim
n→∞ sup

z∈C
|Fn(z) − F0(z)|e−B|z|q = 0. (3.12)

Theorem 3.3 Let G : (0, T ) × Ṙ × Ṙ → C be as in Assumption 3.1. Then, for every F ∈ Aq(C), q ∈ (0, 2), the
wave function

�(t, x):= lim
ε→0+

∫

R

e−εy2G(t, x, y)F(y)dy, t ∈ (0, T ), x ∈ Ṙ, (3.13)

exists and � ∈ AC1,2((0, T ) × Ṙ) is a solution of the Cauchy problem (3.3). Moreover, if initial conditions

(Fn)n ∈ Aq(C) converge as Fn
n→∞−→ F in Aq(C), also the corresponding solutions converge as

lim
n→∞ �(t, x; Fn) = �(t, x; F), (3.14)

for fixed t ∈ (0, T ) and uniformly on compact subsets of Ṙ.
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Time evolution of superoscillations... 349

Note that for convenience, we used the notation �(t, x; F) in (3.14) to emphasize the initial condition.
Since in practical applications the initial condition (3.7) is often hard to verify, the following Corollary 3.4 gives

an opportunity to replace it by the simple limit (3.16). Roughly speaking, the limit (3.16) is one way how the Green’s
function approaches the δ-function as t → 0+. However, to use this simplification it is necessary for the Green’s
function to be holomorphic (and satisfy (3.9a)) not only on Sα but also on a neighborhood of Ṙ. More precisely, for
α ∈ (0, π

2 ) and h > 0, we consider

Re

Im

αα

αα

h

-h

Dα,h Dα,h :={z ∈ C \ {0} | Arg(z) ∈ [−α, α] and Im(z) ≥ −h}
∪ {z ∈ C \ {0} | Arg(z) ∈ [π − α, π + α] and Im(z) ≤ h}. (3.15)

Corollary 3.4 Let G : (0, T ) × Ṙ×Ṙ→C satisfy Assumption 3.1 with Sα replaced by Dα,h and (3.7) replaced by

lim
t→0+

G(t, x, x)√
a(t)

= 1√
iπ

, x ∈ Ṙ. (3.16)

Then, the same results as in Theorem 3.3 hold true, i.e., for every F ∈ Aq(C), q ∈ (0, 2), the wave function
(3.13) exists and � ∈ AC1,2((0, T ) × Ṙ) is a solution of the Cauchy problem (3.3). Moreover, if initial conditions

(Fn)n ∈ Aq(C) converge as Fn
n→∞−→ F in Aq(C), also the corresponding solutions converge as in (3.14).

Proof of Theorem 3.3 First, we note that due to F ∈ Aq(C), there exists A, B ≥ 0 such that

|F(z)| ≤ AeB|z|q , z ∈ Sα. (3.17)

Step 1. In the first step, we apply Corollary 2.2, to show that the expression (3.13) for thewave function ismeaningful
and give a representation using Fresnel integrals. For this, we fix t ∈ (0, T ), x ∈ Ṙ and use the estimates (3.9a) and
(3.17) to get

|G̃(t, x, z)F(z)| ≤ AA0(t, x)e
B0(t,x)|z|p+B|z|q

≤ AA0(t, x)e
(B+B0(t,x))(1+|z|)max{p,q}

≤ AA0(t, x)e
(B+B0(t,x))2max{p,q}(1+|z|max{p,q})

= Ã0(t, x)e
B̃0(t,x)|z| p̃ , z ∈ Sα, (3.18)

where we introduced the new coefficients

Ã0(t, x):=AA0(t, x)e
(B+B0(t,x))2max{p,q}

,

B̃0(t, x):=(B + B0(t, x))2
max{p,q},

p̃:=max{p, q}. (3.19)

Hence, due to the decomposition (3.8), the assumptions of Corollary 2.2 are satisfied, which means that the wave
function (3.13) exists and admits the absolute integrable representation

�(t, x) = lim
ε→0+

∫

R

e−εy2eia(t)(y−x)2 G̃(t, x, y)F(y)dy

= eiα
∫

R

eia(t)(yeiα−x)2 G̃(t, x, yeiα)F(yeiα)dy

= eiα
∫

R

G(t, x, yeiα)F(yeiα)dy. (3.20)
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350 P. Schlosser

Step 2. We show that the function � in (3.13), is a solution of the Schrödinger equation (3.3a). Since G is already
a solution of (3.5) by Assumption 3.1 (i), it is sufficient to carry the derivatives inside the integral (3.20).

For the first spatial derivative, we note that G(t, ·, z)∈AC(Ṙ) for every t∈(0, T ), z ∈ Sα by Assumption 3.1(i).
Hence, for any x0, x1 > 0, we have

G(t, x1, z) = G(t, x0, z) +
∫ x1

x0

∂

∂x
G(t, x, z)dx, t ∈ (0, T ), z ∈ Sα,

which leads to the following integral representation of the wave function (3.20)

�(t, x1) = �(t, x0) + eiα
∫

R

∫ x1

x0

∂

∂x
G(t, x, yeiα)dxF(yeiα)dy. (3.21)

Using the decomposition (3.8), we can write the derivative as

∂

∂x
G(t, x, yeiα) =

(
2ia(t)(x − yeiα)G̃(t, x, yeiα) + ∂

∂x
G̃(t, x, yeiα)

)
eia(t)(yeiα−x)2 .

Using the estimate (3.18) and a similar one for ∂
∂x G̃(t, x, z)F(z) using the coefficients Ã1(t, x):=AA1(t, x)

e(B+B1(t,x))2max{p,q}
and B̃1(t, x):=(B + B1(t, x))2max{p,q}, we get

∣∣∣ ∂

∂x
G(t, x, yeiα)F(yeiα)

∣∣∣ =
∣∣∣2ia(t)(x − yeiα)G̃(t, x, yeiα) + ∂

∂x
G̃(t, x, yeiα)

∣∣∣∣∣eia(t)(yeiα−x)2F(yeiα)
∣∣

≤
(
2|a(t)||x − yeiα| Ã0(t, x) + Ã1(t, x)

)
e−a(t) sin(2α)y2eB̃0(t,x)|y| p̃+2a(t) sin(α)|xy|.

(3.22)

Since Ã0, Ã1, B̃0, B̃1, a are assumed to be continuous, the right hand side of this estimate is integrable on [x0, x1].
Additionally, the factor e−a(t) sin(2α)y2 implies integrability with respect to y ∈ R. Hence, we observe absolute
integrability on [x0, x1] × R and the order of integration in (3.21) can be interchanged by the Fubini theorem, i.e.,

�(t, x1) = �(t, x0) + eiα
∫ x1

x0

∫

R

∂

∂x
G(t, x, yeiα)F(yeiα)dydx .

