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Abstract We denote by Mn the set of n by n complex matrices. Given a fixed density matrix β : Cn → C
n and a

fixed unitary operator U : Cn ⊗ C
n → C

n ⊗ C
n , the transformation � : Mn → Mn

Q → �(Q) = Tr2(U (Q ⊗ β)U∗)

describes the interaction of Q with the external source β. The result of this operation is �(Q). If Q is a density
operator then �(Q) is also a density operator. The main interest is to know what happens when we repeat several
times the action of � in an initial fixed density operator Q0. This procedure is known as random repeated quantum
iterations and is of course related to the existence of one or more fixed points for �. In Nechita and Pellegrini
(Probab Theory Relat Fields 52:299–320, 2012), among other things, the authors show that for a fixed β, there
exists a set of full probability for the Haar measure such that the unitary operatorU satisfies the property that for the
associated � there is a unique fixed point Q�. Moreover, there exists convergence of the iterates �n(Q0) → Q�,
when n → ∞, for any given initial Q0. We show here that there is an open and dense set of unitary operators
U : Cn ⊗ C

n → C
n ⊗ C

n such that the associated � has a unique fixed point. We will also consider a detailed
analysis of the case when n = 2. We will be able to show explicit results. We consider the C0 topology on the
coefficients of U . In this case, we will exhibit the explicit expression on the coefficients of U which assures the
existence of a unique fixed point for �. Moreover, we present the explicit expression of the fixed point Q�.

Keywords Random repeated quantum iterations · Density matrices · Unitary operators · External source · Fixed
point · Generic property · Kraus decomposition · Stinespring dilation

1 Introduction

We denote by Mn the set of n by n complex matrices. Given a fixed density matrix β : Cn → C
n and a fixed unitary

operator U : Cn ⊗ C
n → C

n ⊗ C
n , the transformation � : Mn → Mn
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390 A. O. Lopes, M. Sebastiani

Q → �(Q) = Tr2(U (Q ⊗ β)U∗)

describes the interaction of Q with the external source β.
We assume that all eigenvalues of β are strictly positive.
In [4], the model is precisely explained: Q is in the small system and β describes the environment. Then �(Q)

gives the output of the action of β in Q given the action of the unitary operator U .
Other related papers are [2,3]. Our proof is of quite different nature than these other papers.
The main question is about the convergence of the iterates�n(Q0), when n → ∞, for any given Q0. It is natural

to expect that any limit (if exists) is a fixed point for �.
Our purpose is to show the following theorem:

Theorem 1 Given a fixed density matrix β : C
n → C

n, for an open and dense set of unitary operators U :
C
n ⊗ C

n → C
n ⊗ C

n the transformation � : Mn → Mn

Q → �(Q) = Tr2(U (Q ⊗ β)U∗)

has a unique fixed point Q�. In the case n = 2, we present explicitly the analytic characterization of such family
of U and also the explicit formula for Q�.

This result implies one of the main results in [4] that we mentioned before.

2 The general dimensional case

Suppose V is a complex Hilbert space of dimension n ≥ 2 and L (V ) denotes the space of linear transformations
of V in itself.

Then, Tr2 : L (V ⊗ V ) → L (V ), given by Tr2(A ⊗ B) = Tr(B)A.
There is a canonical way to extend the inner product on V to V ⊗ V .
We fix a density matrix β ∈ L (V ). For each unitary operator U ∈ L (V ⊗ V ), we denote by �U : L (V ) →

L (V ) the linear transformation

�U (A) = Tr2(U (A ⊗ β)U∗).

We denote by � ⊂ L (V ) the set of density operators. It will be shown that �U preserves �. As � is a convex
compact space, it has a fixed point.

The set of unitary operators is denoted by U .
If A is such that �U (A) = A, then it follows that the range of �U − I is smaller or equal to n2 − 1.
We will show that there exists a proper real analytic subset X ⊂ U such that if U is not in X , then range of

�U − I = n2 − 1. In this case, the fixed point is unique. More precisely

X = {U ∈ U : range (�U − I ) < n2 − 1}.

This X ⊂ U is an analytic set because it is described by equations given by the determinant of minors equal to
zero. It is known that the complement of an analytic set, also known as a Zariski open set, is empty or is open and
dense on the analytic manifold (see [1]). Therefore, to prove our main result, we have to present an explicitU such
that range of (�U − I ) is n2 − 1.

This will be the purpose of our reasoning described below.
The bilinear transformation (A, B) → Tr(B)A fromL (V )×L (V ) toL (V ) induces the linear transformation

Tr2 : L (V ⊗ V ) = [L (V ) ⊗ L (V )] → L (V ).
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Generic properties for random repeated quantum iterations 391

Denote by e1, e2, . . . , en an orthonormal basis for V . We also denote Li j ∈ L (V ) the transformation such that
Li j (e j ) = ei and Li j (ek) = 0 if k 	= j .

