
INSTITUTE FOR     
QUANTUM STUDIES

CHAPMAN
UNIVERSITY

Quantum Stud.: Math. Found. (2021) 8:17–35
https://doi.org/10.1007/s40509-020-00223-9

REGULAR PAPER

Hamiltonians without ultraviolet divergence for quantum
field theories

Stefan Teufel · Roderich Tumulka

Received: 8 November 2019 / Accepted: 6 February 2020 / Published online: 21 February 2020
© The Author(s) 2020

Abstract We propose a way of defining Hamiltonians for quantum field theories without any renormalization
procedure. The resultingHamiltonians, called IBCHamiltonians, aremathematically well defined (and in particular,
ultraviolet finite) without an ultraviolet cutoff such as smearing out the particles over a nonzero radius; rather, the
particles are assigned radius zero. These Hamiltonians agree with those obtained through renormalization whenever
both are known to exist.Wedescribe explicit examples of IBCHamiltonians. Their definition,which is best expressed
in the particle–position representation of the wave function, involves a kind of boundary condition on the wave
function, which we call an interior–boundary condition (IBC). The relevant configuration space is one of a variable
number of particles, and the relevant boundary consists of the configurations with two or more particles at the same
location. The IBC relates the value (or derivative) of the wave function at a boundary point to the value of the wave
function at an interior point (here, in a sector of configuration space corresponding to a lesser number of particles).

Keywords Regularization of quantum field theory · Ultraviolet infinity · Boundary condition · Particle creation ·
Self-adjoint extension of Schrödinger operator
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1 Introduction

In many quantum field theories (QFTs), the formulas that one obtains for the Hamiltonian (bymeans of quantization
or other heuristics) contain terms for the creation and annihilation of particles that are ultraviolet (UV) divergent.
The problem can be avoided by a UV cutoff, i.e., by discretizing space or treating the electron (and other particles)
not as a point, but smearing it out instead over a small positive radius; however, these procedures tend to break the
Lorentz invariance, and there is no empirical evidence for either discrete space or a positive electron radius [1,2].
Since QFTs are expected to provide merely effective descriptions and not to be valid on very small scales (see, e.g.,
[3] for discussion), this problem is usually neither regarded as unexpected nor as threatening. Still, the problem
has attracted much interest over the years, and has been investigated with some success, as one can take a limit of
removing the cutoff through a renormalization procedure for some QFTs. We report here that the UV divergence
problem does not occur if the Hamiltonian is defined in a novel way that proceeds directly without renormalization.1

We describe these Hamiltonians for some non-relativistic QFTs and report about recent proofs [4–6] showing
that the Hamiltonians obtained in this way are well defined and self-adjoint. In this approach, space is continuous
(as opposed to a lattice), and the radius of the electron (or other particles) is zero. The key element of the approach is
a new type of boundary condition that we call an interior–boundary condition (IBC) because it relates the values of
ψ on the boundary of configuration spaceQ to the values in the interior ofQ, as we will explain presently. As such,
IBCs have already been considered in the past, in one form or another, starting with Landau and Peierls [7] in 1930,
followed by [8–14] (see below for a brief overview). Our new insight is that IBCs, when used for defining QFTs, can
avoid the problem of UV divergence. In the past, IBCs received little attention, were not explored systematically,
were not studied rigorously except to a rather limited extent, and were not considered for addressing UV divergence.

IBCs as we use them are formulated in the particle–position representation of the state vector ψ in Hilbert space
H . Here, “particle representation” means thatH is represented as a Fock space (or, if appropriate, a tensor product
of several Fock spaces) and in “position representation” the contribution from the n-particle sector of Fock space
is represented (like a wave function in quantum mechanics) as a function of n points in three-dimensional physical
space. Specifically, ifH is a single Fock space, then ψ ∈ H can be viewed as a function on a configuration space
of a variable number of particles, such as

Q =
∞⋃

n=0

Qn =
∞⋃

n=0

[
(R3)n\�n

]
; (1)

see Fig. 1, where

�n =
{
(x1, . . . , xn) ∈ (R3)n : xi = x j for some i �= j

}
(2)

is the “diagonal,” i.e., the set of collision configurations (i.e., those with two or more particles at the same location).
The relevant boundary ∂Q ofQ is ∪∞

n=0�n ; the IBC relates the values of ψ on ∂Qn = �n to the values of ψ in the
interior of Qn−1, namely at the configuration with one particle removed (or possibly with more than one particle
removed, if more than two particles collide).

The IBC approach allows a nonzero flux of probability out of or into the boundary, while a term in theHamiltonian
ensures that all of the |ψ |2 probability lost in one sector gets added in another sector, so that total probability inQ
is conserved. The IBC can thus be regarded as enabling the creation of a contribution to ψ on Qn that flows out of

1 When this article was first written (and posted as http://arxiv.org/abs/1505.04847) in 2015, it was the first to make the proposal to use
IBCs to remove ultraviolet divergences. In the meantime, other articles on this topic were published, and we have decided to review
some of them in this updated version.
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(b)

(c) (d)

(a)

Fig. 1 Illustration of a configuration space for a variable number of particles in one dimension: a the zero-particle sector containing
only one configuration, the empty configuration; b the one-particle sector is a copy of physical space; c the two-particle sector; d the
three-particle sector. In this example, we have not removed the diagonal �n

the boundary ∂Qn and depends on the values of ψ on Qn−1. The approach has been shown in the non-relativistic
setting to provide a well-defined Hamiltonian HIBC,whose domain consists of functions satisfying the IBC, without
the need for a UV cutoff or renormalization.

Moreover, as we will explain, HIBC provides a natural mathematical interpretation of the original (UV divergent)
expression Horig for the Hamiltonian. One way of expressing the problem with Horig is to say that, due to divergent
creation terms, Horigψ exists as a distribution (such as the Dirac delta distribution), but not as a square-integrabe
function, so that Horig does not define an operator in Hilbert space. The IBC approach actually shares the divergent
creation term, while the IBC forces wave functions to diverge at the boundary ∂Qn at a particular rate, with the
consequence that the Laplacian of ψ also exists as a distribution but not as a square-integrable function. The IBC
ensures that the two distributional contributions to HIBCψ (one from divergent creation terms and one from the
Laplacian acting on a diverging ψ) exactly cancel each other, so that their sum is actually a square-integrable
function. In fact, the IBC characterizes the domain of functions on which this cancelation occurs. For ψ diverging
at the boundary, the annihilation terms in Horig need a separate definition, which the IBC approach provides as well
in a natural manner.