In particular, this shows �(t, · )∣∣
(0,∞)

∈ AC((0,∞)), the x-derivative exists almost everywhere and is given by

∂

∂x
�(t, x) = eiα

∫

R

∂

∂x
G(t, x, yeiα)F(yeiα)dy. (3.23)

The same is obviously true for x < 0 andwe conclude�(t, · ) ∈ AC(Ṙ). Using the same argument, also ∂
∂x �(t, · ) ∈

AC(Ṙ) and �( ·, t) ∈ AC((0, T )), with second spatial derivative and time derivative almost everywhere given by

∂2

∂x2
�(t, x) = eiα

∫

R

∂2

∂x2
G(t, x, yeiα)F(yeiα)dy,

∂

∂t
�(t, x) = eiα

∫

R

∂

∂t
G(t, x, yeiα)F(yeiα)dy.

This means � ∈ AC1,2((0, T ) × Ṙ) and from (3.5) we conclude that the Schrödinger equation (3.3a) is satisfied
for almost every t ∈ (0, T ), x ∈ Ṙ.
Step 3. Next, we verify the transmission condition (3.3b). If M = N = 0, there is nothing to do. In the case M �= 0
and N = 0, we can estimate the integrand of the integral (3.20) as
∣∣G(t, x, yeiα)F(yeiα)

∣∣ ≤ Ã0(t, x)e
−a(t) sin(2α)y2+2a(t) sin(α)|xy|+B̃0(t,x)|y| p̃ ,

using the decomposition (3.8) as well as the estimate (3.18). Since by Assumption 3.1 (iii) and by (3.19) the
coefficients Ã0(t, · ) and B̃0(t, · ) are bounded in the limit x → 0±, the right hand side can be replaced by some
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integrable and x-independent majorant, at least in a neighborhood of x = 0. Hence, we can apply the dominated
convergence theorem in (3.20), to get the boundary value

�(t, 0±) = eiα
∫

R

G(t, 0±, yeiα)F(yeiα)dy, t ∈ (0, T ). (3.24)

Moreover, the estimate (3.18) in the limit x → 0± shows that

|G̃(t, 0±, z)F(z)| ≤ Ã0(t)e
B̃0(t)|z| p̃ , t ∈ (0, T ), z ∈ Sα,

for upper bounds Ã0(t) and B̃0(t) of Ã0(t, · ) and B̃0(t, · ) in the limit x → 0±. Due to Corollary 2.2, it is now
possible to write the integral (3.24) again in the real valued form

�(t, 0±) = lim
ε→0+

∫

R

e−εy2G(t, 0±, y)F(y)dy, t ∈ (0, T ). (3.25)

Since the Green’s function satisfies the transmission condition (3.6) with N = 0, the same equation carries over to
the wave function � and we end up with the stated (3.3b).

In the situation N �= 0, also the coefficients Ã1(t, · ) and B̃1(t, · ) from (3.22) are bounded as x → 0± by
Assumption 3.1 (iii). Hence, we are allowed to carry the limit x → 0± inside the integral (3.23) and get

∂

∂x
�(t, 0±) = eiα

∫

R

∂

∂x
G(t, 0±, yeiα)F(yeiα)dy.

Since moreover the estimate (3.22) in the limit x → 0± looks like
∣∣∣ ∂

∂x
G(t, 0±, yeiα)F(yeiα)

∣∣∣ ≤
(
2|a(t)||y| Ã0(t) + Ã1(t)

)
e−a(t) sin(2α)y2eB̃0(t)|y| p̃ ,

for upper bounds Ã1(t) and B̃1(t) of Ã1(t, · ) and B̃1(t, · ) in the limit x → 0±. This estimate now allows to apply
Corollary 2.2 which transforms the integral back onto the real line

∂

∂x
�(t, 0±) = lim

ε→0+

∫

R

e−εy2 ∂

∂x
G(t, 0±, y)F(y)dy, t ∈ (0, T ). (3.26)

Since we already know by assumption that G satisfies the transmission condition (3.6), the integral representations
(3.25) and (3.26) show that it carries over to � and gives (3.3b).
Step 4. In the next step, we verify the initial condition (3.3c). To do so, we fix x ∈ Ṙ and with x0 > |x | from
Assumption 3.1 (ii), we split up the integral (3.13) as

�(t, x) = lim
ε→0+

∫ −x0

−∞
e−εy2G(t, x, y)F(y)dy

︸ ︷︷ ︸
=:�1(t,x)

+ lim
ε→0+

∫ x0

−x0
e−εy2G(t, x, y)F(y)dy

︸ ︷︷ ︸
=:�2(t,x)

+ lim
ε→0+

∫ ∞

x0
e−εy2G(t, x, y)F(y)dy

︸ ︷︷ ︸
=:�3(t,x)

. (3.27)

We will now derive the initial values of these three integrals separately. Starting with �3, it follows from (3.18) that
the shifted integrand admits the estimate

|G̃(t, x, x0 + z)F(x0 + z)| ≤ Ã0(t, x)e
B̃0(t,x)|x0+z| p̃ , z ∈ S+

α , (3.28)

and by Proposition 2.1, we can write �1 as the Fresnel integral

�3(t, x) = lim
ε→0+

∫ ∞

0
e−ε(x0+y)2G(t, x, x0 + y)F(x0 + y)dy

= eiα
∫ ∞

0
G(t, x, x0 + yeiα)F(x0 + yeiα)dy. (3.29)
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Using once more (3.28), this integral can be estimated as

|�3(t, x)| ≤ Ã0(t, x)
∫ ∞

0
e−a(t) sin(2α)y2−2a(t) sin(α)(x0−x)y+B̃0(t,x)(x0+y) p̃dy

= Ã0(t, x)√
a(t)

∫ ∞

0
e
− sin(2α)y2−2

√
a(t) sin(α)(x0−x)y+B̃0(t,x)

(
x0+ y√

a(t)

) p̃

dy. (3.30)

According to (3.10) and (3.19) we know that Ã0√
a
and B̃0 remain finite in the limit t → 0+, and also that

limt→0+ a(t) = ∞. Therefore, since x0 > x , the integrand vanishes in the limit t → 0+ and so does

lim
t→0+ �3(t, x) = 0. (3.31)

For the same reason, also

lim
t→0+ �1(t, x) = 0. (3.32)

For the function �2(t, x), we first note that due to the dominated convergence theorem, we are allowed to carry the
limit ε → 0+ inside the integral and get

�2(t, x) =
∫ x0

−x0
G(t, x, y)F(y)dy. (3.33)

Since F ∈ Aq(C) is an entire function, it is in particular F ∈ C∞(R) and the initial value

lim
t→0+ �2(t, x) = F(x) (3.34)

follows from assumption (3.7). Combining now (3.31), (3.32) and (3.34) gives the initial value (3.3c) of �(t, x)
and hence finishes Step 4 of the proof.
Step 5. It is left to check the continuous dependency (3.14) of the wave function on the initial condition. According
to the Aq -convergence (3.12) of the initial conditions, we define the coefficients