The Li j provides a basis for L (V ).
If A ∈ L (V ), we can write A = ∑

i, j ai j Li j and we call [ai j ]1≤i, j≤n the matrix of A.
Note that ei ⊗ e j , 1 ≤ i, j ≤ n is an orthonormal basis of V ⊗ V . Moreover,

Lik ⊗ L jl(ek ⊗ el) = ei ⊗ e j ,

and

Lik ⊗ L jl(ep ⊗ eq) = 0 if (p, q) 	= (k, l).

It is also true that:

(a) Li j L pq = 0 if j 	= p,
(b) Li j L pj = Liq ,

(c) Tr (Li j ) = 0 if i 	= j and Tr (Lii ) = 1.

One can see that Lik ⊗ L jl , 1 ≤ i, k, j, l ≤ n is a basis forL (V ⊗ V ).

Given T ∈ L (V ⊗ V ) denote T = ∑
ti, j,k,l Lik ⊗ L jl . Then,

Tr2(T ) =
∑

ti, j,k, j Lik =
∑

ik

( ∑

j

ti, j,k, j

)

Lik .

In the appendix, we give a direct proof that: if A ∈ �, then �U (A) ∈ �, for all U ∈ U .

Now we will express �U in coordinates. We choose an orthonormal base e1, e2, . . . , en ∈ V which diagonalize
β. That is

β =
∑

q

λq Lqq , λq > 0, 1 ≤ q ≤ n,
∑

q

λq = 1.

Given r, s, 1 ≤ r, s ≤ n, we will calculate �U (Lrs).
Suppose U = ∑

ui, j,k,l Lik ⊗ L jl , then U∗ = ∑
ui, j,k,l Lik ⊗ L jl and

(Lrs ⊗ β)U∗ =
(∑

q

λq Lrs ⊗ Lqq

)

U∗ =
∑

j

λ j uk,l,s, j Lrk ⊗ L jl .

Now, we write U = ∑
uα,β,γ,δLαγ ⊗ Lβδ . Then, we get

U (Lrs ⊗ β)U∗ =
∑

λ j uα,β,r, j uk,l,s, j Lαk ⊗ Lβl .

Finally,

�U (Lrs) =
∑

λ j uα,l,r, j uk,l,s, j Lαk =
∑

α,k

( ∑

j,l

λ j uα,l,r, j uk,l,s, jλ j

)

Lαk .

As� is convex and compact and φU is continuous as we said before there exists a fixed point A ∈ �. In particular,
the range of φU is smaller or equal to n2 − 1.

We will present an explicit U such that range of (�U − I ) is n2 − 1.
This will be described by a certain kind of circulant unitary operator
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392 A. O. Lopes, M. Sebastiani

Suppose u1, u2, . . . , un2 are complex numbers of modulus 1. We define U in the following way

U (e1 ⊗ e1) = u1(e1 ⊗ e2),U (e1 ⊗ e2) = u2(e1 ⊗ e3), . . . ,U (e1 ⊗ en) = un(e2 ⊗ e1),
U (e2 ⊗ e1) = un+1(e2 ⊗ e2),U (e2 ⊗ e2) = un+2(e2 ⊗ e3), . . . ,U (e2 ⊗ en) = u2n(e3 ⊗ e1),

. . .

U (en ⊗ e1) = un2−n+1(en ⊗ e2),U (en ⊗ e2) = un2−n+2(en ⊗ e3), . . . ,U (en ⊗ en) = un2(e1 ⊗ e1),

We will show that for some convenient choice of u1, u2, . . . , un2 we will get that the range of �U − I is n2 − 1.
Suppose

U =
∑

ui, j,k,l Lik ⊗ L jl ,

in this case

U (ek ⊗ el) =
∑

i, j

ui, j,k,l ei ⊗ e j .

By definition of U , we get

(a) if l < n, then ui, j,k,l 	= 0, if and only if, i = k, j = l + 1;
(b) if k < n, then ui, j,k,n 	= 0, if and only if, i = k + 1, j = 1;
(c) ui, j,n,n 	= 0, if and only if, i = j = 1.

For fixed r, s such that 1 ≤, r, s ≤ n we get from (a)–(c):
1 ≤ r < n, 1 ≤ s < n, implies

�U (Lrs) =
⎛

⎝
n−1∑

j=1

ur, j+1,r, j us, j+1,s, jλ j

⎞

⎠ Lrs + ur+1,1,r,nus+1,1,s,nλnL(r+1)(s+1),

1 ≤ s < n, implies

�U (Lns) =
⎛

⎝
n−1∑

j=1

un, j+1,n, j us, j+1,s, jλ j

⎞

⎠ Lns + u1,1,n,nus+1,1,s,nλnL1(s+1),

1 ≤ r < n, implies

�U (Lrn) =
⎛

⎝
n−1∑

j=1

ur, j+1,r, j un, j+1,n, jλ j

⎞

⎠ Lrn + ur+1,1,r,nu1,1,n,nλnL(r+1)1.

In particular for 1 ≤ r < n, we have�U (Lrr ) = (1−λn)Lrr +λnL(r+1)(r+1). To show that the range of�U − I
is n2 − 1 ,we will show that the φU (Lrs) − Lrs are linearly independent for (r, s) 	= (n, n)

Suppose that
∑

(r,s) 	=(n,n)

crs(φU (Lrs) − Lrs) = 0.

