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Abstract

Purpose of Review  Azole resistance in Aspergillus fumigatus is an emerging public health 
issue with global distribution and has been linked to use in agricultural and horticultural 
settings. In 2022, the World Health Organization (WHO) created a fungal pathogen priority 
list, and A. fumigatus was listed as a critical pathogen. Currently, Africa lacks effective 
surveillance systems for this emerging threat, mostly due to lack of capacity and diagnos‑
tics to determine azole resistance in routine clinical settings. This review aims to address 
and improve on the current diagnostic tools and future perspective strategies in tackling 
clinical and environmental antifungal-resistant (AFR) A. fumigatus in Africa. We empha‑
sized on the importance of early diagnosis and misdiagnosis associated with aspergillosis 
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caused by Aspergillus sp., cross talk between clinical and environmental, mode of action 
and resistance mechanism, collaborative one health approach, and future perspectives for 
AFR A. fumigatus management strategies.
Recent Findings  Early diagnosis and effective management of invasive aspergillosis are 
critical. On the continent, very few laboratories routinely conduct antifungal susceptibility 
testing on Aspergillus species. Where this occurs, it is culture-based in vitro antifungal 
susceptibility testing. Drug repurposing and the need for a non-culture-based molecular 
method (PCR) are critical.
Summary  Enhancing promising future perspectives of non-cultured approaches such as 
whole-genome sequencing, CRISPR/Cas9, and RNAi-mediated technologies to complement 
the culture-based approach as important strategies to mitigate and overcome emerging 
issues of AFR A. fumigatus in Africa.

Introduction

The prevalence of fungal infections is increasing and 
poses a global threat to humans [1]. Over 1.6 million 
deaths annually are caused by fungal diseases glob-
ally, and more than 1 billion people are at extremely 
high risk from severe fungal infections [2, 3]. There 
are several reasons for this increase, and the major risk 
factor for invasive fungal infections is the prolonged 
survival in immunocompromised patients with dis-
eases such as HIV/AIDS, chronic obstructive pulmo-
nary disease (COPD), tuberculosis (TB), and severe 
acute respiratory syndrome coronavirus (SARS-CoV-2) 
[4–6]. Fungal infections occur across a range of medi-
cal conditions, usually as co-infections or opportun-
istic infections [7, 8]. Therefore, invasive fungal infec-
tions are complicated, which hinders diagnosis and 
management of immunocompromised patients [9].
The World Health Organization (WHO) developed 
the first global fungal priority pathogens list (FPPL), 
which aligns with public health requirements [10]. 
Recently, the WHO updated the list of fungal path-
ogens into three priority groups (critical, high, and 
medium) using a multi-criteria decision analysis 
(MCDA) approach for use in public health systems 
in response to fungal infections and antifungal resist-
ance [11•]. The critical group of priority pathogens are 
Aspergillus fumigatus, Candida albicans, Candida auris, 
and Cryptococcus neoformans. Therefore, the focus is on 
invasive acute and subacute systemic causative fun-
gal pathogens with drug resistance or management 
challenges.

