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Abstract In this article, Dirac operators Aη,τ coupled with combinations of electrostatic and Lorentz scalar δ-
shell interactions of constant strength η and τ , respectively, supported on compact surfaces � ⊂ R

3 are studied. In
the rigorous definition of these operators, the δ-potentials are modeled by coupling conditions at �. In the proof
of the self-adjointness of Aη,τ , a Krein-type resolvent formula and a Birman–Schwinger principle are obtained.
With their help, a detailed study of the qualitative spectral properties of Aη,τ is possible. In particular, the essential
spectrum of Aη,τ is determined, it is shown that at most finitely many discrete eigenvalues can appear, and several
symmetry relations in the point spectrum are obtained. Moreover, the nonrelativistic limit of Aη,τ is computed and
it is discussed that for some special interaction strengths, Aη,τ is decoupled to two operators acting in the domains
with the common boundary �.
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1 Introduction

Working with the equations of motion, there is a particular interest to find solutions which are exact and which
correspond to specific physical systems. Such an ideal treatment was possible, for instance, in the quantummechan-
ical explanation of the spectral properties of one-electron atoms. However, such situations are rare, and hence, the
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original model is often replaced by an idealized one which is mathematically accessible and reflects at the same
time the physical reality to a reasonable degree. In many problems, this can be achieved using singular potentials
supported on sets of measure zero. This method is used highly successfully in nonrelativistic quantum mechanics,
cf. the monograph [1].

Life becomes more complicated when the systems under consideration are relativistic, described by the Dirac
equation. Here, there are only very few solvable models and the physics becomes more complicated when other
than electromagnetic forces enter the picture. An example of such a situation is the quark dynamics within the
nucleon. An early attempt to describe it was made by Bogolioubov, Struminski, and Tavkhelidze, as cited in [12],
who proposed to model them as confined to a spherical cavity. The nature of the confinement was not consistent
there, but the idea inspired a little later the so-called MIT bag model [16–19,29].

The requirement of relativistic invariance allows to distinguish several types of potentials specified by their
behavior with respect to the Lorentz group transformations [41, Section 4.2]. The most common among them are
the scalar and electromagnetic ones, and among the latter, the electrostatic one plays an important role. In this
paper, we consider combinations of scalar and electrostatic potentials, which differ by the presence and absence,
respectively, of the Dirac matrix β; a useful feature of such potential combinations is that the mentioned matrix
gives rise to one of the possible supersymmetries of the Dirac equation [41, Section 5.1].

Let us now describe the aim of the paper in more detail. To set the stage let � ⊂ R
3 be a closed, bounded, and

sufficiently smooth surface which splits R3 into a bounded domain �+ and an unbounded domain �−, and let ν

be the unit normal vector field at � pointing outwards �+. Our goal is to study Dirac operators acting in L2(R3)4

which are formally given by

Aη,τ = −ic
3∑

j=1

α j∂ j + mc2β + (ηI4 + τβ)δ�, (1.1)

where m is the mass of the particle, c is the speed of light, α1, α2, α3, β ∈ C
4×4 are the Dirac matrices defined

in (2.2), I4 ∈ C
4×4 is the identity matrix, η, τ ∈ R are the interaction strengths, and the δ-distribution acts in a

symmetric way as

δ� f = 1

2
( f+|� + f−|�), f± = f � �±.

To introduce Aη,τ in a mathematically rigorous form as a self-adjoint operator in L2(R3)4, we require that functions
in the domain of Aη,τ satisfy suitable coupling conditions on �. To find them, we note first that the distribution
Aη,τ f acts on a test function ϕ ∈ C∞

0 (R3)4 as

〈Aη,τ f, ϕ〉 =
∫

R3
f · (−icα · ∇ϕ + mc2βϕ

)
dx +

∫

�

( f+|� + f−|�) · 1
2
(ηI4 + τβ)ϕ|�dσ,

where the notation α · x = α1x1 + α2x2 + α3x3 for a vector x = (x1, x2, x3) was used. On the other hand, one
would expect that the operator Aη,τ acts for x /∈ � as

Aη,τ f (x) = −icα · ∇ f (x) + mc2β f (x), (1.2)

which leads via integration by parts in �± to the observation that

〈Aη,τ f, ϕ〉 =
∫

�+∪�−

( − icα · ∇ f + mc2β f
) · ϕdx

=
∫

R3
f · (−icα · ∇ϕ + mc2βϕ

)
dx −

∫

�

icα · ν( f+|� − f−|�) · ϕ|�dσ
should hold for f ∈ dom Aη,τ . Comparing the two expressions for 〈Aη,τ f, ϕ〉, we conclude that a function f ∈
dom Aη,τ should satisfy the jump condition

− icα · ν( f+|� − f−|�) = 1

2
(ηI4 + τβ)( f+|� + f−|�). (1.3)
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On Dirac operators in R3 with electrostatic and Lorentz scalar δ-shell interactions 297

Therefore, the operator Aη,τ corresponding to the formal differential expression (1.1) should be defined for functions
satisfying the coupling condition (1.3) and should act for x /∈ � as in (1.2).

The mathematical study of Dirac operators with singular potentials started in the 1980s when Gesztesy and
Šeba considered one dimensional Dirac operators with point interactions [1,26,39]; for more recent contributions
on Dirac operators with point interactions, see, e.g., [14,15,36]. Based on [26] and a decomposition to spherical
harmonics, Dittrich, Exner, and Šeba investigated the operator Aη,τ in the case that � is the sphere in R

3. In [20],
they showed for a wide class of parameters the self-adjointness of Aη,τ and they were able to compute its resolvent
and some of its spectral properties. While some of the interesting properties of Aη,τ like the decoupling of the
operator to two Dirac operators acting in �± for interaction strengths satisfying η2 − τ 2 = −4c2 were observed in
[20], compare also Lemma 3.1, others like, e.g., unexpected spectral effects for η2 − τ 2 = 4c2 could not be seen
with this approach due to the decomposition to the spherical harmonics.

It took then 25 years until Dirac operators with singular interactions supported on more general surfaces in R
3

were studied. In a series of papers [4–6], Arrizabalaga, Mas, and Vega showed the self-adjointness and derived
several basic properties of Aη,τ , in particular for the special case of purely electrostatic interactions, i.e., for τ = 0.
Moreover, for purely electrostatic and purely scalar interactions, it was shown in [34] that Aη,τ can be regarded
as a limit of Dirac operators with squeezed potentials. Inspired by the approach in [4], the authors of the present
paper applied the abstract concept of quasi-boundary triples andWeyl functions from extension theory of symmetric
operators to Dirac operators with singular interactions and provided in the recent paper [7] a deeper analysis of the
spectral properties of Aη,0 for purely electrostatic potentials. We should note that in all of the above-mentioned
papers, the case η2−τ 2 = 4c2 was excluded and it turns out that in this critical case, the operator Aη,τ has different
properties as in the noncritical case η2 − τ 2 	= 4c2. For purely electrostatic interactions, the self-adjointness of
Aη,0 for critical η = ±2c was studied in [8,33] and some surprising spectral effects like possible appearance of
additional essential spectrum were shown. Eventually, in [27], a detailed study of the spectral properties of A0,τ

for purely scalar potentials was provided; in particular, it was shown that the discrete eigenvalues in the large mass
limit are characterized by an effective operator on the surface�. Furthermore, there is a great interest recently in the
study of self-adjoint Dirac operators on domains with boundary conditions, see, e.g., [2,3,10,11,25,30,31,35,38].