The coefficient of L11 is −λnc11, then c11 = 0. The coefficient of L22 is λnc11 − λnc22, then c22 = 0.

. . .

The coefficient of Lnn is λnc(n−1)(n−1), then c(n−1)(n−1) = 0.
Then, we get that

∑

r 	=s

crs(φU (Lrs) − Lrs) = 0. (1)
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Generic properties for random repeated quantum iterations 393

We will divide the proof in several different cases.
(a) Case n = 2.

∑

r 	=s

crs(φU (Lrs) − Lrs) = c12(φU (L12) − L12) + c21(φU (L21) − L21).

By definition of U , we have that u1,2,1,1 = u1, u2,1,1,2 = u2, u2,2,2,1 = u3, u1,1,2,2 = u4.
Therefore,

φU (L12) − L12 = (u1u3λ1 − 1)L12 + u2u4λ2L21

and

φU (L21) − L21 = (u3u1λ1 − 1)L21 + u4u2λ2L12.

From (1), it follows that

(u1u3λ1 − 1)c12 + u4u2λ2c21 = 0

u2u4λ2c12 + (u3u1λ1 − 1)c21 = 0.

Taking U such that u1 = i , u2 = u3 = u4 = 1, it is easy to see that the determinant of the above system is not
equal to zero. Then we get that c12 = c21 = 0.

Then, we get a U with maximal range.
(b) Case n > 2.

We choose u1, u2, . . . , un2 according to Lemma 1 below.
The equations we consider before can be written as
1 ≤ r < n, 1 ≤ s < n, r 	= s, then, �U (Lrs) − Lrs = (ars − 1)Lrs + brs L(r+1)(s+1),

1 ≤ s < n, then, �U (Lns) − Lns = (ans − 1)Lns + bns L1(s+1),

1 ≤ r < n, then, �U (Lrn) − Lrn = (arn − 1)Lrn + brnL(r+1)1.

For instance

ars =
n−1∑

j=1

ur, j+1,r, j us, j+1,s, jλ j ,

and

brs = ur+1,1,r,nus+1,1,s,nλn .

Note that ur, j+1,r, j us, j+1,s, j has modulus one and also ur+1,1,r,nus+1,1,s,n .
Moreover, |brs | = λn > 0 and |ars | < λ1 + · · · + λn−1. Indeed, note first that the products ur, j+1,r, j us, j+1,s, j

are different by the choice of the ui, j,k,l (see Lemma 1). Furthermore, by Lemma 2, we get that |ars | can not be
equal to λ1 + · · · + λn−1.

Therefore, |ars − 1| ≥ 1 − |ars | > 1 − ∑n−1
q=1 λq = λn = |bi j | > 0, for all r, s, i, j and r 	= s, i 	= j.

Suppose 2 ≤ k ≤ n.

Remember that the Li j define a linear independent set.
The coefficient of L1k in (1) is

c1k(a1k − 1) + cn(k−1)bn(k−1) = 0.

The coefficient of Ln(k−1) in (1) is

cn(k−1)(an(k−1) − 1) + c(n−1)(k−2)b(n−1)(k−1) = 0.

The coefficient of L(n−k+2)1 in (1) is

c(n−k+2)1(a(n−k+2)1 − 1) + c(n−k−1)nb(n−k+1)n = 0.
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394 A. O. Lopes, M. Sebastiani

The coefficient of L(n−k+1)n in (1) is

c(n−k+1)n(a(n−k+1)n − 1) + c(n−k)(n−1)b(n−k)(n−1) = 0.

The coefficient of L(n−k)(n−1) in (1) is

c(n−k)(n−1)(a(n−k)(n−1) − 1) + c(n−k−1)(n−2)b(n−k−1)(n−2) = 0.

. . .

The coefficient of L2(k+1) in (1) is

c2(k+1)(a2(k+1) − 1) + c1kb1k = 0.

If c1k 	= 0, then, from above, we get |c1k | < |cn(k−1)| < · · · < |c2(k+1)| < |c1k |.
Then, we get a contradiction. It follows that c1k = 0.
Therefore,

cn(k−1) = c(n−1)(k−2) = · · · = c(n−k+2)1 = c(n−k+1)n = c(n−k)(n−1) = · · · = c2(k+1) = 0.

From this, it follows that crs = 0 for all r, s, when r 	= s. This shows that for such U , we have maximal range
equal to n2 − 1.

Now we will prove two Lemmas that we used before.

Lemma 1 Given m ≥ 2, there exist complex numbers u1, . . . , um of modulus 1, such that, if 1 ≤ i 	= j ≤ m,

1 ≤ k 	= l ≤ m and uiu j = ukul , then i = k, j = l.

Proof The proof is by induction on m
For m = 2, just take u1u2 not in R.