After a condition equivalent to an IBC had been considered as early as 1930 [7], this approach was not followed
further; instead, much research took for granted that the Hamiltonian of a QFT is the sum of two self-adjoint
operators, the free Hamiltonian and the interaction Hamiltonian. This is not so in the IBC approach, where the free
Hamiltonian and the interaction Hamiltonian each map square-integrable functions to distributions and thus are not
defined as self-adjoint operators in Hilbert space. It is only their sum that is a self-adjoint operator in Hilbert space.
In particular, the full Hamiltonian cannot be regarded as a perturbation of the free Hamiltonian. This feature makes
a relevant difference, at least for some UV divergence problems.

For some QFTs, it is possible to take a limit, after introducing a UV cutoff, in which the cutoff is removed,
possibly after subtracting an infinite constant from the Hamiltonian. It turns out [4,5] that, at least for some models,
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this limiting Hamiltonian (called the renormalized Hamiltonian) agrees with HIBC; however, this was not visible
from the renormalization procedure before considering the IBC.

In this paper, we describe examples of IBCs and how they help define a Hamiltonian, results about the rigorous
existence and self-adjointness of the Hamiltonians, and how these Hamiltonians are related to some known cases in
which a UV cutoff can be removed, thus making it plausible that the IBC Hamiltonians are physically relevant and
not merely mathematical curiosities. Specifically, we consider two models: In Model 1, x-particles can emit and
absorb y-particles, and both kinds of particles are non-relativistic; we give the full definition in Sect. 2 below. The
x-particles will also be called the “sources.” Model 2 is a simplified version of Model 1 in which the x-particles
cannot move but are fixed at certain locations; it arises as a limiting case of Model 1 in which the mass mx of the
x-particle tends to ∞; for simplicity, we consider only a single x-particle (and call its location the origin). That is,
y-particles can be created and annihilated at the origin of R3. For Model 2 (the one with fixed x-particles), it is
known that, after a UV cutoff is introduced, the cutoff can be removed by means of a suitable limiting procedure
(renormalization), and we can show that the limiting Hamiltonian H∞ thus obtained coincides with HIBC up to
addition of a finite constant (see Sect. 3.6 below). For Model 1, however, such a procedure was not known before
the IBC approach succeeded (although a renormalization procedure was known for a similar model, the Nelson
model [15]). The IBC approach provides, also for Model 1, a well-defined and self-adjoint Hamiltonian without
renormalization [6].

Let us give a brief overview of prior works considering IBCs. Historically, the first equation equivalent to an
IBC was written down, as far as we know, by Landau and Peierls in 1930 [7] when trying to formulate quantum
electrodynamics in the particle–position representation, although their Hamiltonian was still UV divergent. Moshin-
sky [8,9] considered, as an effective description of nuclear reactions, a model using the Laplace operator with an
IBC for (fixed sources and) a mini-Fock space having only sectors with n = 0 and n = 1 particles. Yafaev [13]
independently considered the same model and proved for that Hamiltonian that it is well defined and self-adjoint.
Thomas [11] considered a similar model with moving sources, also with only two sectors. Georgii and Tumulka [14,
Sect. 6] considered IBCs for boundaries of codimension 1; such IBCs are developed systematically in [16]. Recent
and upcoming works exploring various aspects of IBCs include [4–6,17–24].

We give a gentle introduction to IBCs and the ideas behind them in [17]. Mathematical proofs of our main
claims are provided in [4–6]; the case of fixed sources in 3d is treated in [4], the case of moving sources in 2d
in [5], and that of moving sources in 3d in [6]. In [5], it is also shown how to generalize the IBC approach to a
relativistic dispersion relation E = √

m2c4 + p2c2 (for scalar, not Dirac wave functions) instead of E = p2/2m;
the condition replacing the IBC is then no longer literally a boundary condition and therefore called an abstract
boundary condition. Keppeler and Sieber [18] studied IBCs in one space dimension. Galvan [19] has proposed an
approach similar to IBCs. A goal for the future is to apply the IBC approach to quantum electrodynamics and other
serious theories; work on implementing IBCs for the Dirac equation is in progress [20,24]. For the time being, we
report results for non-relativistic model QFTs, based on the Laplace operator.

This paper is organized as follows. In Sect. 2, we give a more detailed description of Model 1 and Model 2, two
simple models of non-relativistic QFT. In Sect. 3, we describe for each of the two models how to set up an IBC and
the corresponding Hamiltonian. In Sect. 4, we conclude.

2 Two models of non-relativistic QFT

In this section, we describe Model 1 and Model 2, two simple non-relativistic QFTs. We set up their Hilbert spaces
H , describe their original Hamiltonians Horig, and explain why they are UV divergent. Model 1 is a natural,
physically reasonable model, while Model 2 is an artificially simplified version that will be useful for an easy
discussion of IBCs. In Sect. 3, we will describe, for each of the two models, our alternative definition of the
Hamiltonian involving an interior-boundary condition.
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Hamiltonians without ultraviolet divergence... 21

2.1 Model 1: x-particles emit and absorb y-particles

Model 1 is a QFT related to the Lee model [25], Schweber’s scalar field model [26, p. 339], and the Nelson model
[15]. It involves two species of particles, x and y; the x-particles can emit and absorb y-particles. Both species
are spinless and assume the non-relativistic dispersion relation E = p2/2m with masses mx ,my > 0. The Hilbert
space is a tensor product of Fock spaces,

H = F− ⊗ F+ (3)

with

F± =
∞⊕

n=0

S±L2(R3,C)⊗n, (4)

where S− is the anti-symmetrization operator, S+ is the symmetrization operator, and S±L2(· · · ) are their ranges
(i.e., the spaces of (anti-)symmetric functions on (R3)n). Here, we take x-particles to be fermions and y-particles
to be bosons.2 R3 is understood as physical space, i.e., ordinary position space. In the following, we simply write
L2(R3) for L2(R3,C). A vector � ∈ H can be regarded as a function

ψ : Qx × Qy → C, (5)

with Qx = Qy the configuration space of a variable number of particles,

Qx = Qy =
∞⋃

n=0

Qn =
∞⋃

n=0

(R3)n, (6)

where the union is understood as a disjoint union and (R3)0 = {∅}. We will discuss removing the collision
configurations later.

We call the functionψ the particle–position representation of the vector� ∈ H . A generic element ofQx ×Qy

can be written as (x, y) = (x1, . . . , xm, y1, . . . , yn), where boldface symbols denote vectors in 3-space, while x
denotes a configuration of x-particles and y one of y-particles; we will often write xm instead of x to convey that the
configuration consists ofm x-particles, and likewise yn instead of y. We call (R3)m them-particle sector ofQx and
(R3)m × (R3)n the (m, n)-particle sector ofQx ×Qy . Likewise, we say (m, n)-particle sector ofH (or of �, or of
ψ) and writeH (m,n) (or �(m,n) or ψ(m,n)) for S−L2(R3,C)⊗m ⊗ S+L2(R3,C)⊗n , respectively, for the projection
of � to that subspace, and for the restriction of ψ to (R3)m × (R3)n . The ψ(m,n) function is anti-symmetric in the
x variables and symmetric in the y variables.