An := sup
z∈C

|F(z) − Fn(z)|e−B|z|q , n ∈ N,

for which obviously

lim
n→∞ An = 0 and |F(z) − Fn(z)| ≤ Ane

B|z|q , z ∈ C, (3.35)

holds true. Let K ⊆ Ṙ be compact, x0 > 0 such that K ⊆ [−x0, x0] and for every t ∈ (0, T ), x ∈ K we split up
the �-integral as in (3.27). We will now prove the continuous dependency (3.14) for the three parts of the wave
function separately. Rewriting the �3-integral as in (3.29) and estimate the difference as in (3.30) gives

|�3(t, x; F) − �3(t, x; Fn)| =
∣∣∣eiα

∫ ∞

0
G(t, x, x0 + yeiα)

(
F(x0 + yeiα) − Fn(x0 + yeiα)

)
dy

∣∣∣

≤ Ãn(t, x)√
a(t)

∫ ∞

0
e
− sin(2α)y2−2

√
a(t)(x0−x) sin(α)y+B̃0(t,x)

(
x0+ y√

a(t)

) p̃

dy,

using the similar coefficient Ãn(t, x):=An A0(t, x)e(B+B0(t,x))2max{p,q}
as in (3.19). Since An

n→∞−→ 0 by (3.35) this
estimate proves

lim
n→∞ �3(t, x; Fn) = �3(t, x; F).
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Since moreover A0(t, · ) and B0(t, · ) are continuous on Ṙ by Assumption 3.1 (iii), this convergence is uniform
with respect to x ∈ K . Following the same arguments, one also obtains the convergence

lim
n→∞ �1(t, x; Fn) = �1(t, x; F).

Finally, carrying the limit ε → 0+ inside the �2-integral, as in (3.33), we can estimate the difference

|�2(t, x; F) − �2(t, x; Fn)| =
∣∣∣
∫ x0

−x0
G(t, x, y)(F(y) − Fn(y))dy

∣∣∣

≤ An A0(t, x)
∫ x0

−x0
eB0(t,x)|y|p+B|y|qdy

≤ 2x0An A0(t, x)e
B0(t,x)x

p
0 +Bxq0 .

Also here, An
n→∞−→ 0 implies

lim
n→∞ �2(t, x; Fn) = �2(t, x; F),

uniform with respect to x ∈ K . This verifies the convergence (3.14) and finishes the proof. 
�
Next we prove Corollary 3.4, where we use the simplified initial condition (3.16) instead of (3.7).

Proof of Corollary 3.4 The fact that the wave function (3.13) exists and � ∈ AC1,2((0, T ) × Ṙ) is a solution of
(3.3a) and (3.3b) is the same as in the proof of Theorem 3.3. Also the continuous dependency result (3.14) can be
proven in the same way.

The only thing to check is the initial condition (3.3c). Without loss of generality, we assume x > 0. First, we
generalize (3.16) in the sense that for any z(t) ∈ Dα,h with limt→0+ z(t) = x , we have

lim
t→0+

G̃(t, x, z(t))√
a(t)

= 1√
iπ

. (3.36)

Consider an open ball Br (x) with radius 0 < r < min{h, x sin(α)} around x . Then, this ball is obviously contained
in the interior int(Dα,h) and we are allowed to apply the Cauchy integral formula to write

G̃(t, x, z(t)) − G̃(t, x, x) = 1

2π i

∫

|z−x |=r

( G̃(t, x, z)

z − z(t)
− G̃(t, x, z)

z − x

)
dz

= z(t) − x

2π i

∫

|z−x |=r

G̃(t, x, z)

(z − z(t))(z − x)
dz

= z(t) − x

2π

∫ 2π

0

G̃(t, x, x + reiθ )

x + reiθ − z(t)
dθ.

Using (3.9a), we can estimate the integrand to get

∣∣G̃(t, x, z(t)) − G̃(t, x, x)
∣∣ ≤ A0(t, x)|z(t) − x |

2π

∫ 2π

0

eB0(t,x)|x+reiθ |p

|x + reiθ − z(t)|dθ

≤ A0(t, x)|z(t) − x |
r − |z(t) − x | eB0(t,x)(|x |+r)p .

Since A0(t,x)√
a(t)

and B0(t, x) are bounded as t → 0+ and limt→0+ z(t) = x , it follows that

lim
t→0+

|G̃(t, x, z(t)) − G̃(t, x, x)|√
a(t)

= 0.
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With (3.16) and the decomposition (3.8), we then obtain the limit (3.36), namely

lim
t→0+

G̃(t, x, z(t))√
a(t)

= lim
t→0+

G̃(t, x, x)√
a(t)

= lim
t→0+

G(t, x, x)√
a(t)

= 1√
iπ

.

Next, we split up the integral (3.13) as

�(t, x) = eiα
∫ 0

−∞
G(t, x, yeiα)F(yeiα)dy +

∫ x

0
G(t, x, y)F(y)dy + eiα

∫ ∞

0
G(t, x, x + yeiα)F(x + yeiα)dy,

which is the same decomposition as in (3.27), with the interval [−x0, x0] replaced by [0, x], and the subsequent
rewriting of the integrals (3.29) and (3.33). Using the Cauchy theorem, we change the integration path 0 → x once
more to 0 → x − δeiα → x where δ > 0 is small enough such that x − δeiα ∈ int(Dα,h), i.e., we end up with the
representation

�(t, x) =
∫

γ1

G(t, x, z)F(z)dz +
∫

γ2

G(t, x, z)F(z)dz +
∫

γ3

G(t, x, z)F(z)dz, (3.37)

using the three complex paths

γ1:={yeiα | y ≤ 0},
γ2:={s(x − δeiα) | 0 ≤ s ≤ 1},
γ3:={x + yeiα | y ≥ −δ}.

Re

Im

α
α

h

-h

Dα,h
x

γ1
γ2

γ3

x-δeiα

We will now consider all three integrals separately. Starting with the integral along γ1, the estimate (3.18) with the
coefficients (3.19) yields the estimate

∣∣∣
∫

γ1

G(t, x, z)F(z)dz
∣∣∣ =

∣∣∣eiα
∫ 0

−∞
eia(t)(yeiα−x)2 G̃(t, x, yeiα)F(yeiα)dy

∣∣∣

≤ Ã0(t, x)
∫ 0

−∞
e−a(t) sin(2α)y2+2a(t) sin(α)xy+B̃0(t,x)|y| p̃dy

= Ã0(t, x)√
a(t)

∫ 0

−∞
e
− sin(2α)y2−2

√
a(t) sin(α)x |y|+B̃0(t,x)

( |y|√
a(t)

) p̃

dy.