Suppose the claim is true for m ≥ 2 and u1, . . . , um the corresponding ones.
Consider

S = {uiu j |1 ≤ i, j ≤ m}
and

T = {u puq |1 ≤ p, q ≤ m}.
Then, take um+1 such that um+1u p is not in S for all 1 ≤ p ≤ m, and u2m+1 is not in T .
Then, u1, . . . , um, um+1 satisfy the claim.

��
Lemma 2 Consider λ1, . . . , λm, real positive numbers and z1, . . . , zm, complex numbers of modulus 1.

Suppose |∑m
j=1 λ j z j | = ∑m

j=1 λ j , then z1 = z2 = · · · = zm .

Proof The proof is by induction on m.
It is obviously true for m = 1.
Suppose the claim is true for m − 1 and we will show is true for m.
Note that

m∑

j=1

λ j =
∣
∣
∣
∣
∣
∣

m∑

j=1

λ j z j

∣
∣
∣
∣
∣
∣
≤

∣
∣
∣
∣
∣
∣

m−1∑

j=1

λ j z j

∣
∣
∣
∣
∣
∣
+ λm ≤

m∑

j=1

λ j .

From this follows that
∣
∣
∣
∣
∣
∣

m−1∑

j=1

λ j z j

∣
∣
∣
∣
∣
∣
=

m−1∑

j=1

λ j .
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Generic properties for random repeated quantum iterations 395

Then, z1 = z2 = · · · = zm−1 = z.
Therefore,

m∑

j=1

λ j =
∣
∣
∣
∣
∣
∣
z
m−1∑

j=1

λ j + zmλm

∣
∣
∣
∣
∣
∣
≤

∣
∣
∣
∣
∣
∣
z
m−1∑

j=1

λ j

∣
∣
∣
∣
∣
∣
+ |zmλm | =

m∑

j=1

λ j .

Given v1, v2 complex numbers such that |v1 + v2| = |v1| + |v2|, then they have the same argument.
Then, there exists an s > 0 such that z

∑m−1
j=1 λ j = szmλm .

Now, taking modulus on both sides of the expression above, we get

m−1∑

j=1

λ j =
∣
∣
∣
∣
∣
∣
z
m−1∑

j=1

λ j

∣
∣
∣
∣
∣
∣
= |szmλm | = sλm .

From this follows that zm = z
��

3 The two-dimensional case: explicit results

Ourmain interest in this section is to present the explicit expression of the unique fixed pointU .We restrict ourselves
to the two-dimensional case.

We will consider a two-by-two density matrix β such that is diagonal in the basis f1 ∈ C
2, f2 ∈ C

2. Without
lost of generality, we can consider that

β =
(
p1 0
0 p2

)

,

p1, p2 > 0. We will describe initially in coordinates some of the definitions which were used before in the paper.
If

R =
(
R11 R12

R21 R22

)

,

and

S =
(
S11 S12
S21 S22

)

,

then

R ⊗ S =

⎛

⎜
⎜
⎝

R11S11 R11S12 R12S11 R12S12
R11S21 R11S22 R12S21 R12S22
R21S11 R21S12 R22S11 R22S12
R21S21 R21S22 R22S21 R22S22

⎞

⎟
⎟
⎠

and

Tr2(R ⊗ S) =
(
R11(S11 + S22) R12(S11 + S22)
R21(S11 + S22) R22(S11 + S22)

)

.

Given

T =

⎛

⎜
⎜
⎝

T11 T12 T13 T14
T21 T22 T23 T24
T31 T32 T33 T34
T41 T42 T43 T44

⎞

⎟
⎟
⎠
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396 A. O. Lopes, M. Sebastiani

then, in a consistent way, we have

Tr2(T ) =
(
T11 + T22 T13 + T24
T31 + T42 T33 + T44

)

The action of an operator U on M2 ⊗ M2 in the basis e1 ⊗ f1, e2 ⊗ f1, e1 ⊗ f2, e2 ⊗ f2 is given by a 4 by 4
matrix U denoted by

U =

⎛

⎜
⎜
⎜
⎜
⎝

U 11
11 U 12

11 U 11
12 U 12

12

U 21
11 U 22

11 U 21
12 U 22

12

U 11
21 U 12

21 U 11
22 U 12

22

U 21
21 U 22

21 U 21
22 U 22

22

⎞

⎟
⎟
⎟
⎟
⎠

and

U∗ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

U 11
11 U 21

11 U 11
21 U 21

21

U 12
11 U 22

11 U 12
21 U 22

21

U 11
12 U 21

12 U 11
22 U 21

22

U 12
12 U 22

12 U 12
22 U 22

22

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

If U is unitary then UU∗ = I . This relation implies the following set of equations:

