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Abstract Quantum superposition states are behindmany of the curious phenomena exhibited by quantum systems,
including Bell non-locality, quantum interference, quantum computational speed-up, and themeasurement problem.
At the same time,many qualitative properties of quantum superpositions can also be observed in classical probability
distributions leading to a suspicion that superpositions may be explicable as probability distributions over less
problematic states; that is, a suspicion that superpositions are epistemic. Here, it is proved that, for any quantum
system of dimension d > 3, this cannot be the case for almost all superpositions. Equivalently, any underlying
ontology must contain ontic superposition states. A related question concerns the more general possibility that some
pairs of non-orthogonal quantum states |ψ〉, |φ〉 could be ontologically indistinct (there are ontological states which
fail to distinguish between these quantum states). A similar method proves that if |〈φ|ψ〉|2 ∈ (0, 1

4 ), then |ψ〉, |φ〉
must approach ontological distinctness as d → ∞. The robustness of these results to small experimental error is
also discussed.
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1 Introduction

Is the quantum state ontic (a state of reality) or epistemic (a state of knowledge)? This, rather old, question is
the subject of the now-famous PBR theorem [15], which proves that the quantum state of a system is ontic given
reasonable assumptions about the ontic structure of multi-partite systems. Whilst these assumptions appear weak
and well-motivated, they have also been frequently challenged and, as a result, many recent papers have sought to
address the onticity of the quantum state using only single-system arguments [1,2,5,11,13,14]. These theorems
and discussions are reviewed in Ref. [10].

All of this work addresses the epistemic realist, who assumes that a physical system is always in some definite
ontic state (realist) and hopes that uncertainty about the ontic statemight explain certain features of quantum systems
(epistemic). The features that the epistemic realist might like to explain in this way include indistinguishability of
non-orthogonal states, no-cloning, stochasticity of measurement outcomes, and the exponential increase in state
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complexity with increasing system size [18]. Preparing some quantum state |ψ〉 must result in some ontic state λ

obtaining, so some probability distribution, called a preparation distribution, must describe the probabilities with
which each λ obtains in that preparation. In general, preparation distributions for some pair of non-orthogonal
quantum states might overlap—there might be ontic states accessible by preparing either of those quantum states.
Themain strategy of the single-system ontology arguments is to prove that, in order to preserve quantum predictions,
these overlaps must be unreasonably small—too small to explain any quantum features.

This paper initially concentrates on quantum superposition states defined with respect to some specified ortho-
normal basis (ONB). Superpositions are behind quantum interference, the uncertainty principle, wave-particle
duality, entanglement, Bell non-locality [4], and the probable increased computational power of quantum theory
[9]. Perhaps most alarmingly, superpositions give rise to the measurement problem, so captivatingly illustrated by
the “Schrödinger’s cat” thought experiment.

Schrödinger’s cat is set up to be in a superposition of |dead〉 and |alive〉 quantum states. The epistemic realist
(and probably the cat) would ideally prefer the ontic state of the cat to only ever be one of “dead” or “alive”
(viz., only in ontic states accessible to either the |dead〉 or |alive〉 quantum states). In that case, the cat’s apparent
quantum superposition would be epistemic—there would be nothing ontic about the superposition state. Con-
versely, if there are ontic states which can only obtain when the cat is in a quantum superposition (and never
when the cat is in either quantum |alive〉 or |dead〉 states) then the superposition is unambiguously ontic: there are
ontological features which correspond to that superposition but not to non-superpositions so that superposition is
real.

Obviously quantum superpositions are different from proper mixtures of basis states. The question here is
rather whether quantum superpositions over basis states can be understood as probability distributions over
some subset of underlying ontic states, where each such ontic state is also accessible by preparing some basis
state.

The epistemic realist perspective on the foundations of quantum theory is not only philosophically attractive but
also appears to be tenable. Theories in which the quantum state is explained in an epistemically realist manner have
been demonstrated to reproduce interesting subsets of quantum theory which include characteristically quantum
features [3,12,18,19]. Moreover, they include theories where superpositions are not ontic in the sense described
above. The question of the reality of superpositions in quantum theory is, therefore, very much open.

For example, in Spekkens’ toy theory [18] the “toy-bit” reproduces a subset of qubit behaviour. A toy bit
consists of four ontic states, a, b, c, d, and four possible preparations, |0), |1), |+), |−), which are analogous to
the correspondingly named qubit states. Each preparation corresponds to a uniform probabilistic distribution over
exactly two ontic states: |0) is a distribution over a and b; |1) a distribution over c and d; |+) over a, c; and
|−) over b, d. Full details of how these states behave and how they reproduce qubit phenomena is described in
Ref. [18]. For the purposes here, it suffices to notice that all ontic states corresponding to the superpositions states
|+) and |−) are also ontic states corresponding to either |0) or |1)—this toy theory has nothing on the ontological
level which can be identified as a superposition so the superpositions are epistemic. Such models, therefore, lend
credibility to the idea that quantum superpositions themselves might, in a similar way, fail to have an ontological
basis.

Previous single-system theorems that bound ontic overlaps to argue for the onticity of the quantum state [2,5,11,
13,14] share at least these shortcomings: (i) they prove that there exists some pair of quantum states (taken from a
specific set) with bounded overlap, rather than bounding overlaps between arbitrary quantum states and (ii) when
the overlaps are proved to approach zero in some limit, the quantum states involved also approach orthogonality in
that same limit [10].

In this paper it is proved that, for a d > 3 dimensional quantum system, almost all quantum superpositions
with respect to any given ONB must be ontic. A very similar argument can be used to obtain a general bound on
ontic overlaps for d > 3, which addresses the above shortcomings. Finally, the noise tolerance of these results is
discussed.
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2 Ontological models

The appropriate framework for discussing epistemic realism is that of ontological models [7,8,10]. It is flexible
enough for most realist approaches to quantum ontology to be cast as ontological models [1] including, but not
limited to, Bohmian theories, spontaneous collapse theories, and naïve wave-function-realist theories.1

An ontological model of a system has a set � of ontic states λ ∈ �. The ontic state which the system occupies
dictates the properties and behaviour of the system, regardless of any other theory (such as quantum theory) which
may be used to describe it.

An ontological model for a quantum system is constrained by the fact that it must reproduce the predictions of
quantum theory (at least where they are empirically verifiable). Recall that a quantum system is described with a

d-dimensional complex Hilbert space H with P(H)
def={|ψ〉 ∈ H : ‖ψ‖ = 1, |ψ〉 ∼ eiθ |ψ〉} as the set of distinct

pure quantum states.2 Quantum superpositions are defined with respect to some ONB B ofH and are simply those
|ψ〉 ∈ P(H) for which |ψ〉 /∈ B.