Africa accounts for one fifth of the world’s population 
that are at risk for contracting fungal infections with 
limited access to healthcare, harmful environmental 
factors, and generally poor livelihoods [12]. The high 
incidence of fungal infections in Africa is a major con-
cern, and not all healthcare systems are able to address 
this challenge. Data compiled by the Global Fund 
Action for Fungal Infections (GAFFI) suggests that 
47.6 million Africans suffer from fungal diseases, of 
which 1.7 million suffer from a severe fungal infection 
[13]. However, these assessments are based on data 
from only a handful of African countries and likely 
underestimate actual prevalence. Fungal infections 
such as bloodstream infections, wound infections, 
and urinary tract infections are caused by antifungal-
resistant (AFR) A. fumigatus pathogen, which have 
been reported in Nigeria and West Africa [14].
To date, the treatment of invasive fungal infections 
caused by Aspergillus spp. relies primarily on these 
antifungals: amphotericin B (polyenes), fluconazole, 
voriconazole, itraconazole (azoles), and caspofungin 
(echinocandins) [15–17]. However, resistant fungi 
react quickly to chemical attacks [18], and failed 
treatment is a common consequence of resistance. 
This is attributed to an interplay between underlying 
host immunodeficiencies, antifungal drug proper-
ties (drug-target interactions, pharmacokinetics, and 
pharmacodynamics) [19], biofilm formation [20], and 
fungal properties (varied cell morphologies, antifun-
gal tolerance, antifungal resistance, genetic mutations, 
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and induced protective mechanisms) [21, 22]. Rapid 
plasmid-mediated spread of resistance has not been 
demonstrated in fungi relative to bacteria [23], and 
such mechanisms need to be investigated.
Unfortunately, studies report global resistance to 
azole, echinocandins, and polyene antifungal drugs 
in both clinical and environmental fungal strains, 
which were previously effective against A. fumigatus 
[15, 24] and C. auris [25, 26••]. Azole drug resistance 
has severe clinical consequences, with retrospective 
studies showing a 25% increase in mortality at day 90 
in patients with drug-resistant aspergillosis relative to 
patients with wild-type (WT) infections [27]. In gen-
eral, the prevalence of azole resistance in A. fumigatus 
is characterized by the expression-upregulating tan-
dem repeat (TR) mechanisms in the promoter region 
of the Cyp51A gene through point mutations, which 
decrease the affinity of azoles for the target protein 
[28, 29]. Hence, the most common alleles, namely 
TR34/ L98H and TR46/Y121F/T289A, are associated 
with high levels of itraconazole and voriconazole 
resistance [30], both inside and outside clinics [27].

In Africa, emerging high drug-resistant pathogens are 
gaining clinical importance [26••]. Modern genomic 
epidemiological methods have been extensively 
explored and revealed possible eco-evolutionary 
associations between the environment and increasing 
clinical resistance of the azole-resistant genotypes A. 
fumigatus [24] in patients with no history of antifungal 
treatments. However, ecological “hotspots” have been 
postulated [18], where both biotic and abiotic condi-
tions allow fungal growth when exposed to azole con-
centrations below the minimum inhibitory concentra-
tion (MIC), creating suitable conditions for adaptation 
to drug pressure. Therefore, these pathogens need to 
be screened and ascertained for the burden of out-
break infections if they are to be prioritized for health 
interventions. In this review, we focused on these pri-
ority areas with the aim of outlining current advances 
and future perspectives regarding key research strate-
gies needed to mitigate the invasive antifungal-resist-
ant pathogen A. fumigatus in Africa.

Diagnosis and misdiagnosis associated with aspergillosis

Aspergillosis is undoubtedly the most common human disease, ranging from 
superficial to deep-seated and potentially fatal infections [31, 32], for exam-
ple, otomycosis, onychomycosis, keratitis, chronic pulmonary aspergillosis 
(CPA), allergic bronchopulmonary aspergillosis (ABPA), saprophytic pulmo-
nary, or sinusoidal aspergillomas, which develop rapidly and are often fatal, 
especially if diagnosis is delayed or missed [33, 34]. Some of these fungal 
infections, particularly skin diseases that affect individuals without any pre-
existing conditions who live and work in close proximity to certain environ-
mental niches [35, 36].

The morphological diagnosis of aspergillosis is usually obtained by 
the observation of thin, septate, acute-angled, or dichotomously branched 
hyphae [37]. Aspergillus is a large genus of about 250 species that has a num-
ber of important pathogens. Some pathogenic species are present in culture 
contaminants, with varying pathogenicity and susceptibility to antifungal 
agents. The number of these pathogenic species is increasing rapidly due to 
adaptation to temperature, and their numbers may be currently underesti-
mated [36]. Nonetheless, the rapid and accurate identification of clinical 
isolates is very important in selecting appropriate antifungal agents.