(1) U 11
11U

11
11 +U 12

11U
12
11 +U 11

12U
11
12 +U 12

12U
12
12 = 1,

(2) U 11
11U

21
11 +U 12

11U
22
11 +U 11

12U
21
12 +U 12

12U
22
12 = 0,

(3) U 11
11U

11
21 +U 12

11U
12
21 +U 11

12U
11
22 +U 12

12U
12
22 = 0,

(4) U 11
11U

21
21 +U 12

11U
22
21 +U 11

12U
21
22 +U 12

12U
22
22 = 0,

(5) U 21
11U

11
11 +U 22

11U
12
11 +U 21

12U
11
12 +U 22

12U
12
12 = 0,

(6) U 21
11U

21
11 +U 22

11U
22
11 +U 21

12U
21
12 +U 22

12U
22
12 = 1,

(7) U 21
11U

11
21 +U 22

11U
12
21 +U 21

12U
11
22 +U 22

12U
12
22 = 0,

(8) U 21
11U

21
21 +U 22

11U
22
21 +U 21

12U
21
22 +U 22

12U
22
22 = 0,

(9) U 11
21U

11
11 +U 12

21U
12
11 +U 11

22U
11
12 +U 12

22U
12
12 = 0,

(10) U 11
21U

21
11 +U 12

21U
22
11 +U 11

22U
21
12 +U 12

22U
22
12 = 0,

(11) U 11
21U

11
21 +U 12

21U
12
21 +U 11

22U
11
22 +U 12

22U
12
22 = 1,

(12) U 11
21U

21
21 +U 12

21U
22
21 +U 11

22U
21
22 +U 12

22U
22
22 = 0,

(13) U 21
21U

11
21 +U 22

21U
12
21 +U 21

22U
11
22 +U 22

22U
12
22 = 0.

(14) U 21
21U

11
11 +U 22

21U
12
11 +U 21

22U
11
12 +U 22

22U
12
12 = 0.
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Generic properties for random repeated quantum iterations 397

(15) U 21
21U

21
11 +U 22

21U
22
11 +U 21

22U
21
12 +U 22

22U
22
12 = 0.

(16) U 21
21U

21
21 +U 22

21U
22
21 +U 21

22U
21
22 +U 22

22U
22
22 = 1.

Equation (2) is equivalent to (5), equation (12) is equivalent to (13), equation (8) is equivalent to (15), equation
(3) is equivalent to (9), equation (7) is equivalent to (10) and equation (4) is equivalent to (14). Then, we have six
free parameters for the coefficients of U .

Using the entries Ui j
rs we considered above, we define

L̃(Q) = p1

2∑

i=1

⎛

⎝
U

i1
11 U

i1
21

U
i1
12 U

i1
22

⎞

⎠ Q

(
Ui1
11 Ui1

12

Ui1
21 Ui1

22

)

+p2

2∑

i=1

⎛

⎝
Ui2
11 Ui2

21

Ui2
12 Ui2

22

⎞

⎠ Q

(
Ui2
11 Ui2

12

Ui2
21 Ui2

22

)

We can consider an auxiliary Li j and express

L̃(Q) =
2∑

i=1

(
√
p1(U

i1)∗)Q(
√
p1U

i1) +
2∑

i=1

(
√
p2(U

i2)∗)Q(
√
p2U

i2)

=
2∑

i=1

L∗
i1QLi1 +

2∑

i=1

L∗
i2QLi2 =

2∑

i. j=1

L∗
i j QLi j .

From the fact that UU∗ = I , it follows (after a long computation) that

L̃(I ) = I.

Note that L̃ preserve the cone of positive matrices.
Using the entries Ui j

rs described above, we denote

L̂(Q) = p1

2∑

i=1

(
Ui1
11 Ui1

12

Ui1
21 Ui1

22

)

Q

⎛

⎝
Ui1
11 Ui1

21

Ui1
12 Ui1

22

⎞

⎠

+p2

2∑

i=1

(
Ui2
11 Ui2

12

Ui2
21 Ui2

22

)

Q

⎛

⎝
Ui2
12 Ui2

21

Ui2
12 Ui2

22

⎞

⎠ =
2∑

i. j=1

Li j QL∗
i j .

One can also show that L̂(Q) = Tr2[U (Q ⊗ β)U∗] (see [4]).
The first expression is the Kraus decomposition and the second the Stinespring dilation.
Moreover L̂ preserves density matrices. This is proved in the appendix but we can present here another way to

get that. If Q is a density matrix, then

Tr(L̂(Q)) = Tr

⎛

⎝
2∑

i. j=1

Li j QL∗
i j

⎞

⎠ =
2∑

i. j=1

Tr(Li j QL∗
i j ) =

2∑

i. j=1

Tr(QL∗
i j Li j )

= Tr

⎛

⎝
2∑

i. j=1

QL∗
i j Li j

⎞

⎠ = Tr

⎛

⎝Q
2∑

i. j=1

L∗
i j Li j

⎞

⎠ = Tr(Q) = 1

We denote

Q =
(
Q11 Q12

Q21 Q22

)

.
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Then,

Ui j Q (Ui j )∗ =
(
Ui j
11 Ui j

12

Ui j
21 Ui j

22

) (
Q11 Q12
Q21 Q22

)
⎛

⎝
Ui j
11 Ui j

21

Ui j
12 Ui j

22

⎞

⎠

=
⎛

⎝
Ui j
11(U

i j
11Q11 +Ui j

12Q21) +Ui j
12(U

i j
11Q12 +Ui j

12Q22) U
i j
21(U

i j
11Q11 +Ui j

12Q21) +Ui j
22(U

i j
11Q12 +Ui j

12Q22)