The spaces Qx ,Qy are equipped with the volume measure

μ(S) =
∞∑

n=0

vol3n(S ∩ Qn) for S ⊆ Qx . (7)

The inner product inH is then given by

〈ψ |φ〉 =
∫

Qx

μ(dx)
∫

Qy

μ(dy) ψ∗(x, y) φ(x, y) (8)

=
∞∑

m=0

∞∑

n=0

〈
ψ(m,n)

∣∣∣φ(m,n)
〉

L2(R3m+3n)
. (9)

2 This choice is contrary to the spin-statistics theorem; but that does not matter for our purposes, as the latter pre-supposes Lorentz
invariance.
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2.1.1 Original Hamiltonian

As our example of a (non-relativistic) Hamiltonian Horig, we take

(Horigψ)(m,n)(xm, yn) = − h̄2

2mx

m∑

i=1

∇2
xi ψ

(m,n)(xm, yn) − h̄2

2my

n∑

j=1

∇2
y j

ψ(m,n)(xm, yn)

+ nE0ψ
(m,n)(xm, yn)

+ g
√
n + 1

m∑

i=1

ψ(m,n+1) (xm, (yn, xi )
)

+ g√
n

m∑

i=1

n∑

j=1

δ3(xi − y j ) ψ(m,n−1) (xm, yn\ y j
)
, (10)

using the notation δ3 for the three-dimensional Dirac delta function and

yn\ y j = ( y1, . . . , y j−1, y j+1, . . . , yn) (11)

for the configuration of n − 1 y-particles with the j-th particle removed; E0 is the energy that must be expended
for creating a y-particle (the “y rest energy”), and g ∈ R is a coupling constant (i.e., the “charge” of an x-particle).
Instead of ψ(m,n)(xm, yn), we can also simply write ψ(xm, yn), as the argument uniquely determines which sector
of ψ must be used; we sometimes find it useful to use the more explicit notation to make the relations to other
sectors more easily visible. The first term in (10) is the free fermion Hamiltonian Hxψ , the second and third terms
are the free boson Hamiltonian Hyψ , and the third and fourth line together are the interaction Hamiltonian Hinterψ

responsible for the creation and annihilation of y-particles. In terms of creation and annihilation operators,

Hx = h̄2

2mx

∫
d3q ∇a†x (q)∇ax (q), (12)

Hy = h̄2

2my

∫
d3q ∇a†y(q)∇ay(q) + E0

∫
d3q a†y(q) ay(q), (13)

Hinter = g
∫

d3q a†x (q)
(
ay(q) + a†y(q)

)
ax (q), (14)

with † denoting the adjoint operator, and ax (q), ay(q) the annihilation operators for an x, y-particle at location q
in position space, formally defined by

(ax (q) ψ) (xm, yn) = √
m + 1ψ(m+1,n)

(
(xm, q), yn

)
, (15)

(
a†x (q) ψ

)
(xm, yn) = 1√

m

m∑

i=1

(−1)i δ3(xi − q) ψ(m−1,n)
(
xm\xi , yn

)
, (16)

(
ay(q) ψ

)
(xm, yn) = √

n + 1ψ(m,n+1) (xm, (yn, q)
)
, (17)

(
a†y(q) ψ

)
(xm, yn) = 1√

n

n∑

j=1

δ3( y j − q) ψ(m,n−1) (xm, yn\y j
)
. (18)

The combinatorial factors
√
m + 1 andm−1/2 arise from the fact that every configuration ofm x-particles occurs in

m! different permutations. Since the operators ax,y(q) contain the point evaluation of functions, they can actually
be defined rigorously on a dense subspace ofH , while their adjoints are ill defined for any nonzero ψ .
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Hamiltonians without ultraviolet divergence... 23

Model 1 is not Galilean covariant, but a modification that is can be set up [27] and can be combined with IBCs
[21, Sect. 4.2].

2.1.2 UV divergence of the original Hamiltonian

The original Hamiltonian Horig as defined in (10) above is UV divergent and thus ill defined. The source of the
difficulty is the delta function in the last line of (10): Since a delta function is not a square-integrable function, the
right-hand side of (10) does not lie in H for any choice of ψ ; thus, (10) does not define an operator in H . It can
also be pointed out that the delta function δ3 (which plays the role in (10) of the wave function of a newly created
y-particle) is a state of infinite energy,

formally

〈
δ3
∣∣∣∣

(
− h̄2

2my
∇2
)∣∣∣∣ δ

3
〉

=
∫

R3
d3k

(h̄k)2

2my
= ∞. (19)

The standard procedure for obtaining a well-defined Hamiltonian (UV cut-off) is to replace the delta function
by a square-integrable function ϕ : R3 → C, yielding

(Hcutoffψ)(xm, yn) = − h̄2

2mx

m∑

i=1

∇2
xi ψ(xm, yn) − h̄2

2my

n∑

j=1

∇2
y j

ψ(xm, yn)

+ nE0ψ(xm, yn)

+ g
√
n + 1

m∑

i=1

∫

R3
d3 y ϕ∗(xi − y) ψ

(
xm, (yn, y)

)

+ g√
n

m∑

i=1

n∑

j=1

ϕ(xi − y j ) ψ
(
xm, yn\y j

)
, (20)

which amounts to saying that an x-particle has an extended charge distribution with density function ϕ (if ϕ is
real-valued). Equivalently, the interaction Hamiltonian is replaced by

Hinter,cutoff = g
∫

d3q a†x (q)
(
ay,ϕ(q) + a†y,ϕ(q)

)
ax (q), (21)

where

(
ay,ϕ(q) ψ

)
(xm, yn) = √

n + 1
∫

R3
d3 y ϕ∗(q − y) ψ(m,n+1) (xm, (yn, y)

)
(22)

(
a†y,ϕ(q) ψ

)
(xm, yn) = 1√

n

n∑

j=1

ϕ( y j − q) ψ(m,n−1) (xm, yn\ y j
)
. (23)

2.2 Simplified version: Model 2

In Model 2, there is only one x-particle, and it is fixed at the origin. The only dynamical (and quantized) degrees
of freedom reside in the y-particles; such models were considered in particular by van Hove [28,29] and Lee [25],
and they tend to arise in the limit mx → ∞. Specifically, we take the configuration space of Model 2 to be the set

Q = Qy =
∞⋃

n=0

Q(n)
y =

∞⋃

n=0

(
R
3\{0}

)n
, (24)

where 0 denotes the origin in R
3; a configuration is denoted by yn = ( y1, . . . , yn). Note that we exclude the

possibility that any y-particle can be at the location of the x-particle (i.e., the origin), but we do not exclude the
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24 S. Teufel, R. Tumulka

possibility that two y-particles can be at the same location because for the purposes of this model, in which the
y-particles do not interact, there is no need to exclude such configurations.