Diagnostic challenges also occur at the morphological level, as there are 
some hyaline septate molds that appear to be indistinguishable. For exam-
ple, Fusarium spp., Scedosporium sp., and Pseudallescheria sp. were diagnosed 
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in patients between histology and culture ranges from 17 to 22% [38–40]. 
The therapeutic importance of this is significant, as there are significant dif-
ferences between the treatment of aspergillosis and that of mucormycosis 
(mucormycetes). Molecular methods are more time-consuming than direct 
microscopy and response to treatment depends on early diagnosis and the 
use of appropriate antifungal agents and, therefore, considered a diagnostic 
challenge [41].

Clinical diagnosis of aspergillosis is often challenging due to nonspecific 
clinical features, and the significance of this is that they are being treated with 
wrong medicines [42, 43]. Therefore, most lesions do not respond well to 
therapy and may become chronic or kill the patient. The prevalence of onych-
omycosis due to Aspergillus sp. varies in different parts of the world. The inci-
dence of onychomycosis by Aspergillus has shown an increase in recent years, 
representing 34–60% of onychomycosis due to non-dermatophyte molds 
[44, 45]. Several Aspergillus spp. have been isolated from human nails such 
as A. fumigatus, A. flavus, A. versicolor, A. niger, A. terreus, A. sclerotiorum, and 
A. nidulans [44]. Aspergillus onychomycosis infections are often misdiagnosed 
and targeted with fluconazole leading to treatment failure and chronicity of 
the disease [46].

Over 3 million cases of chronic pulmonary aspergillosis have been esti-
mated to occur globally each year, and 10 million cases of fungal asthma 
occur yearly, yet a significant proportion remain undiagnosed in resource-
poor communities [3, 47•]. In addition, fungal asthma, caused by airborne 
fungi such as Aspergillus spp., exacerbates asthma in millions of adults and 
children [48, 49]. Limited diagnosis or misdiagnosis and poor estimates of 
disease morbidity result in the true burden of disease not being fully known 
[50]. In pulmonary aspergillosis, the rate of misdiagnosis due to nonspecific 
clinical findings and atypical radiological manifestations is up to 73% [51]. 
Previous study showed that chronic pulmonary aspergillosis (CPA) can be 
diagnosed as bacteriologically negative pulmonary tuberculosis (TB) [52]. 
This has been attributed to lack of awareness and limited access to Aspergillus-
specific IgG testing and CT imaging in India. In 29 to 45% of aspergillosis 
cases, ABPA are often confused with pulmonary TB, and patients receive many 
doses of anti-tuberculosis drugs before diagnosis are performed [53].

Patients with severe COVID-19 pneumonia are susceptible to secondary 
viral, bacterial, and fungal infections due to diffuse alveolar lung damage 
and dysregulated immune response [54–56]. Early diagnosis of these co-
infections is important in order to initiate appropriate antimicrobial therapy 
[57]. Coronavirus disease (SARS-CoV-2, COVID-19)–associated pulmonary 
aspergillosis (CAPA) is a syndrome affecting COVID-19 patients with acute 
respiratory distress syndrome (ARDS) requiring intensive care in intensive 
care units (ICUs), with incidence rates ranging from 3.8 to 33.3% [58], and 
thus, these diagnostic variations are attributed to differences in the patient 
populations and CAPA. The diagnosis of CAPA is complex due to the com-
monly observed atypical radiological features, the lack of established host 
factors, and the difficulty in obtaining mycological evidence due to the low 
sensitivity of serum galactomannan in CAPA [59, 60]. Early cases of CAPA 
were diagnosed postmortem [61], and most patients with severe COVID-19 
pneumonia are often too severely sick and hemodynamically unstable to 
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undergo invasive diagnostic procedures such as bronchoscopy and lavage or 
lung biopsy. Furthermore, such procedures are contraindicated in COVID-19 
patients due to the high risk of generating aerosols that are harmful to both 
patients and healthcare workers [62, 63].