The preparation distributions3 μ(λ) for some state |ψ〉 ∈ P(H) form a set�|ψ〉 since different ways of preparing
the same |ψ〉 may result in different distributions μ ∈ �|ψ〉. If �|ψ〉 is a singleton for every |ψ〉 ∈ P(H), then
the ontological model is preparation non-contextual4 for pure states (otherwise, it is preparation contextual). Let

�μ
def={λ ∈ � : μ(λ) > 0} be the support of the distribution μ.
A measurement M of a quantum system can be represented as a set of outcomes: either vectors of some ONB

B′ (for an ONB measurement) or POVM elements (for a general POVM measurement). An ontological model
assigns a set �M of conditional probability distributions, called response functions PM ∈ �M , to M . A method
for performing measurement M selects some PM ∈ �M which gives the probability of obtaining outcome E ∈ M
conditional on the ontic state of the system. A preparation of |ψ〉 via μ ∈ �|ψ〉 followed by a measurement M via
PM ∈ �M , therefore, returns outcome E ∈ M with probability

PM (E | μ) =
∫

�

dλ μ(λ)PM (E | λ). (1)

Transformations acting on a system must correspond to stochastic maps on its space of ontic states �. An
ontological model assigns a set 	U of stochastic maps γ to each unitary transformation U over H. A method
for performing U selects some γ ∈ 	U which, given that the system is in ontic state λ′, describes a probability
distribution γ (·|λ′), so that the probably that λ′ is mapped to λ under this operation is γ (λ|λ′). A preparation of
|ψ〉 via μ ∈ �|ψ〉 followed by a transformation U via γ ∈ 	U results in an ontic state distributed according to the
distribution ν, given by

ν(λ) =
∫

�

dλ′μ(λ′)γ (λ | λ′), ∀λ ∈ �. (2)

It is required that ν ∈ �U |ψ〉, since this an example of a procedure preparing the quantum state U |ψ〉.
1 Conversely, ontological models are irrelevant for any “anti-realist”, “instrumentalist”, “positivist”, or “Copenhagen-like” theories
denying the existence of an underlying ontology. For example, quantum-Bayesian theories are exempt from ontological model analysis.
2 For simplicity, take d < ∞.
3 In fact, this treatment of ontological models is not as general as it should be. Reference [10] notes that, instead of probability
distributions, one should consider general probability measures μ over a measurable space (�,�) and ontological models can be
re-formulated measure-theoretically. The presentation here implicitly, and problematically, assumes some canonical measure dλ over
� with respect to which all of the probability distributions can be defined. It is possible to derive the results presented here in the
more rigorous formulation, but doing so would be at the expense of conceptual clarity. In light of this simplification some of the proofs
presented here will also lack in mathematical rigour at certain steps, though more thorough versions of the same results can be derived.
4 Preparation non-contextuality for pure states is often implicitly assumed because it rarely affects arguments [10]. Rather, preparation
contextuality for mixed quantum states is more often discussed [17]. However, explicit preparation contextuality for pure states will be
needed here.
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For now, assume that measurement statistics predicted by quantum theory are exactly correct, so valid ontological
models for quantum systems must reproduce them. Therefore, for every |ψ〉 ∈ P(H), every unitary U over H,
and every measurement M , any choices of preparation μ ∈ �|ψ〉, stochastic map γ ∈ 	U , and response function
PM ∈ �M , must satisfy

〈ψ |U †EU |ψ〉 =
∫

�

dλ
∫

�

dλ′μ(λ′)γ (λ|λ′)PM (E | λ), ∀E ∈ M. (3)

It shall be useful to consider the stabiliser subgroups of unitariesS|ψ〉
def={U : U |ψ〉 = |ψ〉} for each |ψ〉 ∈ P(H).

In particular, an ontological model is preparation non-contextual with respect to stabiliser unitaries of |ψ〉 if and
only if for every μ ∈ �|ψ〉, U ∈ S|ψ〉, and γ ∈ 	U the action of γ , according to Eq. (2), leaves the preparation
distribution μ unaffected (that is, ν in Eq. (2) would be equal to μ).

3 Measuring overlaps

One way to quantify the overlap between preparation distributions is the asymmetric overlap 
(|φ〉|μ) [1,13,14],
defined as the probability of obtaining an ontic state λ accessible from some preparation of |φ〉when sampling from
μ. Formally,


(|φ〉 | μ)
def=

∫
�|φ〉

dλ μ(λ), (4)

where �|φ〉
def= ∪ν∈�|φ〉�ν is the total support of all possible preparations of |φ〉. By Eq. (3), the asymmetric overlap

must be upper bounded by the Born rule measurement probability (proof in “Appendix 1”)


(|φ〉 | μ) ≤ |〈φ|ψ〉|2, ∀μ ∈ �|ψ〉. (5)

That is, the probability of obtaining a λ compatible with |φ〉 when preparing |ψ〉 cannot exceed the probability of
getting the measurement outcome |φ〉 having prepared |ψ〉.

This quantifies overlaps between pairs of quantum states, but what of multi-partite overlaps? The asymmetric
multi-partite overlap 
(|0〉, |φ〉, ... | μ) acts like the union of the bipartite overlaps 
(|0〉|μ), 
(|φ〉|μ), etc. It is
defined as the probability of obtaining a λ ∈ �|0〉 ∪ �|φ〉 ∪ ... when sampling from μ. Formally,


(|0〉, |φ〉, ... | μ)
def=

∫
�|0〉∪�|φ〉∪...

dλ μ(λ). (6)

From Eqs. (4) and (6) and Boole’s inequality, it is clear that


(|0〉, |φ〉, ... | μ) ≤ 
(|0〉 | μ) + 
(|φ〉 | μ) + · · · (7)

Quantum states are only perfectly distinguishable if they are mutually orthogonal. Distinguishable states must
be ontologically distinct (their preparation distributions cannot overlap) to satisfy Eq. (3). The opposite concept of
anti-distinguishability is much more useful in discussions of ontic overlaps [10]. A set {|ψ〉, |φ〉, ...} ⊂ P(H) is
anti-distinguishable if and only if there exists a measurement M = {E¬ψ, E¬φ, ...} such that

〈ψ |E¬ψ |ψ〉 = 〈φ|E¬φ |φ〉 = · · · = 0, (8)
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Quantum superpositions cannot be epistemic 165

i.e. the measurement can tell, with certainty, one state from the set that was not prepared. It has been proven [2,6]
that if some inner products a = |〈φ|ψ〉|2, b = |〈0|ψ〉|2, c = |〈0|φ〉|2 satisfy

a + b + c < 1, (1 − a − b − c)2 ≥ 4abc, (9)

then the triple {|ψ〉, |φ〉, |0〉} must be anti-distinguishable. Anti-distinguishable triples {|ψ〉, |φ〉, |0〉} are useful
because �|ψ〉 ∩�|φ〉 ∩�|0〉 = ∅ and, therefore, 
(|0〉, |φ〉|μ) = 
(|0〉|μ)+
(|φ〉|μ) for all μ ∈ �|ψ〉, as proved
in “Appendix 1”.