Correspondingly, we take the Hilbert space to be the bosonic Fock space

H = F+ =
∞⊕

n=0

S+L2(R3)⊗n . (25)

Since for the definition of theHilbert space it plays no rolewhether the origin is excluded or not, elementsψ ∈ H can
be regarded as complex-valued functions onQ that are permutation symmetric in every sector; thus,H ⊂ L2(Q),
where Q is thought of as equipped with the measure μ defined in the same way as in (7) (L2(Q), contains also
non-symmetric functions). The “original” Hamiltonian is now a simplified version of (10):

(Horigψ)(n)(yn) = − h̄2

2my

n∑

j=1

∇2
y j

ψ(n)(yn) + nE0ψ
(n)(yn)

+ g
√
n + 1ψ(n+1)(yn, 0)

+ g√
n

n∑

j=1

δ3( y j ) ψ(n−1) (yn\ y j
)
, (26)

Also, this Hamiltonian is UV divergent.

3 Interior–boundary condition and corresponding Hamiltonian for the two models

ForModel 1 andModel 2, we describe the IBC and the Hamiltonian HIBC.We also explain why HIBC is a reasonable
interpretation of the formula for Horig. We begin with the simpler scenario of Model 2.

3.1 IBC for Model 2

Let S2 denote the unit sphere in R
3. The IBC demands the following. For every ω ∈ S

2, n ∈ {0, 1, 2, . . .},
yn ∈ (R3\{0})n ,
lim
r↘0

(
rψ(n+1)(yn, rω)

)
= − g my

2π h̄2
√
n + 1

ψ(n)(yn). (27)

The IBC is a condition on the wave function ψ at or near the “boundary” of configuration space; the relevant
boundary ∂Q(n)

y of Q(n)
y is

∂Q(n)
y =

n⋃

j=1

(R3) j−1 × {0} × (R3)n− j . (28)

That is, the boundary consists of those configurations at which one of the y-particles collides with the x-particle.
Due to the permutation symmetry ofψ(n+1), we can assume without loss of generality that it is the n+1-st variable,
yn+1, which approaches 0. The name “interior–boundary condition” reflects the fact that (27) relates the values (or
limits) of ψ on the boundary ∂Qy to values of ψ in the interior of configuration spaceQ (namely, in the interior of
a different sector corresponding to a lesser number of y-particles).

The IBC (27) allows in particular that ψ(yn, rω) diverges like 1/r as r → 0. In fact, it requires that ψ, so
diverges whenever the right-hand side of (27) is nonzero.3 By permutation symmetry, ψ(yn) diverges as any y j
approaches 0.

3 This divergence is to be expected if we keep in mind that |ψ |2 represents the probability density and note that for the inward radial flow
in R

3, i.e., for the dynamical system defined by the ODE ẋ = −x/|x|, the stationary (rotationally invariant) density is 1/r2 = 1/|x|2.
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On wave functions ψ satisfying the IBC (27), the Hamiltonian H = HIBC is defined by

(HIBCψ)(n)(yn) = − h̄2

2my

n∑

j=1

∇2
y j

ψ(n)(yn) + nE0ψ
(n)(yn)

+ g
√
n + 1

4π

∫

S2

d2ω lim
r↘0

∂

∂r

(
rψ(n+1)(yn, rω)

)

+ g√
n

n∑

j=1

δ3( y j ) ψ(n−1)(yn\ y j ). (29)

This equation differs from the expression (26) for Horig only in the second line, where ψ(yn, 0) has been replaced
by a more complicated expression involving the behavior of ψ near the configuration (yn, 0); after all, ψ diverges
at this configuration by virtue of the IBC, so the expression ψ(yn, 0) does not make sense. The great similarity
between HIBC and Horig adds to the suggestion that HIBC is the right Hamiltonian because it is a mathematical
interpretation of the formal expression Horig.

In view of the delta function appearing in (29), it may seem unlikely that such a Hamiltonian can be well defined.
However, a theorem from [4], repeated here as Theorem 1 in Sect. 3.2 below, shows that in fact it is well defined.
It turns out that the last line in (29) always gets canceled by contributions to the first line, which may contain
delta functions because we now allow wave functions that diverge like 1/r = 1/| y j |, and the Laplacian of 1/r
is −4πδ3 (as readers may recall from electrostatics, where 1/r occurs as the Coulomb potential φ generated by
a point charge, satisfying the Poisson equation �φ = −4πρ with charge density ρ). As a consequence of this
cancelation, HIBCψ is a square-integrable function for ψ satisfying the IBC. Conversely, if we want the Laplacian
to produce a contribution that is a Dirac delta contribution, we are led to allowing ψ that diverges like 1/r , and then
the necessary and sufficient condition for the cancelation is just the IBC. See also Remark 6 in Sect. 3.3 below for
further discussion.

Let us point out a connection between the second line of (29), the line that differed from the original Hamiltonian
(26), and the corresponding line in (26). Think of ψ

(
yn, rω

)
as a function of r ; as r → 0, a ψ from the domain of

HIBC can be expanded in the form

ψ(yn, rω) = c−1(yn)

r
+ c0(y

n) + O(r) (30)

with complex coefficients c−1(yn), c0(yn); moreover,
∂

∂r

(
rψ(yn, rω)

) = c0(y
n) + O(r), (31)

which yields c0 in the limit r → 0. Ifψ did not diverge as r → 0, thiswould be exactly the value limr↘0 ψ(yn, rω) =
ψ
(
yn, 0

)
occurring in (26) in the second line. So, (29) is really quite similar to (26). Indeed, we can regard c0 as

the natural interpretation of the expression ψ(yn, 0) in a situation in which ψ also contains a term c−1/r diverging
at 0; put differently, it is a way of extending the annihilation operator ay(0) to functions containing a term c−1/r .
Thus, in total, HIBC appears as a natural interpretation of Horig, with the IBC characterizing the right domain on
which the distribution-valued terms in HIBCψ cancel each other, leaving a square-integrable function.

Keppeler and Sieber [18], apart from developing a one-dimensional version, give further reasons why the IBC
model represents a reasonable interpretation of the original Hamiltonian (26). They argue [18, App. A] that for any

Footnote 3 continued
To see this, note that if we squeeze a spherical shell of radius r1 and thickness dr to a shell with smaller radius r2 and equal thickness
dr, then its volume goes down (and thus, if its probability content is conserved, its density goes up) by a factor of (r1/r2)2. That is the
reason for expecting |ψ |2 ∼ 1/r2 and thus ψ ∼ 1/r as r → 0. We note, however, that this reasoning depends on the radial velocity
being constant (or becoming constant as r → 0); this turns out true in three space dimensions but not in two [5], so the reasoning
suggests the wrong asymptotics in 2d; see [21, Rem. 13].
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eigenfunction ψ of (26), when integrating (26) in yn over a ball of radius r around the source, using the Gauss
integral theorem on the Laplacian term, and taking the limit r → 0, one should obtain that

0 = − h̄2

2my
lim
r↘0

∫

S2
d2ω r2

∂

∂r
ψ(n)(yn−1, rω) + g√

n
ψ(n−1)(yn−1). (32)

Assuming thatψ(n) diverges as r → 0 no worse than 1/r , this relation is equivalent to the IBC (27). Finally, if every
eigenfunction satisfies the IBC (27), then so does any function in the domain of the Hamiltonian. The corresponding
reasoning in the one-dimensional case yields that ψ should have a jump in the first derivative at the origin, with the
magnitude of the jump proportional to the wave function in the next lower sector.