According to (3.10) and (3.19), we know that Ã0√
a
and B̃0 remain finite in the limit t → 0+, and also that

limt→0+ a(t) = ∞. Therefore, since x > 0, the integrand vanishes as t → 0+ and so does the whole integral

lim
t→0+

∫

γ1

G(t, x, z)F(z)dz = 0. (3.38)
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For the integral along γ2, we use the estimate (3.18) to get

∣∣∣
∫

γ2

G(t, x, z)F(z)dz
∣∣∣ =

∣∣∣(x − δeiα)

∫ 1

0
G

(
t, x, s(x − δeiα)

)
F

(
s(x − δeiα)

)
ds

∣∣∣

≤ Ã0(t, x)|x − δeiα|
∫ 1

0
e−2δa(t) sin(α)s

(
x−s Re(x−δeiα)

)
+B̃0(t,x)|s(x−δeiα)| p̃ds

≤ Ã0(t, x)|x − δeiα|eB̃0(t,x)|x−δeiα | p̃
∫ ∞

0
e−2δa(t) sin(α)s

(
x−Re(x−δeiα)

)
ds

= Ã0(t, x)|x − δeiα|
δ2a(t) sin(2α)

eB̃0(t,x)|x−δeiα | p̃ ,

where we used in the estimate of the third line that Re(x − δeiα) > 0. Since again Ã0√
a
, B̃0 are bounded as t → 0+

and limt→0+ a(t) = ∞, also

lim
t→0+

∫

γ2

G(t, x, z)F(z)dz = 0. (3.39)

Finally, the integral along γ3 can be parametrized as

∫

γ3

G(t, x, z)F(z)dz = eiα
∫ ∞

−δ

G(t, x, x + yeiα)F(x + yeiα)dy

= eiα√
a(t)

∫ ∞

−δ
√
a(t)

G
(
t, x, x + yeiα√

a(t)

)
F

(
x + yeiα√

a(t)

)
dy.

Again by (3.18), the integrand can be estimated as

∣∣∣G
(
t, x, x + yeiα√

a(t)

)
F

(
x + yeiα√

a(t)

)∣∣∣ ≤ Ã0(t, x)√
a(t)

e
−y2 sin(2α)+B̃0(t,x)

∣∣x+ yeiα√
a(t)

∣∣ p̃
.

Once more, Ã0√
a
, B̃0 are bounded as t → 0+ and limt→0+ a(t) = ∞, and hence this upper bound can be made

t-independent in a neighborhood of t = 0+. By the dominated convergence theorem, we are then allowed to carry
the limit t → 0+ inside the integral, and using also (3.36) the γ3-integral then becomes

lim
t→0+

∫

γ3

G(t, x, z)F(z)dz = eiα
∫

R

lim
t→0+

1√
a(t)

G
(
t, x, x + yeiα√

a(t)

)
F

(
x + yeiα√

a(t)

)
dy

= eiα√
iπ

∫

R

eiy
2e2iα F(x)dy = F(x). (3.40)

Combining now (3.38), (3.39) and (3.40) gives the initial value (3.3c). 
�

4 Stability of superoscillations and supershifts

It is a question almost as old as superoscillations itself: what happens to a superoscillating function as it evolves
in time, when interacting with some quantum mechanical system? In other words: what happens if we put some
superoscillatory sequence (Fn)n as initial condition of the time-dependent Schrödinger equation (3.3)? Will the
sequence of solutions (�(t, x; Fn))n still be superoscillating at times t > 0?
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Motivated by the example (1.1), the two defining properties of superoscillations are on the one hand the decom-
position into plane waves

Fn(z) =
n∑
j=0

C j (n)eik j (n)z, z ∈ C, (4.1)

with coefficients C j (n) ∈ C and frequencies k j (n) ∈ [−k0, k0], for some k0 > 0. On the other hand the functions
converge as

lim
n→∞ Fn(z) = eikz, in A1(C), (4.2)

to some plane wave with frequency k ∈ R \ [−k0, k0]. The continuous dependency result of Theorem 3.3 now
already indicates some convergence

lim
n→∞ �(t, x; Fn) = �(t, x; eik · ). (4.3)

However, although the limit function�(t, x; eik · )may admit some oscillatory behavior, it is by no means expected
(and also not true) that it is again a plane wave eik(t)x . Also, since Theorem 3.3 only gives uniform convergence on
compact subsets of Ṙ, the desired A1-convergence in the variable x may in general fail. Already the extension to
a holomorphic function will not be possible in general, since it is intuitively clear that some potential, having for
example discontinuities, leads to a wave function with is no longer holomorphic although the initial value was.
To overcome this dilemma, the notion of supershift was introduced in [17] and appeared in slightly different
variations in subsequent publications. In the following, we will stick to the one in [5], namely motivated by (4.1)
and (4.2), we define

Definition 4.1 Let O,U ⊆ C such that U � O and X be a metric space. Consider a family

ϕκ : X → C, κ ∈ O, (4.4)

of complex valued functions. We say that a sequence of functions (n)n of the form

n(s) =
n∑

l=0

Cl(n)ϕκl (n)(s), s ∈ X, (4.5)

with coefficients Cl(n) ∈ C, κl(n) ∈ U , admits a supershift, if there exists some κ ∈ O \ U , such that

lim
n→∞ n(s) = ϕκ(s), s ∈ X, (4.6)

converges uniformly on compact subsets of X .

This definition of supershift mainly means that we forget about the oscillatory behavior of the plane waves eiκz

and replace them by some arbitrary functions ϕκ(z). Also the A1-convergence (4.2) gets weakened to the uniform
convergence on compact sets (4.6). If the used functionϕκ admit any kind of oscillatory behaviormay be investigated
for each potential independently.

Remark 4.2 Since we introduced the supershift property with the aim to generalize superoscillations, it is obligatory
that the example functions (1.1) fit into Definition 4.1. But this is indeed the case, choosing X = C, O = R,
U = [−1, 1] and ϕκ(z) = eiκz , see also [5, Example 4.3].

The first main result of this section is the following Theorem 4.3 on the supershift property of the solution of the
Schrödinger equation (3.3), which can be viewed as a corollary of the continuous dependence result of Theorem 3.3.
Roughly speaking,we consider a family of initial conditions that admit a supershift (with respect to a slightly stronger
form of convergence as in Definition 4.1) and conclude that the corresponding solutions of the Schrödinger equation
admit a similar type of supershift, see also Remark 4.4.
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Theorem 4.3 Let the function G be as in Assumption 3.1 andO,U ⊆ Cwith U � O. For some q ∈ (0, 2) consider
a family of functions ϕκ ∈ Aq(C), κ ∈ O and a sequence

Fn(z) =
n∑

l=0

Cl(n)ϕκl (n)(z), z ∈ C, (4.7)

of initial conditions with coefficients Cl(n) ∈ C, κl(n) ∈ U . If now
lim
n→∞ Fn = ϕκ in Aq(C), (4.8)

to some ϕκ with κ ∈ O \ U , then the sequence of solutions of the Cauchy problem (3.3) converges as

lim
n→∞ �(t, x; Fn) = lim

n→∞

n∑
l=0

Cl(n)�(t, x;ϕκl (n)) = �(t, x;ϕκ), (4.9)

for every t ∈ (0, T ) and uniformly on compact subsets Ṙ.

Remark 4.4 Since the convergence (4.8) implies uniform convergence on all compact subsets of R, it is clear that
the initial conditions (Fn)n in (4.7) admit the supershift property of Definition 4.1 in the space X = Ṙ. Furthermore,
the convergence (4.9) shows that for every t ∈ (0, T ) also the solutions �(t, ·; Fn) admit a supershift with respect
to the functions φκ(t, x):=�(t, x;ϕκ).