Invasive pulmonary aspergillosis was diagnosed in 23% of critically ill 
patients with H1N1 viral infection, a median of 3 days after ICU admission, 
and corticosteroid use was found to be an independent risk factor for this 
superinfection [64]. Influenza was identified as an independent risk factor 
for patients diagnosed with invasive pulmonary aspergillosis and, thus, was 
associated with high mortality [65]. Previously, patients were often misdi-
agnosed with rhinocerebral aspergillosis, and invasive aspergillosis was also 
misdiagnosed, which was confused with a malignant disease [66]. Further-
more, image features of sino-orbital aspergillosis are nonspecific and may 
be confused with various orbital pathologies, and most common is an idi-
opathic orbital inflammatory disease [67, 68]. The involvement of the para-
nasal sinuses is usually a helpful clue in diagnosis, although it may not be 
present in certain cases; for example, concomitant sinus disease has been 
reported in 60–90% of cases in previous literature [69]. Orbital aspergil-
losis has also been misdiagnosed several times as malignancy [70, 71], optic 
neuritis [72], orbital apex syndrome [73], and typical bacterial cellulitis with 
orbital abscess [74].

Cross talk between clinical and environmental antifungal 
resistance Aspergillus fumigatus

The extensive application of fungicides containing active ingredients such as 
azoles and their interminable distribution in the environment are the link 
between clinical and environmental AFR strains of A. fumigatus [73, 74, 75••] 
(Fig. 1). In addition, recent studies have shown that AFR A. fumigatus strains 
in patients with invasive aspergillosis arise from environmental sources rather 
than through de novo mutation and selection in patients during antifungal 
drug treatment [24, 76, 77]. Several ecological hotspot niches contain AFR 
A. fumigatus strains, which includes flowerbeds, compost, leaves, seeds, soil, 
paddy fields, hospital environments, and hospital air samples [75, 78].

Clinically isolated strains have shown cross-resistance to voriconazole, 
posaconazole, itraconazole, and six triazole fungicides extensively used in agri-
culture, contributing to the widespread dissemination of multidrug-resistant 
pathogenic fungi in patients and hospitals [79]. While horizontal gene transfer 
is an important mechanism for the spread of antibiotic-resistant genes among 
fungal pathogens, conducting such a study is imperative because it has only 
been studied in bacteria. However, once multidrug-resistant genotypes merge in 
fungal pathogens, such genotypes can spread very quickly to other geographical 
regions and ecological niches through vegetative cells and airborne spores [80, 
81]. Previous studies from several countries have shown that clinical strains of 
AFR A. fumigatus are associated with the use of the mentioned fungicides in 
agriculture and that these resistant strains have identical mutations of TR34/
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L98H and TR46/Y121F/T289A clones have been found worldwide from both 
environmental and clinical sources [81, 82]. AFR A. fumigatus with the TR34/
L98H mutations was identified in the environment of Columbia [83], Portugal 
[84], Thailand [85], Netherlands [86], and the USA [77]. Clinically isolated 
strains have showed cross-resistance to voriconazole, posaconazole, itracona-
zole, and six triazole fungicides extensively used in agriculture, contributing 
to the widespread dissemination of multidrug-resistant pathogenic fungi in 
patients and hospitals [79].

Fig. 1   Possible routes of prevalence of antifungal-resistant Aspergillus fumigatus from the environment to the clinical 
health system through human inhalation. Application of chemical azole fungicides similar to medical azoles in an environ‑
ment may result in the selection of azole-resistant A. fumigatus strains in the environment. Therefore, azole-susceptible 
individual may develop azole-resistant infections after inhaling these already azole-resistant strains. In the clinical health‑
care system, azole-resistant A. fumigatus develops in immunocompromised individuals receiving long-term azole therapy for 
chronic aspergillosis. Figure created with http://​biore​nder.​com.
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Mode of action and mechanisms of resistance