The Hamiltonian HIBC is not the sum of two self-adjoint operators, the free Hamilonian and an interaction
Hamiltonian. That is because the free Hamiltonian is defined on a different domain from HIBC, containing wave
functions that do not satisfy the IBC and do not diverge on the diagonal. It is the action of the Laplacian on functions
that diverge on the diagonal that leads to delta functions and thus makes the last line of (29) possible, and it is only
in conjunction with the IBC that the Hamiltonian (29) leads to conservation of probability.

Indeed, to understand why the IBC (27) was chosen this way, and how it works together with the formula (29)
for the Hamiltonian, it is illuminating to calculate the balance equation for |ψ |2 and check that |ψ |2 is conserved.
We go through such a calculation in the next section.

3.2 Self-adjointness and conservation of probability

Theorem 1 [4] On a certain dense subspace DIBC of H = F+, the elements of which satisfy the IBC (27), the
operator HIBC given by (29) is well defined and self-adjoint. If E0 ≥ 0, then HIBC is bounded from below.

The relevance of this theorem is that it makes clear that HIBC is not afflicted by UV divergence. We give here a
calculation checking on a non-rigorous level that probability is conserved. Using the symbol

j y j = j y j (y
n) = h̄

my
Imψ∗∇ y j ψ, (33)

for the usual probability current, we obtain from (29) that, at any configuration yn (without any y-particle at the
origin),

∂
∣∣ψ(yn)

∣∣2

∂t
= −

n∑

j=1

∇ y j · j y j

+ g
√
n + 1

2π h̄
Imψ∗(yn)

∫

S2

d2ω lim
r↘0

∂

∂r

(
rψ(yn, rω)

)
. (34)

If g �= 0, then the last line can be re-written, using the IBC (27), as

− g
√
n + 1

2π h̄
Im

2π h̄2
√
n + 1

g my
lim
r↘0

rψ∗(yn, rω)

∫

S2

d2ω lim
r↘0

∂

∂r

(
rψ(yn, rω)

)
(35)

= −(n + 1) lim
r↘0

r2
∫

S2

d2ω
h̄

my
Imψ∗(yn, rω)

∂

∂r
ψ(yn, rω), (36)

using that ∂r (rψ) = ψ + r∂rψ and Im(r |ψ |2) = 0. Thus,

∂ |ψ(yn)|2
∂t

= −
n∑

j=1

∇ y j · j y j − (n + 1) lim
r↘0

r2
∫

S2

d2ω ω · j yn+1
(yn, rω). (37)
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This equation possesses a simple interpretation: −r2 times the integral is just the flux of probability current toward
the origin across the sphere of radius r in the coordinate space of yn+1. The limit of that as r → 0 is the current
of probability into the origin in the coordinate space of yn+1. Summing over all y-particles would yield, due to the
bosonic symmetry ofψ , n+1 equal terms; thus, the second summand on the right-hand side of (37) is the total flux
of probability into the boundary configurations obtained from yn by adding one y-particle at the origin. That is, the
balance equation (37) asserts that the probability density |ψ |2 changes in two ways, due to transport of probability
in the n-particle sector and by increasing at just the rate at which probability disappears on the (n + 1)-particle
sector by flowing into the boundary ∂Q(n+1)

y . Therefore, the total probability is conserved.
If g is set to 0, then the amount of probability exchanged between different sectors vanishes, and the norm of

each sector,
∫
R3n dyn |ψ(yn)|2, is conserved separately, corresponding to the fact that the Hamiltonian HIBC of (29)

commutes with the y-particle number operator in this case. In fact, HIBC reduces to the free Hamiltonian (i.e., the
“second quantization” of the free 1-particle operator −(h̄2/2my)∇2

y + E0), and the IBC (27) asserts that, in the
expansion ψ(yn, rω) = c−1/r + c0 + O(r) considered in (31), c−1 = 0; thus, for g = 0 the IBC demands no more
than that ψ is non-singular at r = 0, as functions in the domain of the free Hamiltonian must be.

3.3 Remarks

1. Comparison toBethe–Peierls boundary conditionThe IBC (48) has someparallels to theBethe–Peierls boundary
condition [30], which reads for a wave function ψ ∈ L2(R3,C):

lim
r↘0

(
α + ∂

∂r

)
(rψ(rω)) = 0, (38)

with given constant α ∈ R. This condition is used for giving precise meaning to a Schrödinger equation for
ψ : R3 → C with a Dirac delta function as the potential,

H = − h̄2
2m� + g δ3(x), (39)

a kind of interaction known as a point interaction [31]. Like our IBCs (27), (45), (48), theBethe–Peierls boundary
condition (38) concerns the “boundary” at r = 0. However, in contrast to the IBC, which connects two sectors
ofQ, the Bethe–Peierls boundary condition involves only one sector, as the wave function ψ is defined on R3.
Also, the Bethe–Peierls boundary condition implies zero current into r = 0 (see, e.g., [17] for more detail),
whereas the IBC leads to a nonzero current into the boundary.

2. Comparison to vertex conditions in networks An example of a known boundary condition leading to nonzero
current into the boundary is provided by the vertex conditions for quantum mechanics on networks (see, e.g.,
[32] and references therein). A network, or graph, consists of several one-dimensional spaces (i.e., intervals)
called edges, glued together at their end points called vertices. The wave function is a (say, complex-valued)
function on the network (i.e., on the union of the edges), and the Hamiltonian is given by the Laplace operator
on each edge, along with boundary conditions for the end points of the edges, also called vertex conditions. The
vertex conditions are related to the fact that, since no positive amount of probability can be located at a vertex,
all of the probability current into the vertex must be compensated by a current out of the vertex; that is, for each
vertex v, the sum of the currents along all edges e connected to v (pointing away from v) must vanish,
∑

e

je(v) = 0. (40)

While Dirichlet or Neumann boundary condition at every end point of every edge would lead to je(v) = 0 for
all v and e, it is also possible to impose vertex conditions on ψ that allow nonzero flow of probability from one
edge across a vertex to another edge, the simplest one being the conjunction of

lim
x→v along e

ψ(x) = lim
x→v along e′ ψ(x), (41)
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i.e., that ψ is continuous at vertices, and
∑

e

∂eψ(v) = αψ(v), (42)

where α ∈ R is a given constant and ∂eψ(v) means the derivative of ψ along the edge e, taken at v.