Ui j
11(U

i j
21Q11 +Ui j

22Q21) +Ui j
12(U

i j
21Q12 +Ui j

22Q22) U
i j
21(U

i j
21Q11 +Ui j

22Q21) +Ui j
22(U

i j
21Q12 +Ui j

22Q22)

⎞

⎠ ,

We have to compute

L̂(Q) = p1[U 11Q(U 11)∗ +U 21Q(U 21)∗] + p2[U 12Q(U 12)∗ +U 22Q(U 22)∗].
The coordinate a11 of L̂(Q) is

p1
[
U 11
11 (U 11

11 Q11 +U 11
12 Q21) +U 11

12 (U 11
11 Q12 +U 11

12 Q22)
]

+p1
[
U 21
11 (U 21

11 Q11 +U 21
12 Q21) +U 21

12 (U 21
11 Q12 +U 21

12 Q22)
]

+p2
[
U 12
11 (U 12

11 Q11 +U 12
12 Q21) +U 12

12 (U 12
11 Q12 +U 12

12 Q22)
]

+p2
[
U 22
11 (U 22

11 Q11 +U 22
12 Q21) +U 22

12 (U 22
11 Q12 +U 22

12 Q22)
]
. (2)

The coordinate a12 is

p1
[
U 11
21 (U 11

11 Q11 +U 11
12 Q21) +U 11

22 (U 11
11 Q12 +U 11

12 Q22)
]

+p1
[
U 21
21 (U 21

11 Q11 +U 21
12 Q21) +U 21

22 (U 21
11 Q12 +U 21

12 Q22)
]

+p2
[
U 12
21 (U 12

11 Q11 +U 12
12 Q21) +U 12

22 (U 12
11 Q12 +U 12

12 Q22)
]

+p2
[
U 22
21 (U 22

11 Q11 +U 22
12 Q21) +U 22

22 (U 22
11 Q12 +U 22

12 Q22)
]
. (3)

We will consider a parametrization of the density matrices taking Q11 = 1 − Q22 and Q12 = Q21.
The variable Q11 is positive in the real line and smaller than one. Indeed, by positivity of Q, we have 0 ≤

Q11Q22 = Q11(1 − Q11) = Q11 − Q2
11.

Q12 is in C = R
2 but satisfying Q11(1 − Q11) − Q12Q12 ≥ 0 because we are interested in density matrices

which are positive operators.
The numbers p1 and p2 are fixed. Consider the function G such that

G(Q11, Q12) = (p1[U 11
11 (U 11

11 Q11 +U 11
12 Q12) +U 11

12 (U 11
11 Q12 +U 11

12 (1 − Q11))]
+p1[U 21

11 (U 21
11 Q11 +U 21

12 Q12) +U 21
12 (U 21

11 Q12 +U 21
12 (1 − Q11))]

+p2[U 12
11 (U 12

11 Q11 +U 12
12 Q12) +U 12

12 (U 12
11 Q12 +U 12

12 (1 − Q11))]
+p2[U 22

11 (U 22
11 Q11 +U 22

12 Q12) +U 22
12 (U 22

11 Q12 +U 22
12 (1 − Q11))],

p1[U 11
21 (U 11

11 Q11 +U 11
12 Q12) +U 11

22 (U 11
11 Q12 +U 11

12 (1 − Q11))]
+p1[U 21

21 (U 21
11 Q11 +U 21

12 Q12) +U 21
22 (U 21

11 Q12 +U 21
12 (1 − Q11))]

+p2[U 12
21 (U 12

11 Q11 +U 12
12 Q12) +U 12

22 (U 12
11 Q12 +U 12

12 (1 − Q11))]
+p2[U 22

21 (U 22
11 Q11 +U 22

12 Q12) +U 22
22 (U 22

11 Q12 +U 22
12 (1 − Q11))])

When there is a unique fixed point for G?
Example Suppose U = eiβσ x⊗σ x = cos(β)(I ⊗ I ) + i sin(β)(σx ⊗ σx ). In this case

U =

⎛

⎜
⎜
⎝

cosβ 0 0 i sin β

0 cosβ i sin β 0
0 i sin β cosβ 0
i sin β 0 0 cosβ

⎞

⎟
⎟
⎠
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Therefore,

G(Q11, Q12) = ((p1 − p1Q11 + p2 − p2Q11),

p1(cosβ)2Q12 + p1(sin β)2Q12 + p2(sin β)2Q12 + p2(cosβ)2Q12)

= (1 − Q11, p1(cosβ)2Q12 + p1(sin β)2Q12 + p2(sin β)2Q12 + p2(cosβ)2Q12)

One can easily see that given any a ∈ R we have that Q11 = 1/2, and Q12 = a determine a fixed point for G.
In order the fixed point matrix to be positive we need that −1/2 < a < 1/2.