The mode of action (MoA) of all major groups of antifungal agents such 
as azoles, echinocandins, and polyenes is similar, as they regularly influ-
ence cell structure and rigidity by interacting with cell wall or cell membrane 
components (Fig. 2A). Azoles are classified as either imidazoles or triazoles, 

Fig. 2   Schematic representation showing the mode of actions of the primary antifungal drug classes in a fungal cell (A) 
and the known mechanisms of antifungal drug resistance in a fungal cell (B)—number (1) refers to mutations in Fks1/2 
that inhibit echinocandins from binding and blocking the drug target 1,3-β-d-glucan synthase, (2) mutations in Erg11 that 
leads to overexpression of drug target lanosterol demethylase (LD) protein, (3) mutations in Cyp51A that inhibit azoles 
from binding and blocking LD, (4) increased efflux activity or transporter expression, e.g., ATP-binding cassette (ABC) or 
major facilitator superfamily (MFS) transporters, (5) ergosterol reduction, and (6) changes in ploidy. Figure created with 
PowerPoint in http://​micro​softo​ffice.​com.
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which targets ergosterol biosynthetic pathway in fungal cells by inhibiting 
the cytochrome P450-dependent enzyme and lanosterol demethylase (LD), 
which is encoded by the Erg11 and Cyp51 genes [87, 88]. The LD enzyme 
plays an essential role in the synthesis of ergosterol; inhibition of the enzyme 
results in the accumulation of sterol precursors and 14α-methylated sterols 
in the fungal cell membranes [89, 90]. This means that azole exposure in 
the fungal cells leads to a reduction in ergosterol, altered plasma membrane 
structure, leakage of cell contents, increased cell permeability, and impaired 
growth [91, 92]. Therefore, it is important that azoles effectively bind to fun-
gal lanosterol 14α-sterol-demethylase without affecting drug metabolism in 
the host. Echinocandins have a distinctive mode of action by inhibiting β-1-3-
glucan synthase, which leads the breakdown of glucans that are important for 
cell wall components of several fungi [93]. Finally, polyenes have an unusual 
mode of action compared to other antifungal drug classes, as they do not 
bind to a specific enzyme, but instead interact with an important molecule—
ergosterol, creating channels in the fungal cell membrane and killing cells by 
allowing ions and other cellular components to escape [94••].

Resistance mechanisms of AFR can be either intrinsic or acquired [95, 
96]. Intrinsic resistance includes inherent resistance to antimicrobial drugs; 
for example, A. fumigatus [97] and other Aspergillus sp. [98] are intrinsically 
resistant to fluconazole. In contrast, acquired resistance is usually a result of 
exposure to antimicrobial selective pressures and can be caused by mutations, 
overexpression of resistance gene products, and/or genome rearrangements 
[99, 100••] (Fig. 2B). Furthermore, several resistance mechanisms of AFR in 
fungal strains may be because of upregulation of drug efflux and resistance 
genes or mutation [101], as the efflux pumps are transmembrane proteins 
that can efficiently transport drugs outside of the cell, thereby decreasing 
intracellular drug concentrations [102, 103]. In addition, overexpression due 
to upregulation of Erg11/Cyp51A genes that encode efflux transporters results 
in overexpression of these proteins [104]. Finally, mutations in the amino 
acid sequence of drug targets can also lead to resistance [105]. The most dis-
tinctive resistance mechanisms to AFR include the alterations in aneuploids 
and ergosterol synthesis. For instance, aneuploids are cells that have more or 
fewer chromosomes than the usual number [106, 107] and have recently been 
linked to azole AFR [108, 109]. The reduction of ergosterol synthesis through 
changes in expression or mutation has been shown to result in resistance to 
polyenes and amphotericin B [94].