To draw parallels between (42) and IBCs, we may compare the edges of a network to the sectors of the
configuration spaces considered in this paper; let us call both the “blocks” of the space. Of course, the edges of
a graph have equal dimension while the sectors of our Q have different dimension. We may note that in both
situations, the probability loss in one block is compensated by a probability gain in others. Also, the condition
of continuity (41) is a relation between the boundary value in one block and a value in another, but in contrast to
an IBC the latter is also a boundary value; that is, in analogy to the terminology “interior–boundary condition,”
(41) is a “boundary–boundary condition.”

3. Combinatorial factors As remarked at the end of Section 2.1.1, the combinatorial factors
√
n and

√
n + 1 that

appear in the Hamiltonian arise from the fact that we use ordered configurations ( y1, . . . , yn), although in
nature configurations are unordered, as in { y1, . . . , yn}. This is also true of the IBC (27) and the associated
Hamiltonian (29). If we used unordered configurations, which leads to topologically non-trivial configuration
spaces (see, e.g., [33,34]), these factors would not appear.

4. Neumann-type IBC Two well-known types of boundary conditions are Dirichlet boundary conditions,

ψ

∣∣∣
∂Q = 0, (43)

and Neumann boundary conditions,

∂ψ

∂n

∣∣∣
∂Q = 0, (44)

with n the normal vector on the boundary hypersurface. While the IBC (27) resembles the Dirichlet type in that
it involves the values of ψ (or rather, rψ) on the boundary, one can as well set up a different IBC that resembles
the Neumann type in that it involves the normal derivative of ψ (or rather, rψ). Here, r = 0 plays the role of the
boundary, and the radial direction plays the role of the normal to the boundary. The Neumann-type IBC asserts
that for any n ∈ {0, 1, 2, . . .}, any configuration yn ∈ (R3\{0})n , and any ω ∈ S

2,

lim
r↘0

∂

∂r

(
rψ(n+1)(yn, rω)

)
= g my

2π h̄2
√
n + 1

ψ(n)(yn). (45)

Also this IBC typically leads to ψ(n+1)(yn, rω) diverging like 1/r as r → 0. The name “Neumann-type IBC”
should be understood with care since, as we have observed already in (31), the expression limr→0 ∂r (rψ) yields,
forψ = c−1/r +c0 +O(r), just c0; as a consequence, in the case c−1 = 0 in whichψ can actually be evaluated
at r = 0, the expression limr→0 ∂r (rψ) just yields ψ(r = 0), so that the IBC (45) has quite the character of a
Dirichlet boundary condition.

On wave functions ψ satisfying the IBC (45), the Hamiltonian H = HIBC is defined by

(Hψ)(n)(yn) = − h̄2

2my

n∑

j=1

∇2
y j

ψ(n)(yn) + nE0ψ
(n)(yn)

+ g
√
n + 1

4π

∫

S2

d2ω lim
r↘0

rψ(n+1)(yn, rω)

+ h̄2

2my

n∑

j=1

δ3( y j )
∫

S2

d2ω lim
r↘0

rψ(n−1) (yn\ y j , rω
)
. (46)

123



Hamiltonians without ultraviolet divergence... 29

This equation differs from (29) (for the Dirichlet-type case) in the second line, which no longer involves a
derivative, and in the last line, which we will discuss further in Remark 6 below.

While (45) and (46) together define a different time evolution for ψ than (27) and (29), Eq. (37) is still true and
guarantees that the amount of probability lost on the n+1-sector ofQ due to probability flux into the boundary is
addedon then-sector. In fact, aswe show in [4], also (45) and (46) define a self-adjoint operator, provided E0 > 0.

For g = 0, it is again true (as in the Dirichlet-type case) that the sectors decouple, and that the y-particle
number operator is conserved. However, the Hamiltonian does not become the free Hamiltonian. Rather, the
IBC (45) becomes a Bethe–Peierls boundary condition (38) with α = 0, and the Hamiltonian becomes the
second quantization of the negative Laplacian with a point interaction at the origin.

5. Robin-type IBC A Robin boundary condition is one of the form
(

αψ + β
∂ψ

∂n

) ∣∣∣
∂Q = 0 (47)

with given constants α and β. An IBC of an analogous form can be set up as follows: for any n ∈ {0, 1, 2, . . .},
any configuration yn = ( y1, . . . , yn) ∈ (R3\{0})n of y-particles, and any ω ∈ S

2,

lim
r↘0

(
α + β

∂

∂r

)(
rψ(n+1)(yn, rω)

)
= 2my

h̄2
√
n + 1

ψ(n)(yn), (48)

where (α, β) ∈ C
2\{(0, 0)} are constants. Also this condition typically leads toψ that diverge like 1/r as r → 0.

The Dirichlet-type condition (27) is included in this scheme for α = −4π/g, β = 0, while the Neumann-type
condition (45) is included for α = 0, β = 4π/g.

The associated Hamiltonian H = HIBC is given by

(Hψ)(n)(yn) = − h̄2

2my

n∑

j=1

∇2
y j

ψ(n)(yn) + nE0ψ
(n)(yn)

+ √
n + 1

∫

S2

d2ω lim
r↘0

(
γ + δ

∂

∂r

)(
rψ(n+1) (yn, rω

))

+ h̄2

2my

n∑

j=1

δ3( y j )
∫

S2

d2ω lim
r↘0

rψ(n−1) (yn\ y j , rω
)
, (49)

where the constants γ, δ ∈ C satisfy

α∗γ ∈ R (50)

β∗δ ∈ R (51)

α∗δ − γ ∗β = −1. (52)

It should always be obvious when the symbol δ means the constant δ ∈ C and when the Dirac delta function.
Note that for γ = 0, δ = g/4π , the expression (49) for the Hamiltonian agrees with (29), while for γ = g/4π ,
δ = 0 it reduces to (46).
We remark that the family of IBCs just described actually depends only on four real parameters, although
α, β, γ, δ would seem at first to be four complex (and thus 8 real) parameters. That is so because (50) requires
α and γ to have equal phases, and (51) requires β and δ to have equal phases; since the phase of α∗δ is the
phase difference between α and δ, which must be equal to that between γ and β and thus by (52) to the phase
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of −1, α and δ must have equal phases. In other words, all of α, β, γ, δ must have the same phase, while their
absolute values are constrained by (52), so that only four real parameters are independent.
On a non-rigorous level, the conservation of probability (i.e., self-adjointness of the Hamiltonian (49)) can be
checked by means of a calculation similar to the one in Sect. 3.2 above (and to the one in [16]). The self-
adjointness breaks down (already on the non-rigorous level) if we relax the conditions (50)–(52). If, however,
(50)–(52) are satisfied, then (48) and (49) define a self-adjoint Hamiltonian, provided E0 > 0 [4].