In this case, the fixed point is not unique.
It is more convenient to express G in terms of the variables Q11 ∈ [0, 1], and (a, b) ∈ R

2, where Q12 = a + bi .
As these parameters describe density matrices, there are some restrictions: 1/4 ≥ Q11(1 − Q11) ≥ (a2 + b2) and
1 ≥ Q11 ≥ 0

We denote by Re(z), the real part of the complex number z and by Im(z) its imaginary part.
In this case, we get

G(Q11, a, b) = (Q11α1 + β1 + (a11 + a12)a + i(a11 − a12)b,

Re(Q11α2 + β2 + (a21 + a22)a + i(a21 − a22)b),

Im(Q11α2 + β2 + (a21 + a22)a + i(a21 − a22)b)).

where

α1 = p1[U 11
11U

11
11 −U 11

12U
11
12 +U 21

11U
21
11 −U 21

12U
21
12 ]

+p2[U 12
11U

12
11 −U 12

12U
12
12 +U 22

11U
22
11 −U 22

12U
22
12 ],

β1 = p1[U 11
12U

11
12 +U 21

12U
21
12 ] + p2[U 12

12U
12
12 +U 22

12U
22
12 ],

α2 = p1[U 11
21U

11
11 −U 11

22U
11
12 +U 21

21U
21
11 −U 21

22U
21
12 ]

+p2[U 12
21U

12
11 −U 12

22U
12
12 +U 22

21U
22
11 −U 22

22U
22
12 ],

β2 = p1[U 11
22U

11
12 +U 21

21U
21
12 ] + p2[U 12

22U
12
12 +U 22

22U
22
12 ],

a11 = p1[U 11
12U

11
11 +U 21

12U
21
11 ] + p2[U 12

12U
12
11 +U 22

12U
22
11 ],

a12 = p1[U 11
11U

11
12 +U 21

11U
21
12 ] + p2[U 12

11U
12
12 +U 22

11U
22
12 ],

a21 = p1[U 11
22U

11
11 +U 21

22U
21
11 ] + p2[U 12

22U
12
11 +U 22

22U
22
11 ],

a22 = p1[U 11
21U

11
12 +U 21

21U
21
12 ] + p2[U 12

21U
12
12 +U 22

21U
22
12 ],

α1 is a real number. As � takes density matrices to density matrices, we have that β1 is also real.
Note that |α1| < 1 and 1 > β1 > 0.
It is easy to see from the above equations that (a11 + a12) and i(a11 − a12) are both real numbers.
We are not able to say the same for (a21 + a22)a or i(a21 − a22)b.
To find the fixed point, we have to solve

Q11α1 + β1 + (a11 + a12)a + i(a11 − a12)b = Q11

Q11α2 + β2 + (a21 + a22)a + i(a21 − a22)b = a + bi,

which means in matrix form

(
(α1 − 1) a11 + a12 i(a11 − a12)
α2 a21 + a22 − 1 i(a21 − a22 − 1)

)
⎛

⎝
Q11

a
b

⎞

⎠ =
(−β1

−β2

)

.

We are interested in real solutions Q11, a, b.
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In the case of the example mentioned above, one can show that α1 = 1 and α0 = 0 which means that in the
expressions above, we get a set of two equation in two variables a, b,

Remember thatwe are interested inmatrices such that 1/4 ≥ Q11(1−Q11) ≥ (a2+b2).Notice that 0 ≤ Q11 ≤ 1.
As � takes density matrices to density matrices, there is a fixed point for G by the Brower fixed point theorem. The
main question is the conditions on U and β such that the fixed point is unique.

If there is a solution (Q̂11, â, b̂) 	= (0, 0, 0) in R3 to the equations

Q̂11(α1 − 1) + (a11 + a12)â + i(a11 − a12)b̂ = 0

Q̂11α2 + (a21 + a22 − 1)â + i(a21 − a22 − 1)b̂ = 0, (4)

then, the fixed point is not unique. The condition is necessary and sufficient.
A necessary condition for the fixed point to be unique is to be nonzero the determinant of the operator

K =
(
a11 + a12 i(a11 − a12)
a21 + a22 − 1 i(a21 − a22 − 1)

)

.

Notice that if (z1, z2) satisfies K (z1, z2) = (0, 0), then z1
z2

is real (because a11 + a12 and i(a11 − a12) are real).

From this follows that there exists a solution (a, b) ∈ R
2 in the kernel of K . In this case, (0, a, b) is a nontrivial

solution of (4).
The condition det K 	= 0 is an open and dense property on the unitary matrices U . Indeed, there are six free

parameters on the coefficients Ui j
rs . Consider an initial unitary operator U . One can fix 5 of them and move a little

bit the last one. This will change U and will move the determinant of KU in such way that can avoid the value 0
for some small perturbation of the initial U .

Suppose U satisfies such property Det U 	= 0. For each real value Q11, we get a different (aQ11 , bQ11) which is
a solution of K (a, b) = (−Q11(α1 − 1),−Q11α2).

In this way, we get an infinite number of solutions (Q11, aQ11 , bQ11) ∈ R × C
2 to (4).