Collaborative One Health approach for antifungal resistance 
Aspergillus fumigatus

A collaborative One Health approach that includes contributions at local, 
regional, national, and global levels could help manage AFR in Africa. 
Human, animal, and environmental health are closely linked, and respond-
ing to the threat of AFR requires the concerted efforts of all stakeholders 
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such as mycologists (clinical, veterinary, and plant), farmers, and fungicide 
manufacturers as well as policymakers [110•].

Engaging employees from different sectors will change institutional 
and sociocultural beliefs to address this threat. Raising awareness through 
stakeholder networking will significantly reduce the risk and burden of AFR, 
thereby preserving the efficacy of AFR drugs like azole for clinical use [81]. 
The primary prevention and control measures for AFR include community 
engagement through media advertising (radio, television, or social media) 
and farmer meetings within the farm settlements. Therefore, education and 
dissemination of information on the effects of excessive and excessive use 
of azole fungicides on human, animal, and environmental health will be of 
significant benefit.

By bridging knowledge gaps about the impacts of fungicides and agricul-
tural practices (composting), indiscriminate practices are harnessed. Infor-
mation such as the effectiveness of applying low fungicide doses, aerating 
composting, rotating, or mixing azole fungicides with another fungicide with 
different modes of action limits resistance, reduces the development of azole 
resistance, and prolongs the benefits of azole [111, 112]. Education about the 
use of fungicides to prevent disease rather than promote plant growth is an 
alternative community orientation strategy.

Establishing antifungal stewardship in public health and the environment 
will improve and promote the appropriate use of azole and limit the risk 
of cross-resistance [113]. This is achieved by regulating the production and 
sale of fungicides and obtaining approval before bringing new fungicides to 
market. In addition, azole fungicides could be withdrawn from the market 
or replaced by another fungicide with a different mechanism of action or 
structure and fungicides with the same mode of action as medicinal azole 
will not be approved. Likewise, avoiding the use of fungicides in gardening or 
ornamental plant cultivation minimizes harmful effects and reduces the risk 
of resistance development. In addition, guidelines on dosage and frequency 
of fungicide application and breeding of resistant plants will limit the risk of 
cross-resistance and prevent dependence on fungicides [81].

In Africa, surveillance data on AFR is limited, and the prevalence of AFR 
is still underestimated. Therefore, collaboration between different sectors is 
urgently needed to enable informed decision-making, advocacy, and poli-
cymaking in rationalizing the available medical azole against azole resist-
ance. Coordinated data sharing provides high-quality data to fill surveillance 
gaps. Creating an efficient standardized data collection registry requires the 
commitment of all stakeholders such as mycologists (clinical, animal, and 
plant), environmentalists, and government authorities. The data will increase 
knowledge and help determine the incidence of AFR across countries and 
regions. Therefore, addressing the extent of azole resistance in Africa cannot 
be emphasized due to the unavailability and inaccessibility of alternative 
therapies.

Interdisciplinary surveillance between researchers and stakeholders should 
be promoted. Multinational studies on AFR and discovering other poten-
tial resistance hotspots in Africa will generate data and solutions useful for 
public health interventions. In addition, the interlaboratory collection of 
Aspergillus strains will contribute to the knowledge of AFR incidence through 
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collaboration with equipped clinical, local, regional, and reference labora-
tories with the capacity for susceptibility testing within a country or outside 
the African region. Regional data collection provides local data for informed 
planning and data-driven decisions within a community or place that are of 
value to a country. Finally, the lack of laboratory capacity to perform antifun-
gal susceptibility testing (AFST) in most of our clinical laboratories requires 
collaboration with international organizations in capacity building to bridge 
this disparity.

Future perspective

The review studies described here have provided valuable insights into 
many aspects surrounding AFR A. fumigatus and collectively reported cur-
rent approaches that could potentially mitigate the pathogen. However, the 
upsurge needs for improved treatment, and management of aspergillosis fun-
gal pathogens is an ongoing challenge [6, 30, 114]. Special attention should 
be considered to applying new approaches such as drug repurposing, whole-
genome sequencing, and RNA-based technology. Therefore, it is paramount 
to advance our understanding by deciphering the AFR A. fumigatus.