6. Dirac delta function terms in H . Here is a reason for thinking that, among the many different IBCs that are
mathematically possible corresponding to different choices of the constants α, β, γ, δ, only the Dirichlet-type
IBC (27), corresponding to α = −4π/g, β = 0 = γ , and δ = g/4π , is physically relevant as a replacement of
the original (UV divergent) Hamiltonian (26): It is the only choice that leads to a term in HIBC that reproduces
the Dirac delta function terms in Horig, i.e., for which the last line of (49) agrees with the last line of (26). That
is because the Dirichlet case is the only case in which the last line of (49) can be expressed in terms of ψ(n−1).
The last line of (49) is dictated by the condition that Hψ has to be an L2 function and thus cannot contain
contributions that are Dirac delta functions. Indeed, since for any α, β, γ, δ, the wave function ψ(n) diverges at
the boundary like 1/r , the Laplacian in the Hamiltonian always yields a distribution of the form

−
∑

j

∇2
y j

ψ(n) = −
∑

j

δ3( y j ) f (yn\ y j ) + g(yn) (53)

with some functions f and g; so the Dirac delta contributions need to be canceled, which leads to the last line
of (49).
In the one-dimensional case, it seems that the physically reasonable IBC is the one given in [18], which is
of the Neumann type and involves the normal derivative on both sides of the “diagonal” (i.e., the collision
configurations). This is the conclusion one reaches when demanding that the Laplacian term in the Hamiltonian
cancels the Dirac delta function terms, starting from the one-dimensional version of (26): Then, the derivative
of ψ needs to have jumps of the appropriate magnitude.

7. Positivity Another reason for thinking that the Dirichlet-type IBC (rather than, say, Neumann-type) is the
physically relevant choice may be that HIBC for a Dirichlet-type IBC is positive, as mentioned in Theorem 1 in
Sect. 3.2. Generally speaking, the IBC approach neither requires nor guarantees that Hamiltonians are bounded
from below. Presently, we do not know for which other choices of α, β, γ, δ the Hamiltonian will be positive,
but we see reason to believe that, in the variant of the equations appropriate for Model 1, the Neumann-type IBC
leads to a Hamiltonian that is not bounded from below. Further considerations about physical reasonableness
of HIBC can be found in Sects. 3.5 and 3.6 below.

8. Bohmian trajectories There is a natural way of defining Bohmian trajectories for the models described in this
paper; we describe this in detail elsewhere [21]. The Bohmian configuration Qt follows a Markov jump process
in configuration space that is |ψt |2-distributed at every time t . The process has finitely many jumps in every
finite time interval. The pieces between the jumps are solutions to Bohm’s equation of motion; in particular,
they are deterministic, in contrast for example to Nelson’s trajectories [35], which follow a diffusion process.
In our Models 1 and 2, the jumps correspond to the creation or annihilation of a particle. The jumps to a lower
sector (particle annihilation) occur whenever a y-particle hits an x-particle; in that event, the y-particle gets
deleted from Qt . While the jumps to a lower sector are deterministic, the jumps to a higher sector (particle
creation) are stochastic. They can occur at any configuration Qt , with a rate depending on Qt and ψt , and
lead to a configuration with a new y-particle created at the location of an x-particle; the y-particle then moves
in a random direction that is uniformly distributed over the sphere. Compared to previous models of particle
creation and annihilation in Bohmian mechanics (see [14] and references therein) that involved a UV cutoff,
the difference is that in Models 1 and 2, the y-particle gets created at (rather than near) an x-particle, and
that annihilation is deterministic. The process is time-reversal invariant (notwithstanding that annihilation is
deterministic and creation is stochastic).

123



Hamiltonians without ultraviolet divergence... 31

3.4 IBC for Model 1

We now describe an IBC and the corresponding Hamiltonian for Model 1. The IBC demands that for any m, n ∈
{1, 2, . . .}, any configuration xm = (x1, . . . , xm) ∈ R

3m of x-particles, any configuration yn = ( y1, . . . , yn) ∈ R
3n

of y-particles with xm ∩ yn = ∅ (i.e., xi �= y j for all i, j), any i = 1, . . . ,m, and any j = 1, . . . , n,

lim
(xi , y j )→(x,x)

| y j − xi | ψ(m,n)
(
xm, yn) = − g

2π h̄2
√
n

mxmy

mx + my
ψ(m,n−1)(xi = x, ŷ j ), (54)

wherêdenotes omission, and g ∈ R is the same coupling constant as before.
The IBC is a condition on the wave function ψ near the diagonal � in configuration space Qx × Qy , i.e., the

set of “collision configurations,”

� = {(xm, yn) ∈ Qx × Qy : xi = y j for some i, j
}
. (55)

If we regard the collision configurations in � as not admissible configurations, then the configuration space is the
set difference Q = (Qx × Qy)\�, and its “boundary” is ∂Q = �.

The Hamiltonian HIBC is defined [6] on a domain DIBC ⊂ H = F− ⊗ F+ consisting of wave functions ψ

that satisfy the IBC (54) and obey the following asymptotics, replacing (30), near the boundary surface {xi = y j }
in Q(m,n) = R

3m
x × R

3n
y :

ψ(x, y) = c−1,i
(
x, y\ y j

)
r−1
i j + c�,i

(
x, y\ y j

)
log ri j + c0,i

(
x, y\ y j

)+ o(r0i j ), (56)

where ri j = |xi − y j |, x = (x1, . . . , xm), and y = ( y1, . . . , yn) with xk �= yr for all k, r . Moreover, to make
HIBC self-adjoint, the coefficients are related according to [6]

c�,i = η c−1,i (57)

with fixed real proportionality factor

η = g2 m2
xm

2
y

2π2h̄4(mx + my)2

[√
mx (mx + 2my)

mx + my
− mx + my

my
arctan

(
my√

mx (mx + 2my)

)]
. (58)

Note that as mx → ∞, the constant α tends to zero, and by (57) the asymptotics (56) reduces to (30), the one of
Model 2. In terms of the c coefficients, the IBC (54) can be reformulated as

c−1,i
(
x, y\ y j

) = − g

2π h̄2
√
n

mxmy

mx + my
ψ
(
x, y\ y j

)
. (59)

The Hamiltonian HIBC is given by

(HIBCψ)(m,n)(xm, yn) = − h̄2

2mx

m∑

i=1

∇2
xi ψ

(m,n)(xm, yn) − h̄2

2my

n∑

j=1

∇2
y j

ψ(m,n)(xm, yn)

+ nE0ψ
(m,n)(xm, yn) + g

√
n + 1

m∑

i=1

c0,i (x
m, yn)

+ g√
n

m∑

i=1

n∑

j=1

δ3(xi − y j ) ψ(m,n−1) (xm, yn\ y j
)
. (60)