Our goal in this note is to extend many of the above-mentioned results, which were shown for purely electrostatic
or purely scalar interactions, to the more general case of combinations of electrostatic and scalar interactions. For
that, we use a uniform approach which is based on the considerations in [7,8]. After presenting some preliminary
material on integral operators which are associated to the Green function of the resolvent of the free Dirac operator,
we introduce in Sect. 3 the operator Aη,τ in a mathematically rigorous way via the coupling condition (1.3). Then,
we show for noncritical interaction strengths η2−τ 2 	= 4c2 the self-adjointness of Aη,τ in Theorem 3.4. In the proof
of the self-adjointness, we also verify a Birman–Schwinger principle, which translates the eigenvalue problem for
the differential operator Aη,τ to a nonlinear eigenvalue problem for a family of integral operators acting on �.

In Sect. 4, we provide the basic spectral properties of Aη,τ for noncritical interaction strengths. We compute
the essential spectrum, show that at most finitely many discrete eigenvalues appear and obtain several symmetry
relations for the spectrum of Aη,τ . We complement the results for noncritical interactions by a theorem from [8]
which shows that the spectral properties of Aη,τ can be completely different in the critical case.

Finally, we compute in Sect. 5 for purely electrostatic and purely scalar potentials the nonrelativistic limit of
Aη,τ , which shows that Aη,τ is the relativistic counterpart of the Schrödinger operator − 1

2m
 + ηδ� and which
gives another justification that the jump condition (1.3) models the δ-potential correctly.

2 The free Dirac operator and associated integral operators

In this preliminary section,we collect somewell-known facts about the freeDirac operator inR3 and some associated
integral operators that are needed to investigate Dirac operators with singular δ-shell interactions. For that, we have
to fix some notations first.
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298 J. Behrndt et al.

2.1 Notations

LetH be a Hilbert space. Then, we writeHd := H⊗C
d . For a closable operator A inH, its domain of definition,

its range, and its kernel are denoted by dom A, ran A, and ker T , respectively. The closure of A is A. Eventually,
if A is self-adjoint, then its resolvent set, its spectrum, the point, discrete, and essential spectrum are ρ(A), σ(A),
σp(A), σdisc(A), and σess(A), respectively.

For a domain � ⊂ R
3 with a compact C2-smooth boundary � := ∂�, we denote by L2(�) the standard L2-

spaces and L2(�) is endowed with the inner product based on the integral with respect to the surface measure σ . As
usual, H1(�) stands for the Sobolev space of order one which consists of functions f ∈ L2(�)with∇ f ∈ L2(�)3,
where ∇ f is the distributional gradient of f . Similarly, H1(R3) is introduced. Moreover, we define the trace space

H1/2(�) := { f |� : f ∈ H1(�)}

equipped with the norm ‖ϕ‖1/2 := inf{‖ f ‖H1(�) : f ∈ H1(�), f |� = ϕ}. One verifies that the trace mapping

H1(�) � f 
→ f |� ∈ H1/2(�) (2.1)

is a bounded, surjective linear map and one can further show that H1/2(�) ⊂ L2(�), cf. [28, Section 4.2 and
Theorem 4.2.1].

Since we are not interested in the semiclassical limit, we choose units in (1.1) in such a way that h̄ = 1.
However, we keep the mass of the particle m and the speed of light c both as positive constants. The Dirac matrices
α := (α1, α2, α3) and β are defined for j ∈ {1, 2, 3} by

α j :=
(
0 σ j

σ j 0

)
and β :=

(
I2 0
0 −I2

)
, (2.2)

where Id denotes the d × d-identity matrix and σ1, σ2, σ3 are the Pauli spin matrices:

σ1 :=
(
0 1
1 0

)
, σ2 :=

(
0 −i
i 0

)
, σ3 :=

(
1 0
0 −1

)
.

It is easy to see that the Dirac matrices satisfy

α jαk + αkα j = 2δ jk I4 and α jβ + βα j = 0, j, k ∈ {1, 2, 3}. (2.3)

For x = (x1, x2, x3) ∈ R
3, we will often employ the notations:

α · x =
3∑

k=1

αk xk and α · ∇ =
3∑

k=1

αk∂k .

Finally, if not stated differently, �+ ⊂ R
3 is always a bounded domain with compact C2-smooth boundary

�, �− = R
3 \ �+, and ν denotes the unit normal vector field at � pointing outwards �+. We will often write

f± := f � �± for f ∈ L2(R3).
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On Dirac operators in R3 with electrostatic and Lorentz scalar δ-shell interactions 299

2.2 The free Dirac operator

We are now prepared to introduce the free Dirac operator, which acts in the Hilbert space L2(R3)4 as

A0 f := −ic
3∑

j=1

α j∂ j f + mc2β f, dom A0 := H1(R3)4. (2.4)

Using the Foldy–Wouthuysen transformation, it is easy to see that A0 is self-adjoint and that

σ(A0) = σess(A0) = (−∞,−mc2] ∪ [mc2,∞),

cf. [41, Section 1.4]. Next, for λ ∈ ρ(A0) = C \ (
(−∞,−mc2] ∪ [mc2,∞)

)
, the resolvent of A0 is

(A0 − λ)−1 f (x) =
∫

R3
Gλ(x − y) f (y)dy, f ∈ L2(R3)4, x ∈ R

3,

where the Green function Gλ is given for x 	= 0 by

Gλ(x) =
⎛

⎝ λ

c2
I4 + mβ +

⎛

⎝1 − i

√
λ2

c2
− (mc)2|x |

⎞

⎠ i

c|x |2 α · x
⎞

⎠ · e
i
√

λ2/c2−(mc)2|x |

4π |x | ,

see [41, Section 1.E]; in the last formula the convention Im
√

λ2/c2 − (mc)2 > 0 is used.

2.3 Auxiliary integral operators

In this subsection, we introduce several families of integral operators which are related to the Green function Gλ

and which will play a crucial role later in the study of Dirac operators with singular δ-shell interactions. For a
fixed λ ∈ ρ(A0) = C \ (

(−∞,−mc2] ∪ [mc2,∞)
)
, we define the potential operator �λ : L2(�)4 → L2(R3)4 by

�λϕ(x) :=
∫

�

Gλ(x − y)ϕ(y)dσ(y), ϕ ∈ L2(�)4, x ∈ R
3, (2.5)

and the strongly singular boundary integral operator Cλ : L2(�)4 → L2(�)4 acting as

Cλϕ(x) := lim
ε↘0

∫

�\B(x,ε)
Gλ(x − y)ϕ(y)dσ(y), ϕ ∈ L2(�)4, x ∈ �, (2.6)

where B(x, ε) is the ball of radius ε centered at x . Both operators �λ and Cλ are well defined and bounded, see [7,
Proposition 3.4] or [5, Section 2], and �λ is injective by [7, Proposition 3.4 and Definition 2.3]. In particular, Cλ is
uniformly bounded for λ ∈ (−mc2,mc2), i.e., there exists a constant K > 0 independent of λ, such that

‖Cλ‖ ≤ K for all λ ∈ (−mc2,mc2), (2.7)

cf. [7, Proposition 3.5] and also [5, Lemma 3.2]. Next, if ϕ ∈ H1/2(�)4, then according to [8, Proposition 4.2]

�λϕ ∈ H1(�+)4 ⊕ H1(�−)4 and Cλϕ ∈ H1/2(�)4 (2.8)
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hold. Moreover, if λ ∈ ρ(A0), then a function fλ ∈ H1(�+)4 ⊕ H1(�−)4 satisfies

(−icα · ∇ + mc2β − λ) fλ = 0 in �±,

if and only if there exists a density ϕ ∈ H1/2(�)4, such that

fλ = �λϕ; (2.9)

see [8, Proposition 4.2].
Now, we describe how �λ and Cλ are related to each other by taking traces. Let ϕ ∈ H1/2(�)4 and λ ∈ ρ(A0).