Drug repurposing

Development of repurposed drugs was essentially based on conventional 
drug delivery, consisting of de novo identification and new molecular units 
[115]. It is a time-consuming and an expensive process with a high risk of 
error [116, 117]. However, modern omics technology coupled with systems 
biology and high-throughput drug screenings enables a novel approach to 
drug repositioning in mitigating human diseases [118, 119]. Considering the 
repurposing of drugs to treat emerging diseases, this is a tremendous advan-
tage when certain drugs are not yet available or developed. One of the major 
challenges in the global fight against infectious diseases is the inconsistent 
occurrence of diseases and the lack of treatment options for rare diseases, like 
the novel coronavirus disease (COVID-19) [120, 121] and currently aspergil-
losis in COVID-19 patients and individuals who have recovered from COVID-
19 [122, 123].

The pathway to patient-specific personalization of drugs is important in 
the advancement and treatment of aspergillosis since the efficacy of drugs can 
be very dependent on different gene profiles because of the heterogeneity of 
human diseases [124, 125]. Human diseases are expressed through complex 
mechanisms that can be ascertained from several sources such as genetic 
aberrations, infectious diseases, and degenerative diseases [126]. In general, 
diseases often involve many intricate signaling cascades that vary greatly in 
specific individuals [127]. Individuals in different human populations have 
specific sets of inherited or non-inherited genetic abnormalities that can make 
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certain individuals less responsive or unresponsive to common treatments 
or drugs [128]. In addition, registered drugs may be worthless to a particular 
individual if a specific drug target is missing and may not elicit the general 
response to a particular drug [129]. Therefore, it is crucial for drug personali-
zation to reduce the lack of drug efficacy and drug repurposing.

Whole‑genome sequencing

Establishing important analytical approaches to understand the acquisition 
of AFR A. fumigatus in Africa is fundamental to mitigating and controlling 
invasive fungal infections in patients and clinical environments. Regarding 
the advent of whole-genome sequencing (WGS) and its accessibility to the 
scientific domain, new diagnostic assessments using high-throughput DNA 
sequencing of next-generation sequencing (NGS) approach can provide a 
significant alternative for diagnostics and establish knowledge of fungal bio-
diversity for epidemiological purposes [114, 130]. This technique has been 
revolutionized and is currently being used to study the association between 
various fungal strains isolated from immunocompromised patients when a 
cluster of cases occurs in order to comprehend disease outbreaks. It provides 
large sample sizes, allows evaluation of mutation frequencies that correlate 
with resistance, and identifies the most dominant community. For example, 
the successful studies on hospital outbreaks of aspergillosis in immunocom-
promised patients [131] and in transplant patients were attained using NGS 
analysis [132, 133•]. In addition, studying the correlation of the sequence 
of genes associated with resistance in fungal and clinical environmental iso-
lates showing resistance requires understanding how the mutation may affect 
cell composition linked to drug susceptibility [100]. Another complementary 
approach is to examine the mechanisms of antifungal resistance with less 
susceptible strains and higher minimal inhibitory concentration (MIC) to a 
drug, compared to the control [134].

RNA‑based technology

The last decade has produced led to an increase in the number of molec-
ular techniques available to understand the function of genes involved in 
pathogenesis. However, RNA interference (RNAi) and clustered regularly 
interspaced short palindromic repeat (CRISPR)-associated protein (Cas-9) 
(CRISPR-Cas9)-based technology are the leading approaches that can pro-
vide valuable insights into aspergillosis [135, 136], its associated pathogens 
and, thus, have the potential to uncover new and interesting biological and 
clinical information.