4 Quantum superpositions are real

Define quantum superpositions with respect to some ONB B and consider any superposition state |ψ〉 /∈ B. If every
ontic state accessible by preparing any μ ∈ �|ψ〉 is also accessible by preparing some |i〉 ∈ B, then |ψ〉 has no
ontology independent of B in the ontological model. Such a |ψ〉 is called an epistemic or statistical superposition
and must satisfy∑
|i〉∈B


(|i〉 | μ) = 1, ∀μ ∈ �|ψ〉, or equivalently, (10)


(|i〉 | μ) = |〈i |ψ〉|2, ∀|i〉 ∈ B, μ ∈ �|ψ〉. (11)

The alternative occurs when there exists some subset of ontic states λ ∈ �B
ψ ⊂ � for which μ(λ) > 0 for some

μ ∈ �|ψ〉, but ν(λ) = 0 for every ν ∈ �|i〉∈B. That is, the ontic states in �B
ψ are accessible by preparing |ψ〉 but

not by preparing any |i〉 ∈ B, making |ψ〉 an ontic or real superposition.
From Eqs. (5) and (11), a superposition |ψ〉 /∈ B can only be epistemic if the asymmetric overlap 
(|i〉 | μ) is

maximal for every μ ∈ �|ψ〉 and all |i〉 ∈ B. Therefore, the statement that “not every quantum superposition can
be epistemic” is rather weak. A more interesting question is whether an individual superposition state |ψ〉 ∈ B can
be epistemic.

Theorem 1 Consider a quantum system of dimension d > 3 and define superpositions with respect to some ONB
B. Almost all quantum superposition states |ψ〉 /∈ B are ontic.

Proof Let |ψ〉 be an arbitrary superposition state |ψ〉 /∈ B and assume only that |ψ〉 is not an exact 50:50 super-
position of two states in B. This is true for almost all superpositions and guarantees that there exists some |0〉 ∈ B
such that |〈0|ψ〉|2 ∈ (0, 1

2 ).
Define an ONB B′ = {|0〉} ∪ {|i ′〉}d−1

i=1 containing this |0〉 such that

|ψ〉 = α|0〉 + β|1′〉 + γ |2′〉, (12)

where α ∈ R, α ∈ (0, 1/
√
2), and β

def= √
2α2. Such bases always exists since |〈0|ψ〉|2 = α2 and |α|2 + |β|2 =

α2(1 + 2α2) < 1. With respect to the same B′, define

|φ〉 def= δ|0〉 + η|1′〉 + κ|3′〉, (13)

where δ
def= 1 − 2α2, η

def= √
2α. This can always be normalised because |δ|2 + |η|2 = (1 − 2α2)2 + 2α2 < 1.

The above construction has been chosen such that

– |〈0|ψ〉|2 = α2 = |〈φ|ψ〉|2 so there exists a unitary U ∈ S|ψ〉 for which U |0〉 = |φ〉;
– and the inner products |〈0|ψ〉|2, |〈φ|ψ〉|2, |〈0|φ〉|2 satisfy Eq. (9) and, therefore, the triple {|ψ〉, |φ〉, |0〉} is

anti-distinguishable.
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For any preparation distributionμ′ ∈ �|ψ〉 of |ψ〉, consider
(|0〉|μ′). For any unitary V and any corresponding
γ ∈ 	V , μ′ is evolved to some μ ∈ �V |ψ〉 as in Eq. (2). This operation cannot decrease the asymmetric overlap

(V |0〉|μ) ≥ 
(|0〉|μ′) and, in particular, letting V = U one finds


(|φ〉|μ) ≥ 
(|0〉|μ′). (14)

A proof of this is provided in “Appendix 1”. Therefore, there must exist preparation distributions μ,μ′ ∈ �|ψ〉
satisfying Eq. (14).

Assume towards a contradiction that |ψ〉 is an epistemic superposition so that Eq. (11) holds and, in particular,

(|0〉|μ) = 
(|0〉|μ′) = α2. By Eq. (14) it is, therefore, found that


(|φ〉 | μ) ≥ 
(|0〉 | μ). (15)

Consider, then, a preparation of the state |ψ〉 via μ followed by an ONB measurement M in the B′ basis. Since
|ψ〉 was prepared, λ ∈ �|ψ〉 and the only possible measurement outcomes are |0〉, |1′〉, and |2′〉. By Eq. (3), almost
all λ ∈ �|0〉 must return the outcome |0〉 with certainty. Similarly, almost all λ ∈ �|φ〉 can only return |0〉, |1′〉,
or |3′〉 as the measurement outcome. Therefore, the probability of obtaining outcomes |0〉 or |1′〉 must be lower
bounded by the probability of obtaining a λ ∈ �|0〉 ∪ �|φ〉; formally,

PM (|0〉 ∨ |1′〉 | μ) ≥ 
(|0〉, |φ〉 | μ) = 
(|0〉 | μ) + 
(|φ〉 | μ)

≥ 2
(|0〉 | μ), (16)

where the equality follows because {|0〉, |ψ〉, |φ〉} is anti-distinguishable and the final line follows from Eq. (15),
which is found by assuming that |ψ〉 is an epistemic superposition.

In order to satisfy Eq. (3)

PM (|0〉 ∨ |1′〉 | μ) = |〈0|ψ〉|2 + |〈1′|ψ〉|2 = α2 + 2α4. (17)

Combining Eqs. (16) and (17) it is found that


(|0〉 | μ) ≤ α2
(
1

2
+ α2

)
< α2. (18)

But, this contradicts the assumption that |ψ〉 is an epistemic superpositionwhich implies
(|0〉|μ) = α2 byEq. (11).
Therefore, if the predictions of quantum theory are to be exactly reproduced, any such |ψ〉 must be an ontic, rather
than epistemic, superposition. ��

5 Bounds on general overlaps

Theorem 1 establishes the reality of almost all superpositions in d > 3 by bounding an asymmetric overlap. This
suggests that a similar method may be used to prove a general bound on ontic overlaps.

Recall shortcomings (i) and (ii) of the previous single-system ontology arguments as mentioned in Sect. 1.
Shortcoming (i) leaves open the possibility that many pairs of quantum states could have significant ontic overlaps,
while (ii) casts doubt on the significance of those zero-overlap limits (as orthogonal states are distinguishable and,
therefore, must be trivially ontologically distinct).