Then, the trace of the function

�λϕ = (�λϕ)+ ⊕ (�λϕ)− ∈ H1(�+)4 ⊕ H1(�−)4

on � is

(
(�λϕ)±

)∣∣
�

= Cλϕ ∓ i

2c
(α · ν)ϕ;

this is shown in [5, Lemma 2.2] for λ ∈ (−mc2,mc2), the case λ ∈ C \ R can be proved in the same way. In
particular, using (α · ν)2 = I4, one finds that the identities

1

2

(
(�λϕ)+|� + (�λϕ)−|�

) = Cλϕ, (2.10)

icα · ν
(
(�λϕ)+|� − (�λϕ)−|�

) = ϕ, (2.11)

hold. Finally, let us mention the mapping properties of the operators C2λ − 1
4c2

I4 and Cλβ + βCλ which will be

important for the analysis of Aη,τ . Using the anti-commutation relation (2.3), it is easy to see for ϕ ∈ L2(�)4 that

(βCλ + Cλβ)ϕ(x) = 2

(
λ

c2
β + mI4

)
·
∫

�

ei
√

λ2/c2−(mc)2|x−y|

4π |x − y| ϕ(y)dσ(y),

that is, βCλ +Cλβ is a constant matrix times the single-layer boundary integral operator associated to−
+(mc)2−
λ2

c2
, cf. [32, equation (9.15)]. This together with [32, Theorem 6.11], the fact that H1/2(�)4 is compactly embedded

in L2(�)4, see, e.g., [28, Theorem 4.2.2], and [8, Proposition 4.4 (iii)], see also [33, Proposition 2.8], yields the
following proposition:

Proposition 2.1 Let λ ∈ ρ(A0) = C \ (
(−∞,−mc2] ∪ [mc2,∞)

)
. Then the following holds.

(i) The operator C2λ − 1
4c2

I4 gives rise to a bounded operator:

C2λ − 1

4c2
I4 : L2(�)4 → H1/2(�)4.

In particular, C2λ − 1
4c2

I4 is compact in L2(�)4.
(ii) The operator βCλ + Cλβ gives rise to a bounded operator:

βCλ + Cλβ : L2(�)4 → H1/2(�)4.

In particular, βCλ + Cλβ is compact in L2(�)4.
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On Dirac operators in R3 with electrostatic and Lorentz scalar δ-shell interactions 301

Finally, we note that the adjoint �∗
λ : L2(R3)4 → L2(�)4 of �λ acts as

�∗
λ f = (

(A0 − λ)−1 f
)∣∣

�
(2.12)

or, in a more explicit way:

�∗
λ f (x) =

∫

R3
G λ̄(x − y) f (y)dy, f ∈ L2(R3)4, x ∈ �.

It follows from (2.1), (2.4), and (2.12) that �∗
λ f ∈ H1/2(�)4 for any f ∈ L2(R3)4.

3 Definition and self-adjointness of Aη,τ

This section is devoted to the rigorous mathematical definition of the operator Aη,τ and the proof of its self-
adjointness. In the following, we will often make use of the orthogonal decomposition L2(R3)4 = L2(�+)4 ⊕
L2(�−)4 and we write for f ∈ L2(R3)4, in this sense, f = f+ ⊕ f− with f± := f � �±.

As explained in the introduction, see (1.3), the δ-shell interaction is modeled by a coupling condition which has
to be satisfied by functions in the operator domain. We define for η, τ ∈ R the operator Aη,τ by

Aη,τ f := (−icα · ∇ + mc2β) f+ ⊕ (−icα · ∇ + mc2β) f−,

dom Aη,τ := {
f = f+ ⊕ f− ∈ H1(�+)4 ⊕ H1(�−)4 :
icα · ν( f+|� − f−|�) + 1

2 (ηI4 + τβ)( f+|� + f−|�) = 0
}
. (3.1)

In the following lemma, we discuss some alternative representations of the coupling condition which models the
δ-shell interaction:

Lemma 3.1 Let η, τ ∈ R. Then, the following hold.

(i) If η2 − τ 2 	= −4c2, then there exists an invertible matrix Rη,τ given explicitly in (3.3), such that a function
f = f+ ⊕ f− ∈ H1(�+)4 ⊕ H1(�−)4 belongs to dom Aη,τ if and only if

f+|� = Rη,τ f−|�.

(ii) If η2 − τ 2 = −4c2, then a function f = f+ ⊕ f− ∈ H1(�+)4 ⊕ H1(�−)4 belongs to dom Aη,τ if and only
if

(
2cI4 − i(α · ν)(ηI4 + τβ)

)
f+|� = 0,

(
2cI4 + i(α · ν)(ηI4 + τβ)

)
f−|� = 0.

Before we prove Lemma 3.1, let us discuss its meaning: if η2 − τ 2 	= −4c2, then item (i) shows that (1.3) is a
coupling condition which relates the values of f+ at � to those of f− at � via the matrix Rη,τ . On the other hand,
if η2 − τ 2 = −4c2, then assertion (ii) of the above lemma shows that Aη,τ is decoupled to Dirac operators in �±
with the above boundary conditions. This implies a confinement meaning that a particle which is initially located in
�± will remain in �± in its time evolution. In other words, this means that the δ-potential makes � impenetrable
for particles. This is investigated in a more detailed way in [5, Section 5] and [20, Section V]. In particular, using
the anti-commutation relation (2.3), we see that the above boundary conditions simplify for η = 0 and τ = 2c to

(
I4 + iβ(α · ν)

)
f+|� = 0,

(
I4 − iβ(α · ν)

)
f−|� = 0,

which are the boundary conditions characterizing the MIT bag model of quarks confined in a nucleon mentioned in
the introduction [16–19,29] (note that the normal ν is pointing inside �−). In this way, A0,2c decomposes into the
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orthogonal sum of an MIT bag operator in �+ and a Dirac operator in the “exterior bag” �− with similar boundary
conditions. We remark that from the physical point of view, only the problem on a bounded domain is a model
for the quark confinement, while its direct counterpart on an exterior unbounded domain is merely a mathematical
object.

Proof of Lemma 3.1 Another way to write the coupling condition (1.3) is

(
ic(α · ν) + 1

2
(ηI4 + τβ)

)
f+|� +

(
−ic(α · ν) + 1

2
(ηI4 + τβ)

)
f−|� = 0. (3.2)

If η2 − τ 2 	= −4c2, then the matrix ic(α · ν) + 1
2 (ηI4 + τβ) is invertible with

(
ic(α · ν) + 1

2
(ηI4 + τβ)

)−1

= 4

4c2 + η2 − τ 2

(
−ic(α · ν) + 1

2
(ηI4 − τβ)

)
.