α2 is not real.
But, we need solutions onR3. Denote by S = SU the linear subspace of vectors inC2 of the form ρ(α1 −1, α2),

where ρ is complex.

Lemma 3 For an open and dense set of unitary U, we get that K−1(S) ∩ R
2 = {(0, 0)}. For such U, suppose

(Q11, a, b) satisfies Eq. (4), then the non-trivial solutions (â, b̂) of

K (â, b̂) = (−Q11(α1 − 1),−Q11α2)

are not in R2.

Proof Suppose 1−α1
α2

= α + βi = z0 = z0U . Note that for a generic U , we have that α2 	= 0.
We denote C11 = a11 + a12, C12 = i(a11 − a12), C21 = a21 + a22 − 1 and finally C22 = i(a21 − a22 − 1).
Suppose (Q11, a, b) ∈ R

3 satisfies Eq. (4). We know that generically on U the value Q11 is not zero.
For each Ci j , we denote Ci j = C1

i j + C2
i j i , where i, j = 1, 2.

If K (â, b̂) = (−Q11(α1 − 1),−Q11α2), then

C11â + C21b̂ = z0(C21â + C22b̂) = (α + βi)(C21â + C22b̂).

In this case

C11â + C21b̂ = (αC1
21â − βC2

21â − βC1
22b̂ − αC2

22b̂)

+ i(βC1
21â + αC2

21â + αC1
22b̂ − βC2

22b̂).

If â and b̂ are real, then, as C11 and C22 are real , then

(βC1
21 + αC2

21)â + (αC1
22 − βC2

22)b̂ = 0. (5)
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Moreover,

(αC1
21 − βC2

21 − C11)â − (βC1
22 − αC2

22 − C21)b̂ = 0 (6)

If

Det

(
βC1

21 + αC2
21 αC1

22 − βC2
22

αC1
21 − βC2

21 − C11 βC1
22 − αC2

22 − C21

)

	= 0,

then just the trivial solution (0, 0) satisfies (5) and (6).
The above determinant is nonzero in an open and dense set of U .
Then, the solution (Q11, a, b) ∈ R

3 of (4) has to be trivial. ��
Under these two assumptions onU (which are open and dense), the fixed point for G is unique. Then, it follows

that the density matrix Q = Q� which is invariant for� is unique. Given an initial Q0, any convergent subsequence
�nk (Q0), κ → ∞ will converge to the fixed point (because is unique).

As

G(Q11, a, b) = (Q11α1 + β1 + (a11 + a12)a + i(a11 − a12)b,

Re(Q11α2 + β2 + (a21 + a22)a + i(a21 − a22)b),

Im(Q11α2 + β2 + (a21 + a22)a + i(a21 − a22)b)),

one can find the explicit solution

Q� =
(

Q11 a + bi
a − bi 1 − Q11

)

by solving the linear problem G(Q11, a, b) = (Q11, a, b).

Appendix

Lemma 4 Given A, B ∈ L (V ), then Tr(A ⊗ B) = Tr(Tr2(A ⊗ B)). Moreover, Tr(Tr2(T )) = Tr(T ), for all
T ∈ L (V ⊗ V ).

Proof Indeed,

Tr(A ⊗ B) = Tr(A)Tr(B) = Tr(Tr(A)B) = Tr(Tr2(A ⊗ B)).

��
Lemma 5 Given T ∈ L (V ⊗ V ),

(a) if T is selfadjoint, then, Tr2 is also selfadjoint,
(b) moreover, if T is also positive semidefinite then Tr2(T ) is semidefinite.

Proof (a) If T is selfadjoint, then, ti jkl = tkli j . This implies that
∑

j ti jk j = ∑
j tk j i j . Therefore, Tr2 is selfadjoint.

(b) If T is postive semidefinite, then 〈T (x⊗x ′), x⊗x ′〉 ≥ 0, for all x, x ′ ∈ V . In particular, 〈T (x⊗eq), x⊗eq〉 ≥ 0,
for all x = c1e1 + · · · + cnen ∈ V and 1 ≤ q ≤ n.

As T (x ⊗ eq) = ∑
ti jkl Lik(x) ⊗ L jl(eq) = ∑

ti jkqck(ei ⊗ e j ), then

〈T (x ⊗ eq), x ⊗ eq〉 =
∑

i,k

tiqkqckci , q = 1, 2, . . . , n.

From this follows that
∑

i,k,q tiqkqckci = ∑
i,k(

∑
q tiqkq)ckci ≥ 0.

Then, 〈Tr2(T )(x), x〉 ≥ 0. ��
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Note that the analogous property for positive definite T is also true.

Lemma 6 If A ∈ �, then �U (A) ∈ �, for all U ∈ U .

Proof As A and β are selfadjoint and positive semidefinite the same is true for A ⊗ β. Then, the same is true for
U (A ⊗ β)U∗. From Lemma 5 we get that �U (A) = Tr2(U (A ⊗ β)U∗) is selfadjoint.

By Lemma 4 Tr(�U (A)) = Tr(U (A ⊗ β)U∗) = Tr(A ⊗ b) = Tr(A)Tr(B) = 1. ��
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