The following theorem address these shortcomings:
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Theorem 2 Consider a d > 3 dimensional quantum system and any pair |ψ〉, |0〉 ∈ P(H) such that

|〈0|ψ〉|2 def= α2 ∈ (0, 1
4 ). Assume that pure state preparations of |ψ〉 are non-contextual with respect to stabiliser

unitaries of |ψ〉. For any preparation distribution μ ∈ �|ψ〉, the asymmetric overlap must satisfy


(|0〉 | μ) ≤ α2
(
1 + 2α

d − 2

)
(19)

lim
d→∞ 
(|0〉 | μ) = 0 (20)

and so becomes arbitrarily small as d increases, independently of α.

The proof, in “Appendix 1”, closely follows that of Theorem 1. The assumption of pure state preparation non-
contextuality with respect to stabiliser unitaries is required to replace the assumption used in Theorem 1 that |ψ〉 is
an epistemic superposition with respect to |0〉.

6 Noise tolerance

Thus far Eq. (3) has been assumed, demanding that quantum statistics are exactly reproduced by valid ontological
models. However, it is impossible to verify this. At most, experiments demonstrate quantum probabilities hold to
within some finite additive error ε ∈ (0, 1]. It is, therefore, necessary to consider noise tolerant versions of the
above theorems.

Unfortunately, the asymmetric overlap is a noise intolerant quantity—there exist simple ontological models in
which every pair of quantum states have unit asymmetric overlap and still reproduce quantum probabilities to within
any given ε ∈ (0, 1]. However, an alternative overlap measure, the symmetric overlap ω(|ψ〉, |φ〉) [2,5,10,11,14],
is robust to small errors and Theorem 2 can be modified to bound the symmetric overlap in a noise tolerant way.

Suppose you are given some λ ∈ � obtained by sampling from eitherμ or ν (eachwith equal a priori probability).
If you try to guess which of μ, ν was used, then ω(μ, ν)/2 is defined to be the average probability of error when
using the optimal strategy. This is known to correspond to [2,14]

ω(μ, ν)
def=

∫
�

dλmin{μ(λ), ν(λ)}. (21)

Extending this to quantum states themselves, rather than to preparation distributions, gives the symmetric overlap

ω(|ψ〉, |φ〉) def= sup
μ∈�|ψ〉,ν∈�|φ〉

ω(μ, ν). (22)

Quantum theory provides an upper bound on the symmetric overlap, since any quantum procedure for dis-
tinguishing |ψ〉, |φ〉 is also a method for distinguishing μ ∈ �|ψ〉, ν ∈ �|φ〉 in an ontological model. As
1
2

(
1 − √

1 − |〈φ|ψ〉|2
)
is the minimum average error probability when distinguishing |ψ〉, |φ〉 within quantum

theory5 it follows that ω(μ, ν) ≤ 1 − √
1 − |〈φ|ψ〉|2 holds for every μ ∈ �|ψ〉, ν ∈ �|φ〉 and so

ω(|ψ〉, |φ〉) ≤ 1 −
√
1 − |〈φ|ψ〉|2. (23)

Theorem 3 Consider the assumptions of Theorem 2, but only assume that the probabilities predicted by quantum
theory are accurate to within ±ε, for some ε ∈ (0, 1]. The symmetric overlap must satisfy

ω(|0〉, |ψ〉) ≤ α2
(
1 + 2α

d − 2

)
+ (3d2 − 7d)

2(d − 2)
ε. (24)

5 By using the Helstrom measurement [2,20].

123



168 J.-M. A. Allen

This bound is tighter than Eq. (23) for d > 5 for small ε.

The proof is provided in “Appendix 1”. This theoremmakes Theorem2 noise tolerant at the expense ofweakening
the bound (and only applying for d > 5). This is because the simple bound on symmetric overlap [Eq. (23)] is
lower than that for the asymmetric overlap [Eq. (5)] and, therefore, more difficult to improve upon.

Note that this theorem does not immediately imply that almost all superpositions are real. However, by demon-
strating that Theorem 2’s arguments can be made robust against error, it suggests that a noise-tolerant version of
Theorem 1 should also be possible. Even so, a noise-tolerant version of Theorem 1 would require the definition of
“epistemic superposition” to be modified since it is currently defined in terms of the noise intolerant asymmetric
overlap and is therefore noise intolerant.

7 Discussion

Assuming that quantum statistics are exactly correct, Theorem 1 proves that, for d > 3, almost all superpositions
defined with respect to any given basis B must be real. Therefore, any epistemic realist account of quantum theory
must include ontic features corresponding to superposition states. The unfortunate cat cannot be put out of its misery.

A similar method and construction is used in Theorem 2 to prove that, for arbitrary states satisfying |〈φ|ψ〉|2 ∈
(0, 1

4 ), ontic overlapmust approach zero as d increases for fixed |〈φ|ψ〉|2. Theorem 3makes this robust against small
errors in quantum probabilities, at the expense of weakening the bound. Both theorems require an extra assumption:
pure state preparation non-contextuality with respect to stabiliser unitaries. Pure state preparation contextuality is
often implicitly assumed wholesale, so this assumption should not be very controversial. Moreover, “Appendix 2”
provides a heuristic argument to the effect that this type of contextuality is a natural assumption in practice.

These results are damaging to any epistemic approach to quantum theory compatible with the ontological models
formalism that reproduces quantum statistics exactly. Such a programme can never hope to epistemically explain
superpositions, including macroscopic superpositions. Moreover, for any moderately large system, a large number
of pairs of non-orthogonal states cannot overlap significantly, making it unlikely that such overlaps can satisfactorily
explain quantum features.

As a result tolerant to small errors, it is possible that Theorem 3 could be experimentally tested. Such a test would
require demonstration of small errors in probabilities for a wide range of measurements on a d > 5 dimensional
system.

The methodology of Theorems 1 and 2 is tightly linked to the asymmetric overlap as a probability, making
noise-tolerant versions a challenge to extract. If the conclusion from Theorems 1 and 2 could be obtained though
an operational methodology (closer to that of Bell’s theorem [4] or the PBR theorem [15]) this would likely lead to
better noise-tolerant extensions and better opportunities for experimental investigation. Such an operational version
may also make it easier to discover any information theoretic implications of these results.
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Appendix 1: Proofs

Simple upper bound on asymmetric overlap

To prove Eq. (5) from Eq. (3), first consider any |φ〉 ∈ P(H) and any ONBmeasurement M � |φ〉 and no evolution
between preparation and measurement (U = 1 and γ is trivial). Equation (3) then gives

1 =
∫

�

dλ ν(λ)PM (|φ〉 | λ) (25)

=
∫

�ν

dλ ν(λ)PM (|φ〉 | λ) (26)

for any ν ∈ �|φ〉. This can only be the case if PM (|φ〉 | λ) = 1 for almost all λ ∈ �ν and, therefore,6 (since ν ∈ �|φ〉
is arbitrary) PM (|φ〉 | λ) = 1 for almost all λ ∈ �|φ〉. In other words, almost all ontic states in the support of any
preparation ν of |φ〉 must return the measurement result |φ〉 with certainty in any measurement M containing that
result.