Hence, if we set

Rη,τ := −
(
ic(α · ν) + 1

2
(ηI4 + τβ)

)−1 (
−ic(α · ν) + 1

2
(ηI4 + τβ)

)
, (3.3)

then we deduce immediately the result of item (i). To show assertion (ii) one just has tomultiply (3.2) by thematrices
±ic(α · ν) + 1

2 (ηI4 − τβ). Using (2.3) and η2 − τ 2 = −4c2 one finds that these equations simplify to the claimed
boundary conditions. ��

Using integration by parts and the coupling condition (1.3), we show first that Aη,τ is symmetric:

Lemma 3.2 Let η, τ ∈ R. Then, the operator Aη,τ defined by (3.1) is symmetric.

Proof Let f, g ∈ dom Aη,τ . Employing integration by parts in �±, we get first

(Aη,τ f, g)L2(R3)4 − ( f, Aη,τ g)L2(R3)4

= (−icα · ν f+, g+)L2(�)4 − (−icα · ν f−, g−)L2(�)4

= 1

2

( − icα · ν( f+ − f−), g+ + g−
)
L2(�)4

− 1

2

(
f+ + f−,−icα · ν(g+ − g−)

)
L2(�)4

.

Using the coupling condition (1.3) for f and g, we conclude that the last term is

1

2

( − icα · ν( f+ − f−), g+ + g−
)
L2(�)4

− 1

2

(
f+ + f−,−icα · ν(g+ − g−)

)
L2(�)4

=
(
1

4
(ηI4 + τβ)( f+ + f−), g+ + g−

)

L2(�)4
−

(
f+ + f−,

1

4
(ηI4 + τβ)(g+ + g−)

)

L2(�)4
= 0.

Since this is true for any f, g ∈ dom Aη,τ , the operator Aη,τ is indeed symmetric. ��
Next, we prove a Birman–Schwinger principle for the operator Aη,τ . This relates the linear eigenvalue problem

for the differential operator Aη,τ to the nonlinear eigenvalue problem for a family of bounded integral operators
involving the maps Cλ introduced in (2.6), which yields also a reduction of the space dimension for the eigenvalue
problem. We would like to note that this lemma can only be shown in this simple form for noncritical interaction
strengths, i.e., for η2−τ 2 	= 4c2. The result stated below follows from the general consideration in [7, Theorem 2.4]
or [5, Proposition 3.1], but to keep the paper self-contained, we add the short simple proof here.
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Lemma 3.3 Let η, τ ∈ R, such that η2 − τ 2 	= 4c2 and let the operator Aη,τ be defined by (3.1).

(i) If for λ ∈ ρ(A0) and ϕ ∈ L2(�)4 one has
(
I4+ (ηI4+τβ)Cλ

)
ϕ ∈ H1/2(�)4, then it follows ϕ ∈ H1/2(�)4.

(ii) λ ∈ ρ(A0) ∩ σp(Aη,τ ) if and only if −1 ∈ σp
(
(ηI4 + τβ)Cλ

)
.

(iii) For λ ∈ C \ R the inverse

(
I4 + (ηI4 + τβ)Cλ

)−1 : L2(�)4 → L2(�)4

exists and is bounded and everywhere defined.

Proof (i) If
(
I4 + (ηI4 + τβ)Cλ

)
ϕ belongs to H1/2(�)4, then by (2.8) also

ψ := (
I4 − Cλ(ηI4 − τβ)

)(
I4 + (ηI4 + τβ)Cλ

)
ϕ

=
(
1 − η2 − τ 2

4c2

)
ϕ + τ(Cλβ + βCλ)ϕ + (η2 − τ 2)

(
1

4c2
I4 − C2λ

)
ϕ

belongs to H1/2(�)4. Making use of Proposition 2.1 this implies that also

ϕ = 4c2

4c2 − η2 + τ 2

(
ψ − τ(Cλβ + βCλ)ϕ − (η2 − τ 2)

(
1

4c2
I4 − C2λ

)
ϕ

)

belongs to H1/2(�)4, which is the claim of item (i).
(ii) Assume first that λ ∈ ρ(A0) is an eigenvalue of Aη,τ with eigenfunction fλ 	= 0. Then, according to (2.9),

there exists a density 0 	= ϕ ∈ H1/2(�)4, such that fλ = �λϕ. Since fλ ∈ dom Aη,τ this function fulfils (1.3).
Using (2.10) and (2.11), this yields

0 = icα · ν
(
(�λϕ)+ − (�λϕ)−

) + 1

2
(ηI4 + τβ)

(
(�λϕ)+ + (�λϕ)−

)

= (I4 + (ηI4 + τβ)Cλ)ϕ,

(3.4)

that is, −1 is an eigenvalue of (ηI4 + τβ)Cλ.
Conversely, assume that −1 is an eigenvalue of (ηI4 + τβ)Cλ with eigenfunction ϕ 	= 0. Then it follows first

from item (i) that ϕ ∈ H1/2(�)4, and hence, fλ := �λϕ 	= 0 belongs by (2.8) to H1(�+)4 ⊕ H1(�−)4. Using
again (2.10) and (2.11) and

(
I4 + (ηI4 + τβ)Cλ

)
ϕ = 0, we obtain in the same way as in (3.4) that fλ fulfils the

coupling condition (1.3). This shows fλ ∈ dom Aη,τ . Finally, Eq. (2.9) yields

(Aη,τ − λ) fλ = (Aη,τ − λ)�λϕ = 0

and hence, λ ∈ σp(Aη,τ ).
(iii) To show the claim, it suffices to prove that I4 + (ηI4 + τβ)Cλ is bijective. By (ii), it is clear that this operator

is injective, as λ ∈ C \ R and Aη,τ is symmetric by Lemma 3.2. Moreover

ran
[
I4 + (ηI4 + τβ)Cλ

] ⊃ ran
[
(I4 + (ηI4 + τβ)Cλ)(I4 − (ηI4 + τβ)Cλ)

] = ran
[
I4 − (

(ηI4 + τβ)Cλ

)2]

(3.5)
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holds. Note that I4 − (
(ηI4 + τβ)Cλ

)2 is injective, as otherwise λ would be a non-real eigenvalue of one of the
symmetric operators Aη,τ or A−η,−τ by (ii). Moreover

I4 − (
(ηI4 + τβ)Cλ

)2 = I4 − τ(Cλβ + βCλ)(ηI4 + τβ)Cλ − (η2 − τ 2)C2λ =
(
1 − η2 − τ 2

4c2

)
I4 + Kλ,

where Kλ is a compact operator in L2(�)4 by Proposition 2.1. Therefore, Fredholm’s alternative implies that
I4 − (

(ηI4 + τβ)Cλ

)2 is also surjective. From (3.5), we deduce that the injective operator I4 + (ηI4 + τβ)Cλ is also
surjective, which yields the claim of assertion (iii). ��

Now, we are prepared to show the self-adjointness of Aη,τ in the case of noncritical interaction strengths.
Moreover, we prove an explicit Krein-type resolvent formula for Aη,τ which relates the resolvent of Aη,τ to the
resolvent of A0 and a perturbation term, which consists of the integral operators �λ and Cλ introduced in (2.5)
and (2.6), and contains the spectral information of Aη,τ .