Proof of Theorem 4.3 The fact that the convergence (4.8) leads to the convergence (4.9), was already subject of
Theorem 3.3. Moreover, splitting the solutions �(t, x; Fn) into the given linear combination is allowed due to the
linearity of the Schrödinger equation with respect to the initial condition, i.e.,

�(t, x; Fn) = �
(
t, x;

n∑
l=0

Cl(n)ϕκl (n)

)
=

n∑
l=0

Cl(n)�(t, x;ϕκl (n)). 
�
If the sequence (n)n in (4.5) admits a supershift, then the values of ϕκ for some κ ∈ O, outside the smaller

set U , can be calculated by (4.6) only using values ϕκl (n) at the points κl(n) inside U . Hence, informally speaking,
when considering the mapping κ �→ ϕκ in the κ-variable, this feels like a property of analytic functions. Although
we are not able to prove that the supershift property implies analyticity in general, the following Theorem 4.5 at
least shows that analyticity in the κ-variable of the initial condition implies analyticity in the κ-variable of the wave
function.

Theorem 4.5 Let G be as in Assumption 3.1. For some open set O ⊆ C and q ∈ (0, 2), we consider a family of
functions ϕκ ∈ Aq(C), κ ∈ O, such that

|ϕκ(z)| ≤ A(κ)eB(κ)|z|q , z ∈ C, (4.10)

is satisfied for A(κ), B(κ) ≥ 0 continuously depending on κ . If for every z ∈ Sα the mapping

O � κ �→ ϕκ(z)

is holomorphic, then for every fixed t ∈ (0, T ), x ∈ Ṙ, the mapping

O � κ �→ �(t, x;ϕκ)

is holomorphic as well, where �(t, x;ϕκ) is the solution of the Cauchy problem (3.3) with initial value ϕκ .

Proof Fix t ∈ (0, T ), x ∈ Ṙ. Then, for any closed triangle � ⊆ O, we have the path integral
∫

�

�(t, x;ϕκ)dκ =
∫

�

eiα
∫

R

G(t, x, yeiα)ϕκ(yeiα)dydκ, (4.11)
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due to the representation (3.20) of the wave function. Here, α ∈ (0, π
2 ) is the angle of the double sector Sα in

Assumption 3.1. In order to interchange the order of integration, we have to prove absolute integrability of the
double integral. First, the estimate
∣∣G(t, x, yeiα)ϕκ(yeiα)

∣∣ ≤ A(κ)A0(t, x)e
−a(t) sin(2α)y2+2a(t) sin(α)|xy|+B0(t,x)|y|p+B(κ)|y|q , (4.12)

follows from (3.9a) as well as (4.10), and shows that the y-integral is absolutely convergent. Moreover, the coef-
ficients A(κ), B(κ) are assumed to be continuous and hence this upper bound can be uniformly estimated on the
compact triangle �. This means that the right hand side of (4.12) can be replaced by some κ-independent and y-
integrable upper bound. Hence, the double integral (4.11) is absolutely convergent andwe are allowed to interchange
the order of integration
∫

�

�(t, x;ϕκ)dκ = eiα
∫

R

G(t, x, yeiα)

∫

�

ϕκ(yeiα)dκdy.

Since the mapping O � κ �→ ϕκ(yeiα) is holomorphic the path integral along � vanishes and we get
∫

�

�(t, x;ϕκ)dκ = 0.

Due to the Theorem of Morera this implies the analyticity of O � κ �→ �(t, x;ϕκ). 
�

5 Examples of Green’s functions

This section provides two examples of potentials and transmission conditions which are exemplary for the Assump-
tions 3.1. The first one is the centrifugal potential V (t, x) = λ

x2
in Sect. 5.1 and the second one is the free particle

on Ṙ, satisfying arbitrary transmission conditions at x = 0± in Sect. 5.2. In particular the distributional δ- and
δ′-potentials as well as boundary conditions of Dirichlet-, Neumann- and Robin-type are special cases of the second
example.

5.1 Centrifugal potential

In this subsection, we consider the strongly singular centrifugal potential V (t, x) = λ
x2

of strength λ ∈ R \ {0}.
For this potential, the case λ > 0 was already investigated in [8,16], and in [9] they even consider the combined
centrifugal and harmonic oscillator potential V (t, x) = λ

x2
+ ωx2, which would also be possible in the following

considerations, but to avoid technical difficulties, we omit this discussion here. The case λ < 0 on the other hand
was, to the best of our knowledge, not yet treated with respect to stability of superoscillations and is a novelty of
this paper.

Note that, realized by the step function �, the upcoming Green’s functions (5.1) and (5.2) vanish for xy < 0,
which is due to the fact that the 1

x2
-potential is too singular at x = 0 to allow any information exchange between

the two halflines. Additionally, this non-integrable singularity automatically implies Dirichlet boundary conditions
�(t, 0+) = �(t, 0−) = 0, see for example [18] for justification.

Proposition 5.1 The Green’s function of the attractive centrifugal potential V (t, x) = λ
x2
, λ < 0, is given by

G(t, x, y) = �(xy)
√
xy

4iν+1t
e− x2+y2

4i t H (2)
ν

( xy
2t

)
, t > 0, x, y ∈ Ṙ, (5.1)

where H (2)
ν is the Hankel function of the second kind and ν:=

√
1
4 + λ is real valued for − 1

4 ≤ λ < 0, or purely

imaginary for λ < − 1
4 . With the identity matrix M = I and the zero matrix N = 0, this Green’s function satisfies

the Assumption 3.1 with Sα replaced by Dα,h, for any α ∈ (0, π
2 ), h > 0, and (3.7) replaced by (3.16).
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Proposition 5.2 The Green’s function of the repulsive centrifugal potential V (t, x) = λ
x2
, λ > 0 is given by

G(t, x, y) = �(xy)
√
xy

2iν+1t
e− x2+y2

4i t Jν
( xy
2t

)
, t > 0, x, y ∈ Ṙ, (5.2)

where Jν denotes the Bessel function of the first kind and ν:=
√

1
4 + λ. With the identity matrix M = I and the zero

matrix N = 0, this Green’s function satisfies the Assumption 3.1.

Proof of Proposition 5.1 First, for every t > 0, x ∈ Ṙ, the function G(t, x, · ) holomorphically extends to
{z ∈ C | Re(z) �= 0} by

G(t, x, z) = �(±x)
√
xz

4iν+1t
e− x2+z2

4i t H (2)
ν

( xz
2t

)
, ±Re(z) > 0.

In particular, G(t, x, · ) is holomorphic on the domain Dα,h in (3.15) for any α ∈ (0, π
2 ), h > 0. Moreover, the

decomposition (3.8) is satisfied using a(t) = 1
4t and

G̃(t, x, z) = �(±x)
√
xz

4iν+1t
e− xz

2i t H (2)
ν

( xz
2t

)
, ±Re(z) > 0.