Now consider that 
(|φ〉|μ) is the probability of obtaining some λ ∈ �|φ〉 when sampling μ. If μ ∈ �|ψ〉 for
some |ψ〉 ∈ P(H), then


(|φ〉 | μ)
def=

∫
�|φ〉

dλ μ(λ) (27)

=
∫

�|φ〉
dλ μ(λ)PM (|φ〉 | λ) (28)

≤
∫

�

dλ μ(λ)PM (|φ〉 | λ) = |〈φ|ψ〉|2 (29)

by Eqs. (3) and (4), thus proving Eq. (5). ��

Anti-distinguishability and multi-partite asymmetric overlaps

The main text states that if {|ψ〉, |φ〉, |0〉} is an anti-distinguishable triple, then �|ψ〉 ∩ �|φ〉 ∩ �|0〉 = ∅ which
further implies that 
(|0〉, |φ〉|μ) = 
(|0〉|μ) + 
(|φ〉|μ) ∀μ ∈ �|ψ〉. Here, a more general statement, necessary
for the proofs of Theorems 2 and 3, is proved. Define the set A = {|0〉, |φ〉, ...} and let μ ∈ �|ψ〉 be a preparation
distribution for a state |ψ〉 /∈ A. The statement is that if each triple {|0〉, |ψ〉, |φ〉}, where |0〉, |φ〉 are unequal states
from A, is anti-distinguishable, then Eq. (7) holds with equality.

Recall that 
(|0〉, |φ〉, ...|μ) is the probability of obtaining a λ ∈ ∪|a〉∈A�|a〉 by sampling from μ, while, for
every |φ〉 ∈ A, 
(|φ〉|μ) is the probability of obtaining a λ ∈ �|φ〉 from μ. The event corresponding to the
probability 
(|0〉, |φ〉, ...|μ) must, therefore, be the disjunction of the events corresponding to each probability

(|φ〉 ∈ A|μ). Applying Boole’s inequality, therefore, gives Eq. (7).

Now suppose that each triple {|0〉, |ψ〉, |φ〉}, where |0〉, |φ〉 are unequal states from A, is anti-distinguishable.
Can the events corresponding to 
(|0〉|μ) and 
(|φ〉|μ) occur simultaneously (or are they mutually exclusive)?
This is only possible if there exists a finite-measure set of ontic states λ ∈ �μ ∩ �|0〉 ∩ �|φ〉. It shall now be shown
that anti-distinguishability and Eq. (3) prevent this.

Let χ ∈ �|0〉, ν ∈ �|φ〉 be any relevant pair of preparation distributions and let M = {E¬0, E¬ψ, E¬φ} be the
anti-distinguishing measurement for {|0〉, |ψ〉, |φ〉}. Equations (3, 8) imply that

∫
�χ

dλ χ(λ)PM (E¬0 | λ) =
∫

�μ

dλ μ(λ)PM (E¬ψ | λ) =
∫

�ν

dλ ν(λ)PM (E¬φ | λ) = 0. (30)

6 A more mathematically rigorous treatment would fully consider this step in the light of �|φ〉 being uncountable in the general case.
Such a discussion is omitted for the sake of conceptual clarity and since a more rigorous treatment would also have to account for the
issues raised in footnote 3.
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These, respectively, imply the following: for almost all λ ∈ �χ , PM (E¬0|λ) = 0; for almost all λ ∈ �μ,
PM (E¬ψ |λ) = 0; and for almost all λ ∈ �ν , PM (E¬φ |λ) = 0. Since this holds for arbitrary χ and ν, it follows
that7 for almost all λ ∈ �|0〉, PM (E¬0|λ) = 0, and for almost all λ ∈ �|φ〉, PM (E¬φ |λ) = 0.

Therefore, for almost all λ ∈ �μ ∩ �|0〉 ∩ �|φ〉 it follows that PM (E¬0|λ) = PM (E¬ψ |λ) = PM (E¬φ |λ) =
0. However, this is impossible since some outcome must occur in any measurement, requiring PM (E¬0|λ) +
PM (E¬ψ |λ) + P(E¬φ |λ) = 1. So �μ ∩ �|0〉 ∩ �|φ〉 must be of measure zero and the events corresponding to

(|0〉|μ) and 
(|φ〉|μ) cannot occur simultaneously—they are mutually exclusive.

Since Boole’s inequality holds with equality for mutually exclusive events, it follows that Eq. (7) holds with
equality whenever every such triple {|0〉, |ψ〉, |φ〉} is anti-distinguishable. ��

Unitary transformations never decrease ontic overlaps

Consider quantum states |ψ〉, |φ〉 ∈ P(H), a unitary transformation γ ∈ 	U , and preparation distribution ν ∈ �|φ〉
so that under γ , |ψ〉 transforms to U |ψ〉 and ν to ν′ ∈ �U |φ〉. By Eqs. (2) and (4) one finds


(U |ψ〉 | ν′) =
∫

�U |ψ〉
dλ′ ν′(λ′) (31)

=
∫

�U |ψ〉
dλ′

∫
�

dλ ν(λ)γ (λ′|λ) (32)

≥
∫

�|ψ〉
dλ ν(λ)

∫
�U |ψ〉

dλ′γ (λ′|λ). (33)

Consider the transition probability
∫
�U |ψ〉 dλ

′γ (λ′|λ), where λ ∈ �|ψ〉. Suppose towards a contradiction that this
probability is less than unity

∫
�U |ψ〉 dλ

′γ (λ′|λ) < 1 for some finite measure of λ ∈ �|ψ〉. This implies that8 there
is some preparation μ ∈ �|ψ〉 of |ψ〉 such that

1 >

∫
�

dλ μ(λ)

∫
�U |ψ〉

dλ′γ (λ′|λ) (34)

=
∫

�U |ψ〉
dλ′μ′(λ′) (35)

=
∫

�

dλ′μ′(λ′) (36)

by Eq. (2) where μ′ ∈ �U |ψ〉 is obtained from μ via γ , which is a contradiction since preparations must always
produce some ontic state

∫
�
dλ′μ′(λ′) = 1. Therefore,

∫
�U |ψ〉 dλ

′γ (λ′|λ) = 1 and so


(U |ψ〉 | ν′) ≥
∫

�|ψ〉
dλ ν(λ) = 
(|ψ〉 | ν), (37)

thus proving Eq. (14).
The same result also holds for the symmetric overlap [Eq. (22)] between any pair of quantum states |ψ〉, |φ〉.