Theorem 3.4 Let η, τ ∈ R, such that η2 − τ 2 	= 4c2. Then, the operator Aη,τ defined by (3.1) is self-adjoint in
L2(R3)4 and

(
Aη,τ − λ

)−1 = (A0 − λ)−1 − �λ

(
I4 + (ηI4 + τβ)Cλ

)−1
(ηI4 + τβ)�∗̄

λ

holds for all λ ∈ C \ R.
Proof We have already shown in Lemma 3.2 that Aη,τ is symmetric. Hence, it suffices to prove that ran(Aη,τ −λ) =
L2(R3)4 for λ ∈ C \ R. Let λ ∈ C \ R and f ∈ L2(R3)4 be fixed. We set

g := (A0 − λ)−1 f − �λ

(
I4 + (ηI4 + τβ)Cλ

)−1
(ηI4 + τβ)�∗̄

λ
f.

Note that g is well defined by Lemma 3.3 (iii). We prove that g ∈ dom Aη,τ and (Aη,τ −λ)g = f . This shows then
ran(Aη,τ − λ) = L2(R3)4 and the claimed resolvent formula.

First, we note that (ηI4 + τβ)�∗̄
λ
f ∈ H1/2(�)4 by (2.12), and hence, it follows from Lemma 3.3 (i) that

(
I4 + (ηI4 + τβ)Cλ

)−1
(ηI4 + τβ)�∗̄

λ
f ∈ H1/2(�)4.

Thus, we conclude from (2.4) and (2.8) that g ∈ H1(�+)4 ⊕ H1(�−)4.
Next, since (A0 − λ)−1 f ∈ H1(R3)4 the jump of its trace at � vanishes and we find, using (2.10), (2.11), and

(2.12), that

icα · ν(g+|� − g−|�) + 1

2
(ηI4 + τβ)(g+|� + g−|�) = (ηI4 + τβ)

(
(A0 − λ)−1 f

)∣∣
�

− (
I4 + (ηI4 + τβ)Cλ

)(
I4 + (ηI4 + τβ)Cλ

)−1
(ηI4 + τβ)�∗̄

λ
f = 0,

which shows f ∈ dom Aη,τ . Employing finally (2.9), we get (Aη,τ − λ)g = f . Hence, the theorem is shown. ��
For the self-adjointness of Aη,τ in the critical case of interaction strengths, i.e., for η2 − τ 2 = 4c2, no result is

known so far for combinations of electrostatic and Lorentz scalar interactions. However, we would like to review
a result from [8] (see also [33]), where the self-adjointness of Aη,τ was shown for purely electrostatic interactions
in the critical case, i.e., when η = ±2c and τ = 0. Already in this simplest example, one sees that the properties
of Aη,τ are completely different in the critical case than in the noncritical case. The key observation in [8] and
[33] to study the self-adjointness of A±2c,0 is the fact that functions f ∈ L2(�±)4 with α · ∇ f ∈ L2(�±)4 in
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the distributional sense have traces in H−1/2(�)4 := (H1/2(�)4)′, which is a larger space than L2(�)4. The idea
below in (3.6) is to consider the jump condition (1.3) not in L2(�)4, but in H−1/2(�)4.

Theorem 3.5 Let A±2c,0 be defined by (3.1). Then A±2c,0 is essentially self-adjoint in L2(R3)4. The self-adjoint
closure A±2c,0 is defined on the set

dom A±2c,0 = {
f = f+ ⊕ f− ∈ L2(�+)4 ⊕ L2(�−)4 : α · ∇ f± ∈ L2(�±)4,

iα · ν( f+|� − f−|�) = ∓( f+|� + f−|�) in H−1/2(�)4
} (3.6)

and acts as

A±2c,0 f = (−icα · ∇ + mc2β) f+ ⊕ (−icα · ∇ + mc2β) f−.

The closure A±2c,0 is a proper extension of A±2c,0, i.e., A±2c,0 	= A±2c,0.

4 Spectral properties

In this section, we provide the basic spectral properties of the operator Aη,τ defined by (3.1). In the case of noncritical
interaction strengths, i.e., when η2 − τ 2 	= 4c2, we are able to provide a number of results about the qualitative
spectral properties. We close this section with a result from [8] on the spectrum of the self-adjoint closure of A±2c,0

in the case of purely electrostatic critical interactions, which shows that the spectral properties for critical interaction
strengths can be of a completely different nature.

First, we discuss the basic results in the noncritical case. In particular, using a perturbation argument based
on the Krein-type resolvent formula from Theorem 3.4, we compute the essential spectrum of Aη,τ . Moreover,
since the singular perturbation is only supported on a compact surface and since functions in dom Aη,τ have H1-
smoothness, we can show that Aη,τ has only finitely many discrete eigenvalues. Eventually, we deduce from the
Birman–Schwinger principle that Aη,τ has no discrete eigenvalues if the interaction strengths are sufficiently small.

Theorem 4.1 Let η, τ ∈ R, such that η2 − τ 2 	= 4c2, and let the self-adjoint operator Aη,τ be defined by (3.1).
Then, the following assertions hold.

(i) σess(Aη,τ ) = (−∞,−mc2] ∪ [mc2,∞).
(ii) σdisc(Aη,τ ) is finite.
(iii) There exists a constant K > 0, such that σdisc(Aη,τ ) = ∅, if |η + τ | < K and |η − τ | < K.

Proof To show item (i), we note that for λ ∈ C \ R the operators

�λ,�
∗̄
λ
, and

(
I4 + (ηI4 + τβ)Cλ

)−1

are bounded in the respective L2-spaces, see Lemma3.3.Moreover, it follows from (2.12) and the trace theorem (2.1)
that �∗̄

λ
is bounded from L2(R3)4 to H1/2(�)4, and since H1/2(�)4 is compactly embedded in L2(�)4, see [28,

Theorem 4.2.2], we get that �∗̄
λ
is compact. Hence, using the resolvent formula from Theorem 3.4, we conclude

that

(Aη,τ − λ)−1 − (A0 − λ)−1 = −�λ

(
I4 + (ηI4 + τβ)Cλ

)−1
(ηI4 + τβ)�∗̄

λ

is compact in L2(R3)4. Therefore, it follows from [37, Theorem XIII.14] that σess(Aη,τ ) = σess(A0) =
(−∞,−mc2] ∪ [mc2,∞).
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The proof of statement (ii) follows ideas from [27, Proposition 3.6]. We note first that the number of discrete
eigenvalues of Aη,τ in the gap (−mc2,mc2) is equal to the number of eigenvalues of (Aη,τ )

2 below the threshold
of its essential spectrum (mc2)2. Let us denote the quadratic form associated to (Aη,τ )