It is obvious that for fixed z ∈ C with Re(z) �= 0 we have G( ·, ·, z) ∈ AC1,2((0, T )× Ṙ). To see that it is a solution
of (3.5), we explicitly calculate the derivatives

∂

∂x
G̃(t, x, z) =

( 1

2x
− z

2i t

)
G̃(t, x, z) + �(±x)z

√
xz

8iν+1t2
e− xz

2i t H (2)′
ν

( xz
2t

)
,

∂2

∂x2
G̃(t, x, z) =

(ν2 − 1
4

x2
− z

2i t x
− z2

2t2

)
G̃(t, x, z) + �(±x)z2

√
xz

8iν t3
e− xz

2i t H (2)′
ν

( xz
2t

)
,

∂

∂t
G̃(t, x, z) =

( xz

2i t2
− 1

t

)
G̃(t, x, z) − �(±x)(xz)

3
2

8iν+1t3
e− xz

2i t H (2)′
ν

( xz
2t

)
, (5.3)

where for the second spatial derivative, we used the Bessel differential equation

w2H (2)′′
ν (w) + wH (2)′

ν (w) + (w2 − ν2)H (2)
ν (w) = 0, Re(w) > 0.

Using λ = ν2 − 1
4 , these derivatives now satisfy

i
∂

∂t
G̃(t, x, z) =

(
− ∂2

∂x2
+ x − z

i t

∂

∂x
+ 1

2i t
+ λ

x2

)
G̃(t, x, z),

which is equivalent to (3.5) using the decomposition (3.8). From [1, Eq.(9.1.4),(9.1.7),(9.1.8)] and the fact that
0 ≤ Re(ν) < 1

2 , we get the convergence√
w H (2)

ν (w) → 0, as w → 0, Re(w) > 0. (5.4)

Hence, we conclude for every t > 0, ±y > 0, the boundary values (3.6) by

G(t, x, y) = �(±x)
√
xy

4iν+1t
e− x2+y2

4i t H (2)
ν

( xy
2t

)
x→0−→ 0.

Moreover, with the asymptotics

H (2)
ν (w) = e−iw

(√
2 iν+ 1

2√
πw

+ O
( 1

w
3
2

))
, as w → ∞, Re(w) > 0, (5.5)

from [1, Eq.(9.2.8)], it follows that for every x ∈ Ṙ the initial condition (3.16) is satisfied by

G(t, x, x)√
a(t)

= |x |
2iν+1

√
t
e− x2+z2

4i t H (2)
ν

( x2
2t

)
t→0+−→ 1√

iπ
.
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Combining the asymptotics (5.4) and (5.5), there also exists some constant Cν ≥ 0 such that

|H (2)
ν (w)| ≤ Cν√|w|e

Im(w), Re(w) > 0. (5.6)

Hence, we can estimate

|G̃(t, x, z)| = �(±x)
√|xz|

4t
e− x Im(z)

2t

∣∣∣H (2)
ν

( xz
2t

)∣∣∣ ≤ Cν

2
√
2t

, ±Re(z) > 0, (5.7)

which is (3.9a) with the coefficients A0(t, x) = Cν

2
√
2t

and B0(t, x) = 0. These coefficients are bounded as x → 0±

and A0√
a
and B0 are also bounded as t → 0+, as requested in (3.10). Moreover, by [1, Eq.(9.2.14)] the derivative of

the Hankel function admits the asymptotics

eiwH (2)′
ν (w) = O

( 1√
w

)
, as w → ∞, Re(w) > 0,

and it follows again from [1, Eq.(9.1.4),(9.1.7),(9.1.9),(9.1.27)] that

H (2)′
ν (w) = O

( 1

w
3
2

)
, as w → 0, Re(w) > 0.

These two asymptotics now ensure the existence of a constant Dν ≥ 0 with

|H (2)′
ν (w)| ≤ Dν

( 1√|w| + 1

|w| 32
)
eIm(w), Re(w) > 0. (5.8)

Due to the explicit form (5.3) of the derivatives of G̃ and the estimates (5.7) and (5.8), one immediately sees that
also the exponential bounds (3.9b) and (3.9c) are satisfied. 
�
Proof of Proposition 5.2 First, for every t > 0, x ∈ Ṙ, the function G(t, x, · ) holomorphically extends to
{z ∈ C | Re(z) �= 0} by

G(t, x, z) = �(±x)
√
xz

2iν+1t
e− x2+z2

4i t Jν
( xz
2t

)
, ±Re(z) > 0.

In particular, G(t, x, · ) is holomorphic on the double sector Sα , for any α ∈ (0, π
2 ). Moreover, the decomposition

(3.8) is satisfied using a(t) = 1
4t and

G̃(t, x, z) = �(±x)
√
xz

2iν+1t
e− xz

2i t Jν
( xz
2t

)
, ±Re(z) > 0.

Now, we verify the properties (i)–(iii) of Assumption 3.1.
(i) It is obvious that for fixed z ∈ C with Re(z) �= 0, we have G( ·, ·, z) ∈ AC1,2((0, T ) × Ṙ). To see that it is a
solution of (3.5), we explicitly calculate the derivatives

∂

∂x
G̃(t, x, z) =

( 1

2x
− z

2i t

)
G̃(t, x, z) + �(±x)z

√
xz

4iν+1t2
e− xz

2i t J ′
ν

( xz
2t

)
,

∂2

∂x2
G̃(t, x, z) =

(ν2 − 1
4

x2
− z

2i t x
− z2

2t2

)
G̃(t, x, z) + �(±x)z2

√
xz

4iν t3
e− xz

2i t J ′
ν

( xz
2t

)
,

∂

∂t
G̃(t, x, z) =

( xz

2i t2
− 1

t

)
G̃(t, x, z) − �(±x)(xz)

3
2

4iν+1t3
e− xz

2i t J ′
ν

( xz
2t

)
, (5.9)

where for the second spatial derivative, we used the Bessel differential equation

w2 J ′′
ν (w) + wJ ′

ν(w) + (w2 − ν2)Jν(w) = 0, Re(w) > 0.
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Using λ = ν2 − 1
4 , these derivatives now satisfy

i
∂

∂t
G̃(t, x, z) =

(
− ∂2

∂x2
+ x − z

i t

∂

∂x
+ 1

2i t
+ λ

x2

)
G̃(t, x, z),

which is equivalent to (3.5) using the decomposition 3.8. From [1, Eq.(9.1.7)] and the fact that ν > 1
2 , we get the

limit

Jν(w) → 0, as w → 0, Re(w) > 0.

Hence, we conclude for every t > 0, ±y > 0, the boundary value (3.6) by

G(t, x, y) = �(±x)
√
xy

2iν+1t
e− x2+y2

4i t Jν
( xy
2t

)
x→0−→ 0.

(ii) To check the initial condition (3.7), we fix x ∈ Ṙ and without loss of generality we only consider x > 0. Let
now x0 > x be arbitrary, ϕ ∈ C∞([−x0, x0]) and consider the function

�0(t, x):=
∫ x0

−x0
G(t, x, y)ϕ(y)dy = 1

2iν+1t

∫ x0

0

√
xy e− x2+y2

4i t Jν
( xy
2t

)
ϕ(y)dy,

as well as the approximated function

�̃0(t, x):= 1

iν+1
√

π t

∫ x0

0
e− x2+y2

4i t cos
( xy
2t

− (2ν + 1)π

4

)
ϕ(y)dy.