Consider any pair μ ∈ �|ψ〉, ν ∈ �|φ〉; then ω(μ, ν) is simply twice the optimal average probability of error when
attempting to guess which of μ or ν a given λ ∈ � was sampled from. For any stochastic map γ that transforms μ

to μ′ and ν to ν′, a strategy for distinguishing μ′, ν′ is also a strategy for distinguishing μ, ν. Therefore, the optimal

7 Similarly to the previous footnote, a fully rigorous treatment would include a proof of this step, which is omitted for conceptual clarity
and since mathematical rigour has already been sacrificed for conceptual clarity earlier in the paper.
8 Once again, such a more rigorous formulation of the problem would require a full justification of this step.
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strategy for distinguishing μ′, ν′ cannot, by definition, have a lower probability of error than the optimal strategy
for distinguishing μ, ν. It immediately follows that

ω(μ′, ν′) ≥ ω(μ, ν) (38)

and by Eq. (23) that ω(U |ψ〉,U |φ〉) ≥ ω(|ψ〉, |φ〉) for any unitary U . ��

Theorem 2: bounding general state overlaps

The proof strategy is almost identical to that of Theorem 1, but modified to make use of higher dimensional systems.

Any such |ψ〉 can be written in the form of Eq. (12) for some ONB B′ = {|0〉}∪ {|i ′〉}d−1
i=1 and where β

def= √
2α

3
2 .

In this case |α|2 + |β|2 = |α|2 + 2|α|3 < 1 so the construction remains possible. Similarly, a set of states {|φi 〉}d−1
i=3

can be defined with respect to the same basis by

|φi 〉 def= δ|0〉 + η|1′〉 + κ|i ′〉 (39)

with δ
def= 1− 2α2 and η

def= √
2α

3
2 . Again, this is possible since |δ|2 + |η|2 = (1− 2α2)2 + 2α3 < 1. Note that the

definitions of β and η have changed from those used in Theorem 1.
It may be verified by Eq. (9) that both {|0〉, |ψ〉, |φi 〉} and {|ψ〉, |φi 〉, |φ j 〉} are anti-distinguishable triples for all

i �= j .
Note that |〈φi |ψ〉|2 = α2 = |〈0|ψ〉|2 for all i , so there exist stabiliser unitaries {Ui }d−1

i=3 ⊂ S|ψ〉 for which
Ui |0〉 = |φi 〉. Consider preparing |ψ〉 via some μ ∈ �|ψ〉 then transforming with Ui via any γi ∈ 	Ui . By
assumption, preparations of |ψ〉 are non-contextual with respect to such stabiliser unitaries, so μ simply transforms
to itself. Therefore, by Eq. (14), it is found that


(|φi 〉 | μ) ≥ 
(|0〉 | μ) ∀i. (40)

So, prepare the state |ψ〉 via μ and then perform a measurement M in the B′ basis. Since |0〉 and |1′〉 are the only
measurement outcomes compatible with λ ∈ �|ψ〉 ∩ (�|0〉 ∪d−1

i=3 �|φi 〉), the asymmetric overlap with these states
must lower bound the probability of obtaining either |0〉 or |1′〉. One, therefore, finds that
PM (|0〉 ∨ |1′〉 | μ) ≥ 
(|0〉, |φ3〉, ..., |φd−1〉 | μ)

= 
(|0〉 | μ) +
d−1∑
i=3


(|φi 〉 | μ)

≥ (d − 2)
(|0〉 | μ), (41)

where the second line follows because each of the sets {|0〉, |ψ〉, |φi 〉} and {|ψ〉, |φi 〉, |φ j 〉} are anti-distinguishable.
So if quantum predictions are exactly reproduced, one finds that PM (|0〉 ∨ |1′〉|μ) = α2 + 2α3 and


(|0〉 | μ) ≤ α2
(
1 + 2α

d − 2

)
. (42)

Which completes the proof. ��
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Theorem 3: a noise tolerant bound on the symmetric overlap

This proof uses the assumptions, notation, and constructions from Theorem 2, except this time it is only assumed
that the ontological model reproduces quantum probabilities to within some additive error ε ∈ (0, 1]. It will also
be necessary to define the tri-partite symmetric overlap between three probability distributions μ, ν, χ [10]

ω(μ, ν, χ)
def=

∫
�

dλ min{μ(λ), ν(λ), χ(λ)}. (43)

Consider any pair of preparation distributions μ ∈ �|ψ〉, ν ∈ �|0〉. From Theorem 2 it is known that there
exist Ui ∈ S|ψ〉 such that Ui |0〉 = |φi 〉. For each Ui consider any corresponding stochastic map γi ∈ 	Ui . By
assumption, preparations of |ψ〉 are non-contextual with respect to stabiliser unitaries so each γi maps μ to itself.

Let each γi map ν to some χi ∈ �|φi 〉. For notational convenience, let |φ0〉 def= |0〉 and χ0
def= ν then define the sets

Ĩ
def={3, ..., d − 1} and I

def={0} ∪ Ĩ . By Eq. (38) it is therefore seen that

ω(μ, χi ) ≥ ω(μ, ν), ∀i ∈ Ĩ . (44)

Consider a preparation of |ψ〉 via μ, followed by a measurement M in the basis B′. Similarly to Theorem 2, the
aim is to bound ω(μ, ν) by considering the probability of obtaining either of the measurement outcomes |0〉 or |1′〉,
given by

PM (|0〉 ∨ |1′〉 | μ) ≤ α2 + β2 + ε. (45)

The trick is to do this in such a way that all possible errors are accounted for.
In order to link this quantum probability to symmetric overlaps, consider the following subsets of �.

– For each i ∈ I consider �i
def={λ ∈ � : 0 < μ(λ) ≤ χi (λ)}. Roughly, �i is the region of the overlap between

μ and χi for which μ is smaller than χi .

– For each i ∈ I consider �i
def={λ ∈ � : 0 < χi (λ) < μ(λ); ∀ j < i, χ j (λ) ≤ χi (λ); ∀ j > i, 0 < χ j (λ) <

χi (λ)}. Roughly, this is the region of the overlap between μ and χi for which χi is greater than all other χ j �=i ,
but smaller than μ.

– For each i < j ∈ I consider �
j
i
def={λ ∈ � : 0 < χi (λ) ≤ χ j (λ); χi (λ) < μ(λ)}. Roughly, this is the region

of the tri-partite overlap of μ, χi , χ j in which χi is the minimum of the three.