2 by a. Then, for any
f = f+ ⊕ f− ∈ dom Aη,τ = dom a

a[ f ] = ‖Aη,τ f ‖2L2(R3)4

= ∥∥(−icα · ∇ + mc2β) f+
∥∥2
L2(�+)4

+ ∥∥(−icα · ∇ + mc2β) f−
∥∥2
L2(�−)4

= ‖c(α · ∇) f+‖2L2(�+)4
+ ‖c(α · ∇) f−‖2L2(�−)4

+ (mc2)2‖ f ‖2L2(R3)4

+ (−icα · ∇ f+,mc2β f+)L2(�+)4 + (mc2β f+,−icα · ∇ f+)L2(�+)4

+ (−icα · ∇ f−,mc2β f−)L2(�−)4 + (mc2β f−,−icα · ∇ f−)L2(�−)4

holds. Employing integration by parts and (2.3), we see that

(−icα · ∇ f±,mc2β f±)L2(�±)4 + (mc2β f±,−icα · ∇ f±)L2(�±)4 = ∓(icα · ν f±|�,mc2β f±|�)L2(�)4 ,

which yields then

a[ f ] = ‖c(α · ∇) f ‖2L2(�+∪�−)4
+ (mc2)2‖ f ‖2L2(R3)4

− (icα · ν f+|�,mc2β f+|�)L2(�)4 + (icα · ν f−|�,mc2β f−|�)L2(�)4 .

To proceed choose R > 0, such that � ⊂ B(0, R), and define the closed and semibounded sesquilinear forms bint
and bext by

bint[ f ] := ‖c(α · ∇) f ‖2L2(�+∪(�−∩B(0,R)))4
+ (mc2)2‖ f ‖2L2(B(0,R))4

− (icα · ν f+|�,mc2β f+|�)L2(�)4 + (icα · ν f−|�,mc2β f−|�)L2(�)4 ,

dom bint :=
{
f = f+ ⊕ f− ∈ H1(�+)4 ⊕ H1(�− ∩ B(0, R))4 :

ic(α · ν)( f+|� − f−|�) = −1

2
(ηI4 + τβ)( f+|� + f−|�)

}
,

and

bext[ f ] := ‖c(α · ∇) f ‖2L2(R3\B(0,R))4
+ (mc2)2‖ f ‖2L2(R3\B(0,R))4

,

dom bext := H1(R3 \ B(0, R))4.

Then, a is minorated in the sense of closed quadratic forms by b := bint ⊕ bext, that means dom a ⊂ dom b and
b[ f ] ≤ a[ f ] for all f ∈ dom a. By the min–max principle, this implies that if the operator associated with b has
finitely many eigenvalues below (mc2)2, then (Aη,τ )

2 has only finitely many eigenvalues below (mc2)2.
Clearly, the operator Bext associated with bext is bounded from below by Bext ≥ (mc2)2. Thus, the number of

eigenvalues of (Aη,τ )
2 below (mc2)2 is less or equal to the number of eigenvalues of the operator Bint associated

with the semibounded and closed form bint, compare, for instance, [37, Section XIII.15] for a similar argument.
Moreover, as dom bint ⊂ H1(�+)4 ⊕ H1(�− ∩ B(0, R))4 is compactly embedded in L2(B(0, R))4, cf. [32,
Theorem 3.27], it follows that the resolvent of Bint is compact. Therefore, the spectrum of Bint is purely discrete
and consists of eigenvalues that accumulate only at ∞, as Bint is bounded from below. Thus, Bint has only finitely
many eigenvalues below (mc2)2. Hence, also the operator associated with b has only finitely many eigenvalues
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below (mc2)2. This shows finally that (Aη,τ )
2 has only finitely many eigenvalues below (mc2)2 which finishes the

proof of assertion (ii).
Finally, item (iii) is just a simple consequence of the Birman–Schwinger principle in Lemma 3.3 (ii)

and (2.7). ��
As it is often the case for Dirac operators, we also have several symmetry relations for the spectrum of Aη,τ . These

symmetries are consequences of commutation relations of Aη,τ with the charge conjugation, the time reversal and a
suitable unitary operator. We would like to note that item (i) in the proposition below can also be shown with the aid
of the Birman–Schwinger principle from Lemma 3.3, cf. the proof of [5, Theorem 3.3] for the purely electrostatic
case. The presentation below follows [27, Theorem 2.3], where the special case of purely scalar interactions is
treated.

Proposition 4.2 Let η, τ ∈ R, such that η2 − τ 2 	= 4c2. Then, the following is true.

(i) Assume η2 	= τ 2. Then, λ ∈ σp
(
A−4c2η/(η2−τ 2),−4c2τ/(η2−τ 2)

)
if and only if λ ∈ σp(Aη,τ ).

(ii) λ ∈ σp(Aη,τ ) has always even multiplicity.
(iii) λ ∈ σp(Aη,τ ) if and only if −λ ∈ σp(A−η,τ ).

Proof (i) Assume that f = f+ ⊕ f− is an eigenfunction of Aη,τ for the eigenvalue λ. Then, the function g :=
f+ ⊕ (− f−) ∈ H1(�+)4 ⊕ H1(�−)4 fulfils

−icα · ν(g+|� + g−|�) = −icα · ν( f+|� − f−|�)

= 1

2
(ηI4 + τβ)( f+|� + f−|�) = 1

2
(ηI4 + τβ)(g+|� − g−|�),

as f ∈ dom Aη,τ . A multiplication of the last equation with the constant matrix (ηI4 + τβ)−1 = 1
η2−τ 2

(ηI4 − τβ)

yields

− ic

η2 − τ 2
(ηI4 − τβ)α · ν(g+|� + g−|�) = 1

2
(g+|� − g−|�).

Using the anti-commutation relation (2.3) and multiplying this equation then with −2icα · ν, one easily sees that

−1

2

4c2

η2 − τ 2
(ηI4 + τβ)(g+|� + g−|�) = −icα · ν(g+|� − g−|�),

which shows that g ∈ dom A−4c2η/(η2−τ 2),−4c2τ/(η2−τ 2). Finally, since f is an eigenfunction of Aη,τ corresponding
to λ, one deduces immediately that also

A−4c2η/(η2−τ 2),−4c2τ/(η2−τ 2)g = λg,

which shows item (i).
For the proof of statement (ii), we define the (nonlinear) time reversal operator:

T f := −iγ5α2 f , f ∈ L2(R3)4, γ5 :=
(
0 I2
I2 0

)
.

Note that βγ5 = −γ5β and (α · x)γ5 = γ5(α · x) for any x ∈ R
3. First we show that f ∈ dom Aη,τ implies

T f ∈ dom Aη,τ . Indeed, if one takes for f ∈ dom Aη,τ the complex conjugate of the coupling condition (1.3) and
multiplies this equation with the matrix −iγ5α2 we deduce
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−iγ5α2icα · ν( f+|� − f−|�) = − i

2
γ5α2(ηI4 + τβ)( f+|� + f−|�).

Using α2 = −α2 (where the complex conjugate is understood component wise) and (2.3), we deduce from the last
equality that also T f satisfies (1.3) and hence T f ∈ dom Aη,τ .

Employing again α2 = −α2, one finds T 2 f = − f . Furthermore, using (2.3), we get

(−icα · ∇ + mc2β)T f = (−icα · ∇ + mc2β)(−iγ5α2 f )

= −iγ5α2(icα · ∇ + mc2β) f = T
(
(−icα · ∇ + mc2β) f

)
.