From [1, Eq.(9.2.1)], we get the asymptotics

Jν(w) −
√
2√

πw
cos

(
w − (2ν + 1)π

4

)
= e| Im(w)|O

( 1

w
3
2

)
, as w → ∞, Re(w) > 0, (5.10)

Since moreover, Jν(w) → 0 as w → 0 by [1, Eq.(9.1.7)], there exists some Cν ≥ 0 with
∣∣∣Jν(w) −

√
2√

πw
cos

(
w − (2ν + 1)π

4

)∣∣∣ ≤ Cν

|w| 54
e| Im(w)|, Re(w) > 0,

where the exponent 5
4 is chosen such that in the following estimate the term t

1
4 (xy)− 3

4 appears, which on the one
hand vanishes in the limit t → 0+, but is still integrable at y = 0+. With this inequality, we can now estimate the
error of the approximate function by

|�0(t, x) − �̃0(t, x)| ≤ 1

2t

∫ x0

0

√
xy

∣∣∣Jν
( xy
2t

)
− 2

√
t√

πxy
cos

( xy
2t

− (2ν + 1)π

4

)∣∣∣|ϕ(y)|dy

≤ Cν(2t)
1
4

∫ x0

0

1

(xy)
3
4

|ϕ(y)|dy

≤ 4Cν(2t x0)
1
4

x
3
4

‖ϕ‖∞.

Since the right hand side converges to zero as t → 0+, we get
lim
t→0+ �0(t, x) = lim

t→0+ �̃0(t, x), (5.11)

and we reduced the problem (3.7) to the initial value of �̃0(t, x). Writing the cosine as an exponential function we
can split up the integral as

�̃0(t, x) = 1

2iν+1
√

π t

∫ x0

0
e− x2+y2

4i t

(
ei

xy
2t −i (2ν+1)π

4 + e−i xy2t +i (2ν+1)π
4

)
ϕ(y)dy

= 1

2
√
iπ t

∫ x0

0

(
(−1)ν+ 1

2 e− (x+y)2

4i t + e− (x−y)2

4i t

)
ϕ(y)dy.
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Using the derivative d
dw

erf(w) = 2√
π
e−w2

of the error function and applying integration by parts, one can rewrite
this integral as

�̃0(t, x) = 1

2

∫ x0

0

d

dy

(
(−1)ν+ 1

2 erf
( x + y

2
√
i t

)
− erf

( x − y

2
√
i t

))
ϕ(y)dy

= (−1)ν+1

2

(
erf

( x + x0

2
√
i t

)
ϕ(x0) − erf

( x

2
√
i t

)
ϕ(0) −

∫ x0

0
erf

( x + y

2
√
i t

)
ϕ′(y)dy

)

− 1

2

(
erf

( x − x0

2
√
i t

)
ϕ(x0) − erf

( x

2
√
i t

)
ϕ(0) −

∫ x0

0
erf

( x − y

2
√
i t

)
ϕ′(y)dy

)
.

Apply now the limit t → 0+ and carrying it inside the integral is allowed since the integrand is uniformly bounded.
Using also 0 < x < x0 as well as the limit limw→±∞ erf( w√

i
) = ±1 gives the initial value

lim
t→0+ �̃0(t, x) = (−1)ν+1

2

(
ϕ(x0) − ϕ(0) −

∫ x0

0
ϕ′(y)dy

)

− 1

2

(
− ϕ(x0) − ϕ(0) −

∫ x0

0
sgn(x − y)ϕ′(y)dy

)
= ϕ(x).

Together with (5.11), this proves the initial value (3.7).
(iii) By the asymptotics (5.10) and since Jν(w) → 0 as w → 0 by [1, Eq.(9.1.7)], there exists Dν ≥ 0 with

|Jν(w)| ≤ Dν√|w|e
| Im(w)|, Re(w) > 0.

With this estimate, the absolute value of G̃ can be estimated by

|G̃(t, x, z)| ≤ �(±x)
√|xz|

2t
e− x Im(z)

2t

∣∣∣Jν
( xz
2t

)∣∣∣ ≤ Dν√
2t

, ±z ∈ S+
α ,

where we used that |x Im(z)| = x Im(z) since ±z ∈ S+
α and ±x > 0. Hence, G̃ satisfies the bound (3.9a) with the

coefficients A0(t, x) = Dν√
2t

and B0(t, x) = 0. These coefficients are bound as x → 0± and also A0√
a
and B0 are

bounded as t → 0+, as requested in (3.10). Moreover, it follows from [1, Eq.(9.1.10),(9.1.27),(9.2.11)] as well as
ν > 1

2 that there exists some Eν ≥ 0 such that the derivative of the Bessel function is bounded by

|J ′
ν(w)| ≤ Eν√|w|e

| Im(w)|, Re(w) > 0. (5.12)

Due to the explicit form (5.9) of the derivatives of G̃ and the additional estimate (5.12) of the derivative of the
Bessel function, one immediately sees that also the exponential bounds (3.9b) and (3.9c) are satisfied. 
�

5.2 Arbitrary point interactions

In this subsection, we consider the vanishing classical potential V (t, x) = 0, x ∈ Ṙ, and allow all possible self-
adjoint singular interactions at the origin x = 0±. In particular, theDirac δ- and δ′-potential and boundary conditions
of Dirichlet-, Neumann- and Robin-type are included, see [4, Sect. 3]. Although the time persistence problem with
respect to those point interactionswas already considered in [4], this section shows that these distributional potentials
are also covered by the general theory of Sect. 3.
There are various ways to describe the complete family of self-adjoint interface conditions, but for our purposes, it
is convenient to use the parametrization

(I − J )

(
�(t, 0+)

�(t, 0−)

)
= i(I + J )

(
�x (t, 0+)

−�x (t, 0−)

)
, (5.13)
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where I is the 2 × 2 identity matrix and J is some arbitrary 2 × 2 unitary matrix, which can be represented by

J = eiφ
(

α −β

β α

)
, (5.14)

with parameters φ ∈ [0, π) and α, β ∈ C satisfying |α|2 + |β|2 = 1. To write down the corresponding Green’s
function, we start by defining the entire function

�(z):=ez
2
(1 − erf(z)), z ∈ C, (5.15)

which is a modification of the well-known error function erf(z) = 2√
π

∫ z
0 e−w2

dw. The Green’s function is now
given by

G(t, x, y):=μ
(x,y)
+ �

( |x | + |y|
2
√
i t

+ ω+
√
i t

)
e− (|x |+|y|)2

4i t + μ
(x,y)
− �

( |x | + |y|
2
√
i t

+ ω−
√
i t

)
e− (|x |+|y|)2

4i t

+ μ
(x,y)
0

2
√
iπ t

e− (|x |+|y|)2
4i t + 1

2
√
iπ t

e− (x−y)2

4i t , t > 0, x, y ∈ Ṙ. (5.16)

The values of the coefficientsμ
(x,y)
± ,μ(x,y)

0 andω± will be specified in terms of the unitarymatrix J in the following.
To do so, it is convenient to use

η(x,y):= 1√
1 − Re(α)2

⎧⎪⎪⎨
⎪⎪⎩

− Im(α), if x, y > 0,
−iβ, if x > 0, y < 0,
iβ, if x < 0, y > 0,
Im(α), if x, y < 0,

if |Re(α)| �= 1, (5.17a)

η(x,y):=0, if |Re(α)| = 1, (5.17b)

and distinguish the following three cases.
Case I: If Re(α) �= − cos(φ), then

ω± = − sin(φ) ± √
1 − Re(α)2

cos(φ) + Re(α)
, μ

(x,y)
± = ω±

2

(
�(xy) + η(x,y)), μ

(x,y)
0 = sgn(xy).