– Similarly, for each i > j ∈ I consider �
j
i
def={λ ∈ � : 0 < χi (λ) < χ j (λ); χi (λ) < μ(λ)}.

– For every unequal pair i, j ∈ I , let �i j = �i ∩ � j .

Note that these sets are defined to be disjoint, for i �= j : �i ∩ � j = �i ∩ � j = �i ∩ �
j
i = ∅.

The point of these subsets is theway inwhich they relate to symmetric overlaps. From the definitions of symmetric
overlaps it is not difficult to verify that

ω(μ, χi ) =
∫

�i

dλ μ(λ) +
∫

�i∪[∪ j �=i�
j
i ]
dλ χi (λ) (46)

ω(μ, χi , χ j �=i ) =
∫

�i j

dλ μ(λ) +
∫

�
j
i

dλ χi (λ) +
∫

�i
j

dλ χ j (λ). (47)
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Proceed by separating the probability Eq. (45) according to subsets in which λ may obtain:

PM (|0〉 ∨ |1′〉 | μ) ≥
∑
i∈I

PM (|0〉 ∨ |1′〉, λ ∈ �i | μ)

+
∑
i∈I

PM (|0〉 ∨ |1′〉, λ ∈ �i | μ)

−
∑
i, j<i

PM (|0〉 ∨ |1′〉, λ ∈ �i j | μ), (48)

≥
∑
i∈I

PM (|0〉 ∨ |1′〉, λ ∈ �i | μ)

+
∑
i∈I

PM (|0〉 ∨ |1′〉, λ ∈ �i | μ)

−
∑
i, j<i

∫
�i j

dλμ(λ). (49)

The final line follows simply because PM (|0〉 ∨ |1′〉, λ ∈ �i j |μ) ≤ PM (λ ∈ �i j |μ) = ∫
�i j

dλμ(λ).

For the i = 0 term in the first line of Eq. (49), define the function ξ(λ)
def= 1 − PM (|0〉|λ) so that

PM (|0〉 ∨ |1′〉, λ ∈ �0 | μ) =
∫

�0

dλ μ(λ)
{
PM (|0〉 | λ) + PM (|1′〉 | λ)

}
(50)

≥
∫

�0

dλ μ(λ)PM (|0〉 | λ) (51)

=
∫

�0

dλ μ(λ) −
∫

�0

dλ μ(λ)ξ(λ) (52)

≥
∫

�0

dλ μ(λ) −
∫

�0

dλ ν(λ)ξ(λ). (53)

This can be simplified by noting that, for any � ⊆ �,∫
�

dν(λ)ξ(λ) =
∫

�

dλ ν(λ) −
∫

�

dλ ν(λ)PM (|0〉 | λ) +
∫

�\�
dλ ν(λ)PM (|0〉 | λ) (54)

≤
∫

�

dλ ν(λ) − 1 + ε +
∫

�\�
dλ ν(λ) (55)

= ε (56)

so that

PM (|0〉 ∨ |1′〉, λ ∈ �0 | μ) ≥
∫

�0

dλ μ(λ) − ε. (57)

The i ∈ Ĩ terms of the first line of Eq. (49) follow in a similar way. Define ζi (λ)
def= 1−PM (|0〉|λ)−PM (|1′〉|λ)−

PM (|i ′〉|λ) so that

PM (|0〉 ∨ |1′〉, λ ∈ �i | μ) =
∫

�i

dλ μ(λ){PM (|0〉 | λ) + PM (|1′〉 | λ)} (58)

=
∫

�i

dλ μ(λ) −
∫

�i

dλ μ(λ){ζi (λ) + PM (|i ′〉 | λ)} (59)

≥
∫

�i

dλ μ(λ) −
∫

�i

dλ χi (λ)ζi (λ) − ε (60)
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≥
∫

�i

dλ μ(λ) − 2ε. (61)

Together, Eqs. (49), (57) and (61) produce

PM (|0〉 ∨ |1′〉 | μ) ≥
∑
i∈I

∫
�i

dλ μ(λ) −
∑
i, j<i

∫
�i j

dλ μ(λ) − (2d − 5)ε

+
∑
i∈I

PM (|0〉 ∨ |1′〉, λ ∈ �i | μ). (62)

The i = 0 term of the second line of Eq. (62) can be bounded as follows

PM (|0〉 ∨ |1′〉, λ ∈ �0 | μ) ≥
∫

�0

dλ μ(λ)PM (|0〉 | λ) (63)

≥
∫

�0

dλ ν(λ)PM (|0〉 | λ) (64)

=
∫

�

dλ ν(λ)PM (|0〉 | λ) −
∫

�\�0

dλ ν(λ)PM (|0〉 | λ) (65)

≥ 1 − ε −
∫

�\�0

dλ ν(λ) =
∫

�0

dλ ν(λ) − ε. (66)

The i ∈ Ĩ terms of the second line of Eq. (62) can be similarly bounded

PM (|0〉 ∨ |1′〉, λ ∈ �i | μ)=
∫

�i

dλ μ(λ){PM (|0〉 | λ)+PM (|1′〉 | λ)+PM (|i ′〉 | λ)}−
∫

�i

dλ μ(λ)PM (|i ′〉 | λ)

(67)

≥
∫

�i

dλ χi (λ){PM (|0〉 | λ) + PM (|1′〉 | λ) + PM (|i ′〉 | λ)} − ε (68)

≥ (1 − ε) −
∫

�\�i

dλ χi (λ) − ε =
∫

�i

dλ χi (λ) − 2ε. (69)

So now combining Eqs. (62), (66) and (69) it is found that

PM (|0〉 ∨ |1′〉 | μ) ≥
∑
i∈I

{∫
�i

dλ μ(λ) +
∫

�i

dλ χi (λ)

}

−
∑
i, j<i

∫
�i j

dλμ(λ) − 2(2d − 5)ε. (70)

Equation (70) can be further reduced by adding any negative quantity. For example, consider Boole’s inequality

∑
i∈I

∫
∪ j �=i�

j
i

dλ χi (λ) −
∑
i, j �=i

∫
�

j
i

dλ χi (λ) ≤ 0. (71)

Therefore, Eq. (70) reduces to

PM (|0〉 ∨ |1′〉 | μ) ≥
∑
i∈I

{∫
�i

dλ μ(λ) +
∫

�i∪
[
∪ j �=i�

j
i

] dλ χi (λ)

}

−
∑
i, j<i

∫
�i j

dλμ(λ) −
∑
i, j �=i

∫
�

j
i

dλ χi (λ)

−2(2d − 5)ε. (72)
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This can be further simplified by noting
∑
i, j �=i

∫
�

j
i

dλ χi (λ) =
∑
i, j<i

∫
�

j
i

dλ χi (λ) +
∑
i, j>i

∫
�

j
i

dλ χi (λ) (73)