(4.1)

This shows Aη,τT f = T Aη,τ f for f ∈ dom Aη,τ . Another calculation using again α2 = −α2 gives

〈−iγ5α2 f , f 〉C4 = 〈 f, iγ5α2 f 〉C4 which implies

(T f, f )L2(R3)4 =
∫

R3
T f (x) · f (x)dx = 0.

Hence, if f is an eigenfunction of Aη,τ , then also T f ∈ dom Aη,τ is a linearly independent and non-trivial
eigenfunction of Aη,τ for the same eigenvalue. Therefore, also assertion (ii) is proven.

Eventually, to prove statement (iii), we introduce the (nonlinear) charge conjugation operator:

C f := iβα2 f , f ∈ L2(R3)4.

A simple calculation similar as above shows C2 f = f . Moreover, it is not difficult to see that f ∈ dom Aη,τ if and
only if C f ∈ dom A−η,τ . Finally, a similar calculation as in (4.1) shows

(−icα · ∇ + mc2β)C f = −C(−icα · ∇ + mc2β) f.

Hence, we deduce f ∈ dom Aη,τ fulfils Aη,τ f = λ f if and only if C f ∈ dom A−η,τ and A−η,τC f = −λC f . This
yields then the claim of item (iii). ��

By combining Theorem 4.1 (iii) with Proposition 4.2, we find that Aη,τ does not have discrete eigenvalues
also for large interaction strengths. This is in contrast to what is known for Schrödinger operators with singular
δ-potentials. For the nonrelativistic Hamiltonians with attractive δ interactions in R

3, there are no eigenvalues
for small interaction strengths [23], but always eigenvalues for large values of the interaction strength [21]. The
difference is obviously due to the presence of the ‘lower continuum’ for the Dirac operator.

Corollary 4.3 Let η, τ ∈ R, such that η2 − τ 2 /∈ {0, 4c2} and let K be the same constant as in Theorem 4.1 (iii).
Then, σdisc(Aη,τ ) = ∅ if |η + τ | > 4c2

K and |η − τ | > 4c2
K .

Theorem 4.1, Lemma 3.3, and Proposition 4.2 give a detailed picture of the spectral properties of Aη,τ . For
purely electrostatic and purely Lorentz scalar interactions, which are the most interesting ones of the potentials
considered here for applications in relativistic quantum mechanics, many of these findings simplify significantly;
hence, we summarize the spectral properties for these two important cases in the following corollaries. We start
with the purely electrostatic case:

Corollary 4.4 Let η ∈ R \ {±2c}. Then, the following assertions hold.

(i) For λ ∈ C \ R, the resolvent of Aη,0 is given by

(Aη,0 − λ)−1 = (A0 − λ)−1 − �λ

(
I4 + ηCλ

)−1
η�∗̄

λ
.
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(ii) σess(Aη,0) = (−∞,−mc2] ∪ [mc2,∞).
(iii) λ ∈ σp(Aη,0) ∩ (−mc2,mc2) if and only if −1 ∈ σp(ηCλ).
(iv) If η 	= 0, then λ ∈ σp(Aη,0) if and only if λ ∈ σp

(
A−4c2/η,0

)
.

(v) λ ∈ σp(Aη,0) if and only if −λ ∈ σp
(
A−η,0

)
.

(vi) σdisc(Aη,0) is finite.
(vii) Eigenvalues of Aη,0 have always even multiplicity.

(viii) There exists a constant K > 0, such that σdisc(Aη,0) = ∅ if |η| < K or |η| > 4c2
K .

Next, let us discuss Dirac operators with purely Lorentz scalar δ-shell interactions, that means we assume η = 0.
Note that in this case, there is no critical interaction strength, as −τ 2 	= 4c2 always in this case. On the other hand,
we have confinement for τ = ±2c, compare Lemma 3.1. Note that most of the results below are also formulated
and proved in [27, Theorem 2.3].

Corollary 4.5 Let τ ∈ R. Then, the following assertions hold.

(i) For λ ∈ C \ R the resolvent of A0,τ is given by

(A0,τ − λ)−1 = (A0 − λ)−1 − �λ

(
I4 + τβCλ

)−1
τβ�∗̄

λ
.

(ii) σess(A0,τ ) = (−∞,−mc2] ∪ [mc2,∞).
(iii) λ ∈ σp(A0,τ ) ∩ (−mc2,mc2) if and only if −1 ∈ σp(τβCλ).
(iv) If τ 	= 0, then λ ∈ σp(A0,τ ) if and only if λ ∈ σp

(
A0,4c2/τ

)
.

(v) λ ∈ σp(A0,τ ) if and only if −λ ∈ σp(A0,τ ).
(vi) σdisc(A0,τ ) is finite.
(vii) Eigenvalues of A0,τ have always even multiplicity.

(viii) There exists a constant K > 0, such that σdisc(A0,τ ) = ∅ if |τ | < K or |τ | > 4c2
K .

In addition to what we know about the spectrum of A0,τ in the purely scalar case from Corollary 4.5, an explicit
formula for the quadratic form associated with A2

0,τ is shown in [27, Proposition 3.1]. This formula implies also
that there are no discrete eigenvalues of A0,τ for τ ≥ 0. For a further discussion of consequences of this interesting
result, we refer the reader to [27].

Corollary 4.6 Let τ ∈ R \ {±2c} and assume that � is C4-smooth. Then, the following assertions hold.

(i) If τ 	= 0, then for any f ∈ dom A0,τ

‖A0,τ f ‖2L2(R3)4
= c2

∫

R3\�
∣∣∇ f

∣∣2dx + (mc2)2
∫

R3
| f |2dx + c2

∫

�

M
∣∣ f+|�

∣∣2dσ

− c2
∫

�

M
∣∣ f−|�

∣∣2dσ + 2mc4

τ

∫

�

∣∣ f+|� − f−|�
∣∣2dxσ

holds, where M is the mean curvature at �.
(ii) If τ ≥ 0, then σdisc(A0,τ ) = ∅.
Eventually, we state that the difference of the third powers of the resolvents of Aη,τ and A0 is a trace class

operator. This result is of interest for mathematical scattering theory, as it ensures the existence and completeness
of the wave operators for the scattering system {Aη,τ , A0} and implies that the absolutely continuous parts of
Aη,τ and A0 are unitarily equivalent, cf. [42, Chapter 0, Theorem 8.2] and the standard definition of existence and
completeness of wave operators. The proof of this result in the purely electrostatic case, i.e., when τ = 0, can be
found in [7, Theorem 4.6], in the general case, one can follow it almost word by word. Hence, we omit the proof
here. Note that we have to assume some additional smoothness of � here to ensure that the result is correct.
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Proposition 4.7 Assume that � is C∞-smooth and let η, τ ∈ R, such that η2 − τ 2 	= 4c2. Then, for any λ ∈ C \R,
the operator

(Aη,τ − λ)−3 − (A0 − λ)−3

belongs to the trace class. In particular, the wave operators for the system {Aη,τ , A0} exist and are complete, and
the absolutely continuous parts of Aη,τ and A0 are unitarily equivalent

Finally, we formulate a result shown in [8, Section 5] about the spectral properties of Aη,τ in the case of critical
interaction strengths. Again, the result is only known for purely electrostatic interactions, i.e., for η = ±2c and
τ = 0. Nevertheless, the theorem below shows that the spectral properties of Aη,τ can be of a completely different
type for the critical interaction strengths. To formulate the result, we say that a surface � contains a flat part if there
exists an open �0 ⊂ �, such that �0 is contained in a plane in R3. The complete proof of the following theorem as
well as further results on the spectrum, a variant of Krein’s resolvent formula, and the Birman–Schwinger principle
for the self-adjoint closure of A±2c,0 can be found in [8].