As shown in [6], HIBC defines a self-adjoint operator onDIBC. Of the five terms in (60), only the nE0ψ term is square
integrable by itself. All the other terms are distributions that add up to a square-integrable function. In particular, in
contrast to the Hamiltonian (29) of Model 2, the annihilation term c0,i (xm, yn) is not necessarily square integrable,
but compensates derivatives of the logarithmic contributions in (56). These cancelations are rather subtle, which
could be a reason why no renormalization scheme for Model 1 was known before the IBC study in [6].
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3.5 Ground state energy and effective Yukawa potential

Elsewhere [4], we show that HIBC as in (29) for Model 2 with Dirichlet-type IBC (27) and E0 > 0 possesses a
non-degenerate ground state ψmin. It is given by

ψmin( y1, . . . , yn) = N 1√
n!
(

− gmy

2π h̄2

)n n∏

j=1

e−√
2my E0| y j |/h̄

| y j |
(61)

with normalization constant

N = exp

(
− g2m2

y

4π h̄3
√
2myE0

)
, (62)

and eigenvalue

Emin = g2my
√
2myE0

2π h̄3
. (63)

That is, the state is a superposition of different numbers of y-particles, and in each sector all y-particles have the
same wave function; so the x-particle at the origin is dressed with a cloud of y-particles. The probability distribution
of the number n of y-particles is a Poisson distribution with mean value

〈n〉ψmin = g2m2
y

2π h̄3
√
2myE0

. (64)

We claim further that in Model 1, in which the x-particles interact by exchanging y-particles, the x-particles
effectively interact through a Yukawa potential; this in fact agrees with the result of Yukawa’s original reasoning
[36]; see below. A simple way of computing the effective interaction potential is to consider (as “Model 2b”) N x-
particles fixed at x1, . . . , xN ∈ R

3 and to find the ground state energy. , consider wave functions of y-configurations
that simultaneously satisfy N IBCs,

lim
r↘0

(
rψ(n+1)(yn, xi + rω)

)
= − g my

2π h̄2
√
n + 1

ψ(n)(yn) (65)

for every i = 1, . . . , N , ω ∈ S
2, n ∈ {0, 1, 2, . . .}, and yn ∈ (R3\{x1, . . . , xN })n . The corresponding Hamiltonian

reads

(Hψ)(n)(yn) = − h̄2

2my

n∑

j=1

∇2
y j

ψ(n)(yn) + nE0ψ
(n)(yn)

+ g
√
n + 1

4π

N∑

i=1

∫

S2

d2ω lim
r↘0

∂

∂r

(
rψ(n+1)(yn, xi + rω)

)

+ g√
n

N∑

i=1

n∑

j=1

δ3( y j − xi ) ψ(n−1)(yn\ y j ) . (66)

For E0 > 0, the ground state is

ψmin( y1, . . . , yn) = cn

n∏

j=1

N∑

i=1

e−√
2my E0| y j−xi |/h̄

| y j − xi | (67)

with suitable factors cn and eigenvalue

Emin = g2my

π h̄2

⎛

⎝N
√
2myE0

2h̄
−

∑

1≤i< j≤N

e−√
2my E0|xi−x j |/h̄

|xi − x j |

⎞

⎠ . (68)
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That is, the ground state energy of the y-particles, given the x-particles at x1, . . . , xN , is given by (68). Regarding
this energy function of x1, . . . , xN as an effective potential for the x-particles (which is appropriate when the
x-particles move slowly), we see that x-particles effectively interact through an attractive Yukawa pair potential,

V (R) = const. − e−λR

R
(69)

with R the distance between two x-particles. If we take the energy needed to create a y-particle to be E0 = myc2,
then

λ = √
2
myc

h̄
, (70)

which is, up to the factor
√
2, the value originally obtained by Yukawa [36] considering the effective interaction of

nucleons by exchange of pions. We expect that the factor
√
2 is owed to the non-relativistic nature of our model.

3.6 IBC Hamiltonians as a limit of removing the cutoff

If one introduces a UV cutoff into the UV divergent original Hamiltonian (26) of Model 2, it becomes the well-
defined operator Hϕ given by

(Hϕψ)(n)(yn) = − h̄2

2my

n∑

j=1

∇2
y j

ψ(n)(yn) + nE0ψ
(n)(yn)

+ g
√
n + 1

∫

R3
d3 y ϕ∗( y) ψ(n+1)(yn, y)

+ g√
n

n∑

j=1

ϕ( y j ) ψ(n−1)(yn\ y j ), (71)

analogous to (20) for Model 1. Here, the Dirac delta function δ3 has been replaced by ϕ : R3 → C, a square-
integrable function describing the charge density of the x-particle, and the limit ϕ → δ3 would correspond to
removing the UV cutoff. It is well known [28,29] that, if E0 > 0, there are numbers Eϕ ∈ R such that the operator
Hϕ − Eϕ possesses a limit as ϕ → δ3. Since Eϕ → ∞ in this limit, Hϕ tends to infinity in a sense, but this sense
is harmless because two Hamiltonians that differ only by a multiple of the identity operator can be regarded as
equivalent, as they generate the same time evolution (if we regard wave functions that differ only by a global phase
factor as equivalent). So, in a relevant sense, the limit ϕ → δ3 can indeed be taken, which suggests regarding the
limiting Hamiltonian as the “physically correct” Hamiltonian. Obviously, the limiting Hamiltonian is defined only
up to addition of a constant, as this constant can be added to each of the Eϕ . However, for the Hϕ of this concrete
model, there is a particular natural choice of Eϕ and thus of the limiting Hamiltonian, described, e.g., in [4,29], for
which we will write H∞.

Theorem 2 [4] For the Hamiltonian HIBC of the Dirichlet type for Model 2, defined by (27) and (29),

H∞ = HIBC − Emin (72)

with the constant Emin as in (63).

On the one hand, this result lends further support to regarding HIBC and the IBCapproach as physically reasonable.
On the other hand, the result provides a more direct and explicit representation of H∞ than available so far.
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4 Conclusions

If configuration space has a boundary (be it of codimension 1 or codimension 3), then an interior–boundary condition
on this boundary can serve to ensure that the probability flux into the boundary is compensated by an equally large
gain of probability in another place in configuration space, and thus to ensure the overall conservation of probability.
At the same time, an interior–boundary condition has the consequence that contributions to the wave function can
flow out of the boundary. That is just what is needed for defining an evolution on Fock space representing the
emission and absorption of particles. The crucial point here is that this approach is also possible if the sources
(the x-particles in Model 1 and Model 2) are point shaped, without a UV divergence problem arising. IBCs thus
seem like a natural way of implementing Hamiltonians with particle creation and annihilation. The mathematical
viability of this approach for non-relativistic QFTs has been established in recent works [4–6]. Its applicability to
more serious QFTs remains to be explored.
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