Case II: If Re(α) = − cos(φ) �= −1, then ω− = μ
(x,y)
− = 0 and

ω+ = cot(φ), μ
(x,y)
+ = −ω+

2

(
�(xy) + η(x,y)), μ

(x,y)
0 = η(x,y) − �(−xy).

Case III: If Re(α) = − cos(φ) = −1, then ω± = μ
(x,y)
± = 0 and μ

(x,y)
0 = −1.

Proposition 5.3 The Green’s function (5.16) satisfies the Assumptions 3.1 with respect to the potential V (t, x) = 0
and the transition matrices M = I − J and N = i(I + J ).

Proof First, it is already shown [4, Theorem 2.4] that G satisfies the transmission condition (3.6). Moreover, the
Green’s function (5.16) holomorphically extends to {z ∈ C|Re(z) �= 0} by

G(t, x, z):=μ
(x,±)
+ G1(t, x,±z) + μ

(x,±)
− G1(t, x,±z)

+ μ
(x,±)
0 G0(t, x,±z) + Gfree(t, x, z), ±Re(z) > 0, (5.18)
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using the functions

G0(t, x, z) = 1

2
√
iπ t

e− (|x |+z)2

4i t , Re(z) > 0, (5.19a)

G1(t, x, z;ω):=�
( |x | + z

2
√
i t

+ ω
√
i t

)
e

(|x |+z)2

4i t , Re(z) > 0, (5.19b)

Gfree(t, x, z):= 1

2
√
iπ t

e− (x−z)2
4i t , z ∈ C. (5.19c)

It is already proven in [4, Lemma 2.2] that all of the three functions (5.19) satisfy the Schrödinger equation (3.5),
and consequently so does G, since the coefficients μ

(x,±)
+ , μ(x,±)

− , μ(x,±)
0 only depend on sgn(x). Also for the initial

condition (3.7), it is sufficient to consider the functions (5.19) separately. Fix x ∈ Ṙ choose x0 > |x | arbitrary and
ϕ ∈ C∞([−x0, x0]). For Gfree, we can use the derivative d

dw
erf(w) = 2√

π
e−w2

and apply integration by parts to
write the integral as

∫ x0

−x0
Gfree(t, x, y)ϕ(y)dy = −1

2

∫ x0

−x0

d

dy
erf

( x − y

2
√
i t

)
ϕ(y)dy

= 1

2
erf

( x + x0

2
√
i t

)
ϕ(−x0) − 1

2
erf

( x − x0

2
√
i t

)
ϕ(x0) + 1

2

∫ x0

−x0
erf

( x − y

2
√
i t

)
ϕ′(y)dy.

Applying the limit t → 0+ and using limw→±∞ erf( w√
i
) = ±1, we get the initial value

lim
t→0+

∫ x0

−x0
Gfree(t, x, y)ϕ(y)dy = ϕ(−x0) + ϕ(x0)

2
+ 1

2

∫ x0

−x0
sgn(x − y)ϕ′(y)dy = ϕ(x). (5.20)

For the function G1, we get

∫ x0

−x0
G1(t, x, y;ω)ϕ(y)dy = 1

2

∫ x0

−x0
sgn(y)�

( |x | + |y|
2
√
i t

+ ω
√
i t

)
ϕ(y)

d

dy
erf

( |x | + |y|
2
√
i t

)
dy

= −1

2
erf

( |x | + |y|
2
√
i t

)
�

( |x | + |y|
2
√
i t

+ ω
√
i t

)
ϕ(y)

∣∣∣
0

y=−x0

+ 1

2
erf

( |x | + |y|
2
√
i t

)
�

( |x | + |y|
2
√
i t

+ ω
√
i t

)
ϕ(y)

∣∣∣
x0

y=0

− 1

2

∫ x0

−x0
sgn(y) erf

( |x | + |y|
2
√
i t

) d

dy

(
�

( |x | + |y|
2
√
i t

+ ω
√
i t

)
ϕ(y)

)
dy.

From [2, Lemma 3.1], we know that �(z) = O( 1
z

)
and also �′(z) = O( 1

z

)
, as z → ∞, Re(z) > 0. Hence, all

terms in the above representation vanish in the limit t → 0+, which leads to the initial value

lim
t→0+

∫ x0

−x0
G1(t, x, y;ω)ϕ(y)dy = 0. (5.21)

The same calculations with the absence of the function � also shows that initial value

lim
t→0+

∫ x0

−x0
G0(t, x, y)ϕ(y)dy = 0. (5.22)

Using now the three limits (5.20), (5.21) and (5.22) in the decomposition (5.18) gives the initial value (3.7).
To derive the estimate (3.9a), it is sufficient to do these estimates for the three functions (5.19), or rather for their
reduced representations

G̃ j (t, x, z):=e
(x−z)2
4i t G j (t, x, z), j ∈ {0, 1, free},
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separately. However, this is already done in [4, Lemma 2.3], and we conclude the estimates

|G̃0(t, x, z)| ≤ 1

2
√

π t
, z ∈ S+

α ,

|G̃1(t, x, z;ω)| ≤ �
(ω

√
t√
2

)
, z ∈ S+

α ,

|G̃free(t, x, z)| = 1

2
√
iπ t

, z ∈ Sα,

Hence, the bound (3.9a) is obviously satisfied with coefficients A0 and B0, which are bounded as x → 0± and also
satisfy the bounds (3.10) in the limit t → 0+. Moreover, the estimates of the first spatial derivatives can also be
concluded from [4, Lemma 2.2 & Lemma 2.3] and are given by

∣∣∣ ∂

∂x
G̃0(t, x, z)

∣∣∣ ≤ |z|
2
√

π t
3
2

,

∣∣∣ ∂

∂x
G̃1(t, x, z;ω)

∣∣∣ ≤
( |x | + |z|

2t
+ |ω|

)
�

(ω
√
t√
2

)
+ 1√

π t
,

∣∣∣ ∂

∂x
G̃free(t, x, z)

∣∣∣ = 0.

If we additionally use that |z| ≤ e|z|−1, the estimate (3.9b) is satisfied with coefficients A1 and B1 which are
bounded as x → 0±. Finally, also the exponential bounds of the second spatial and the time derivatives of G̃i ,
i ∈ {0, 1, free}, as claimed in (3.9c), follow from [4, Lemma 2.2 and Lemma 2.3]. 
�
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