Theorem 4.8 Let A±2c,0 be defined by (3.1). Then (−∞,−mc2]∪[mc2,∞) belongs to σess(A±2c,0). If� contains
a flat part, then also 0 ∈ σess(A±2c,0).

5 Nonrelativistic limit

In this section, we study the nonrelativistic limit of Dirac operators with purely electrostatic or purely Lorentz scalar
δ-shell interactions, that means we study this limit of Aη,τ in the cases that either τ = 0 or η = 0 which are of
particular physical interest. In the nonrelativistic limit, one subtracts/adds the energy of the mass of the particlemc2

from the total energy and computes the limit of the resolvent, as c → ∞. The expected result is the resolvent of
a nonrelativistic Schrödinger operator which describes the same physical problem with the same parameters times
a projection onto the upper/lower components of the Dirac wave function. In our case, we will see that the Dirac
operator with an electrostatic or a scalar δ-shell interaction converges in the nonrelativistic limit to a Schrödinger
operator with a δ-potential of the same strength. This gives a further justification for the usage of the operator Aη,0

and A0,τ as a Dirac operator with a singular δ interaction supported on �. The presentation in this section follows
closely [7, Section 5].

First, we introduce some notations which are necessary to formulate the main result of this section; afterwards,
we discuss shortly the idea of the proof. As usual let � ⊂ R

3 be the boundary of a compact C2-domain. We define
for η ∈ R the sesquilinear form

aη[ f, g] := 1

2m
(∇ f,∇g)L2(R3)3 + (η f |�, g|�)L2(�), f, g ∈ dom aη := H1(R3).

It is not difficult to show that aη is symmetric, semibounded from below and closed, see, for instance, [13, Section 4]
or [9]. The associated self-adjoint operator −
η is

−
η f =
(

− 1

2m

 f+

)
⊕

(
− 1

2m

 f+

)
,

dom (−
η) = {
f = f+ ⊕ f− ∈ (

H2(�+) ⊕ H2(�−)
) ∩ H1(R3) : 2mη f |� = ∂ν f−|� − ∂ν f+|�

}
,

where H2(�±) is the Sobolev space containing all functions for which the first and the second distributional
derivatives belong to L2(�±), and it is the Schrödinger operator with a δ-potential of strength η supported on �,
i.e., formally, it holds −
η = − 1

2m
 + ηδ� ; cf. [9, Section 3.2]. Next, we set
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P+ :=
(
I2 0
0 0

)
and P− :=

(
0 0
0 I2

)
.

The following theorem treats the nonrelativistic limit of Aη,0 and A0,τ . In particular, it shows that these operators
are indeed the relativistic counterparts of −
η with electrostatic and Lorentz scalar interactions, respectively. Note
that the result holds for any η ∈ R, as 4c2 > η2 for all sufficiently large c, and hence, we do not have to take care
of the critical interaction strengths.

Theorem 5.1 For any η, τ ∈ R and all λ ∈ C \R, there exists a constant K > 0, such that for all sufficiently large
c > 0 :
∥∥∥
(
Aη,0 − (λ + mc2)

)−1 − (−
η − λ)−1P+
∥∥∥ ≤ K

c

and

∥∥∥
(
A0,τ − (λ ± mc2)

)−1 − ( ± (−
τ ) − λ
)−1

P±
∥∥∥ ≤ K

c
.

An interesting aspect in Theorem 5.1 is the fact that the resolvents converge in the operator norm. This means
that the spectral properties of Aη,0 −mc2 and A0,τ ∓mc2 are asymptotically the same for large c as those of −
η

and ∓
τ , respectively. Since the spectral properties of Schrödinger operators with δ-potentials are well-studied,
see, e.g., the review [22] or the monograph [24], one can deduce many effects for the corresponding Dirac operators
as well. As an example of this idea the following lemma is shown in [7, Proposition 5.5]; a similar statement can
also be proved for A0,τ .

Lemma 5.2 Let j ∈ N. Then, there is an η < 0 sufficiently large, such that the number of eigenvalues of Aη,0 in
the gap (−mc2,mc2) of σess(Aη,0) is larger than j for all sufficiently large c.

In the rest of this section, we sketch how Theorem 5.1 can be shown; for details on the proof for the statement
on Aη,0, see [7, Section 5], the claim for A0,τ can be verified with the same arguments. We also only discuss the
convergence of Aη,0 here.

Sketch of the proof of Theorem 5.1 Having theKrein-type resolvent formula fromTheorem3.4 inmind, one expects
that it suffices to investigate the limiting behavior of (A0 − (λ + mc2))−1, �λ+mc2 , Cλ+mc2 and �∗̄

λ+mc2
. For that,

we state first a similar resolvent formula for −
η. We define for λ ∈ C \ R the function:

Kλ(x) := 2m
ei

√
2mλ|x |

4π |x | , x ∈ R
3 \ {0},

and recall that

(
− 1

2m

 − λ

)−1

f (x) =
∫

R3
Kλ(x − y) f (y)dy, f ∈ L2(R3), x ∈ R

3,

see, for instance, [40, Chapter 7.4]. Moreover, we introduce the bounded integral operators �λ : L2(�) → L2(R3)

acting as
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�λϕ(x) :=
∫

�

Kλ(x − y)ϕ(y)dσ(y), ϕ ∈ L2(�), x ∈ R
3,

and Dλ : L2(�) → L2(�),

Dλϕ(x) :=
∫

�

Kλ(x − y)ϕ(y)dσ(y), ϕ ∈ L2(�), x ∈ �.

Furthermore, a simple calculation shows that the adjoint �∗
λ : L2(R3) → L2(�) is

�∗
λ f (x) =

∫

R3
Kλ̄(x − y) f (y)dy, f ∈ L2(R3), x ∈ �.

Then, it is verified, e.g., in [9, Theorem 3.5] or [13, Lemma 2.3] that for all λ ∈ C \ R the operator I1 + ηDλ is
boundedly invertible in L2(�) and

(−
η − λ)−1 =
(

− 1

2m

 − λ

)−1

− �λ(I1 + ηDλ)
−1η� ∗̄

λ
. (5.1)

Now, concerning the limiting behavior of (A0 − (λ + mc2))−1, �λ+mc2 , Cλ+mc2 , and �∗̄
λ+mc2

, it is proven in [7,
Proposition 5.2] that there exists for any λ ∈ C \ R a constant K > 0 independent of c, such that

∥∥∥∥∥
(
A0 − (λ + mc2)

)−1 −
(

− 1

2m

 − λ

)−1

P+

∥∥∥∥∥ ≤ K

c
;

‖�λ+mc2 − �λP+‖ ≤ K

c
; ‖Cλ+mc2 − DλP+‖ ≤ K

c
.

Combining this with the resolvent formula for Aη,0 from Theorem 3.4 and (5.1), one deduces the claim of Theo-
rem 5.1. ��
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