=
∑
i, j<i

∫
�

j
i

dλ χi (λ) +
∑
j,i< j

∫
�

j
i

dλ χi (λ) (74)

=
∑
i, j<i

{∫
�

j
i

dλ χi (λ) +
∫

�i
j

dλ χ j (λ)

}
, (75)

so that Eq. (72) becomes

PM (|0〉 ∨ |1′〉 | μ) ≥
∑
i∈I

ω(μ, χi ) −
∑
i, j<i

ω(μ, χi , χ j ) − 2(2d − 5)ε (76)

having used Eqs. (46) and (47).
As a final step, consider how the tripartite symmetric overlaps are bounded by ε. Consider the measurement

M ′ = {E¬ψ, E¬i , E¬ j } which anti-distinguishes {|ψ〉, |φi 〉|φ j 〉}, so that∫
�

dμ(λ)PM ′(E¬ψ | λ) ≤ ε, (77)
∫

�

dχi (λ)PM ′(E¬i | λ) ≤ ε, (78)
∫

�

dχ j (λ)PM ′(E¬ j | λ) ≤ ε. (79)

Conservation of probability requires that

PM ′(E¬ψ | λ) + PM ′(E¬i | λ) + PM ′(E¬ j | λ) = 1 (80)

for all λ ∈ �. Consider the tripartite symmetric overlap, Eqs. (43) and (47), for μ, χi , χ j . Then

ω(μ, χi , χ j ) =
∫

�

dλ min{μ(λ), χi (λ), χ j (λ)}{PM ′(E¬ψ | λ) + PM ′(E¬i | λ) + PM ′(E¬ j | λ)} (81)

≤
∫

�

dμ(λ)PM ′(E¬ψ | λ) +
∫

�

dχi (λ)PM ′(E¬i | λ) +
∫

�

dχ j (λ)PM ′(E¬ j | λ) (82)

≤ 3ε. (83)

Applying Eq. (83) to Eq. (76), one finds that

PM (|0〉 ∨ |1′〉 | μ) ≥
∑
i∈I

ω(μ, χi ) − 3

2
(d − 3)(d − 2)ε − 2(2d − 5)ε (84)

≥ (d − 2)ω(μ, ν) − 1

2
(3d2 − 7d − 2)ε (85)

having used Eq. (44). Combining Eqs. (45) and (85) one obtains an upper bound on ω(μ, ν) for any μ ∈ �|ψ〉, ν ∈
�|0〉, which must be greater than or equal to the least upper bound, Eq. (22), finally giving

ω(|0〉, |ψ〉) ≤ α2
(
1 + 2α

d − 2

)
+ (3d2 − 7d)

2(d − 2)
ε. (86)

This completes the proof. ��
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A note is in order about the tightness of this bound, assuming arbitrarily small ε. At d = 4, this bound cannot
improve upon that of Eq. (23) for any α2 ∈ (0, 1

4 ). At d = 5, an improvement is possible for some values of α. It is
only for d > 5 that this bound is capable of improving upon Eq. (23) for all values of α ∈ (0, 1

4 ). This is because
the theorem extends the methods of Theorem 1 and 2, which are closely linked to the asymmetric overlap, to the
symmetric overlap.

Clearly the error model used here is very simplistic: it has been assumed that some ε > 0 can be used to bound
the deviation of all probabilities from the quantum predictions. Another source of possible error is in the use of
stabiliser unitaries for |ψ〉. To obtain Eq. (85) one uses Eq. (44) which requires that the χi are obtained from μ by
a transformation implementing a stabiliser unitary. Any experiment would also have to engage in the problem of
how to account for errors in the implementation of the stabiliser unitary.

It may be possible to improve on the error term above by more carefully using higher Bonferroni inequalities
[16], rather than just Boole’s inequality as used above. Considering quad-partite and higher-order overlaps (rather
than stopping at the tripartite overlap, as done here) may also improve the error. Doing so may improve the scaling
with d.

Appendix 2: Justifying preparation non-contextuality with respect to stabiliser unitaries

The ontological models formalism combines fundamental objective ontology and operational notions. The funda-
mental ontology is reflected in the idea that ontic states represent actual states of affairs, independently of any other
theories an observer might use to describe the same system. On the other hand, the only way to reason about this
largely-unspecified ontological level is operationally: how does it respond to preparations, transformations, and
measurements that we can actually perform?

An assumption of non-contextuality is an assumption about these operational bridges between our capabilities
and the ontology. The following argument is designed to defend the idea that operational preparations of some pure
quantum state |ψ〉 ∈ P(H) can reasonably be assumed to be non-contextual with respect to stabiliser unitaries S|ψ〉
of the same state.

Any specific operational method for preparing some state |ψ〉 ∈ P(H) may be thought of as a black box which
the system is fed into. When the system is fed out of the box, it is promised that the box has prepared the system in
state |ψ〉 according to some specific method. In terms of ontological models, any preparation distribution μ ∈ �|ψ〉
can be considers in terms of such a box.

Suppose you design some experiment, which involves preparing |ψ〉 via μ. Scientists implementing that exper-
iment would obtain the corresponding black box to be sure that the method corresponding to μ is indeed used.
Once prepared, the system will the need to be presented to other pieces of apparatus. However, there will always
be variation in how the system is treated between preparation and the action of any other apparatus, any amount
of motion or passage of time or other (seemingly innocuous) treatment amounts to applying some unitary U to
the system. Each scientist will, no doubt, be careful to ensure that the system is not disturbed from its preparation
state, so it can be safely assumed that any such U is a stabiliser unitary U ∈ S|ψ〉. However, the point remains that
some unknownU ∈ S|ψ〉 is inevitably applied to the system after preparation via μ, and this can never be perfectly
accounted for.

Therefore, to analyse the result of the experiment, one has to allow for some unknown U ∈ S|ψ〉 to by applied
(via some unknown γ ∈ 	U ) after preparation of |ψ〉 via μ. On this minimally realistic operational level, an
arbitrary preparation distributionμ can never be prepared unscathed, one has to account for the inevitable, unknown,
subsequent stabiliser unitary. The effective preparation distribution that one must therefore use to describe the
experiment has to be one that is non-contextual with respect to such transformations, allowing the experiment to
still be analysed despite the application of an unknown U ∈ S|ψ〉.

One must be careful to only consider operational features that are not, even in principle, impossible to reliably
perform. Since the sets of preparation distributions for any given quantum states are, in the end, operational in
character, one may safely restrict to preparation distributions that satisfy certain sensible realistic requirements.
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The above heuristic argument aims to establish pure state preparation non-contextuality with respect to stabiliser
unitaries as such a realistic requirement.
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