RNA interference pathways are highly conserved in eukaryotes to nega-
tively regulate gene expression by short RNAs or small non-coding RNAs 
(sRNAs) [137]. The established RNAi pathway produces double-stranded 

24 Review



RNA (dsRNA) by RNA-dependent RNA polymerases, which are eventu-
ally processed by Dicer enzymes to produce the sRNAs (Fig. 3). Thus, these 
endogenous RNAs are used to suppress different target sequences [138, 139•]. 
RNAi is initiated by introducing a dsRNA, which is homologous to the target 
sequence. The dsRNA is processed to 21–25 nucleotides by an endonucle-
ase known as DICER. One strand of the resulting small interfering RNAs 
(siRNA) associates with the effector protein, Argonaute, which then binds 
and degrades target mRNA in a homology-dependent manner, silencing gene 
transcript levels.

CRISPR/Cas-9 mechanism generates specific double-stranded pieces at 
the target locus that trigger DNA repairs [140•] (Fig. 4). The designed single 
guide RNA (sgRNA) identifies the target sequence in the gene of interest 
through a complementary base pair. While the Cas-9 nuclease creates double-
stranded pieces at a location, three base pairs upstream of the protospacer 
adjacent motif, then the double-stranded piece becomes cellular repaired 
either by knockouts (KO) through non-homologous end joining or knock-
ins (KI) by homologous recombination. Until date, the Aspergillus genus of 
the A. fumigatus offers the largest range of molecular genetic tools for study-
ing gene function [141, 142]. Other related aspergillosis-causing genera lack 
similar genetic toolkits, and only the RNAi technology was accessible in A. 
oryzae [143]. Fortunately, this grim situation is changing owing to the exten-
sion of CRISPR-Cas9 technological approach against relevant medical fungi. 

Fig. 3   Schematic representation of RNAi-mediated silencing mechanism in fungi. Figure created with PowerPoint in Micro‑
soft http://​office.​com.
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However, the methods should be optimized as they only work in genes that 
generate a selectable phenotype upon mutation, making their widespread 
use impossible. In light of this, a promising plasmid-free CRISPR-Cas9-based 
method was established that produces stable transformants in Candida [144], 
Cryptococcus [145], and Aspergillus sp. [146] which can facilitate a rapid pro-
cess by allowing the targeted mutation of any gene and the use of microho-
mology repair templates [147].

Special attention should also be given to deciphering the mechanisms 
that confer intrinsic and acquired resistance to antifungal drugs, in particular 
which genes of Aspergillus fungi are expressed during aspergillosis. It is worth 
noting that the existing circumstances hamper the progress of treatments 
to tackle the disease, as advances made in one species are not confirmed 
in detail in other species or genera. This vital question has been very chal-
lenging to answer for technical reasons. Precisely, when isolating total RNA 
from a host that has been infected with any microbe, thus, the signal from 
host transcripts usually overcomes the signal from the infecting microbe, and 
the pathogen RNA consists of only a tiny fraction, about 0.1% of the total 
amount of RNA extracted [148, 149]. The successful improvement approaches 
to screen for an enrich fungal transcript from total RNA samples obtained 
from infected mouse tissues have been applied in vivo in mouse infection 
models of A. fumigatus [150, 151]. Therefore, applying careful enrichment 
RNA transcript methods to investigate the expression of AFR genes on vari-
able isolates of A. fumigatus in mouse models of aspergillosis could certainly 

Fig. 4   Schematic representation of CRISPR/Cas9-mediated gene editing mechanism in fungi. Figure created with http://​
biore​nder.​com.
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elucidate important virulence genes that could potentially be useful as diag-
nostic biomarkers.

The current innovative approaches to understanding and mitigating 
the function of genes involved in pathogenesis are RNAi and CRISPR-
Cas9-based technology [136]. Thus, these approaches have the potential 
to uncover new and interesting biological and clinical information of 
invasive fungal pathogens. Nonetheless, it is crucial that we use compre-
hensive research tools to combat antifungal pathogens. Therefore, it is of 
crucial importance to use such techniques in the mitigation and control 
of AFR A. fumigatus in Africa, thereby improving the treatment of aspergil-
losis disease.

Conclusions

The AFR A. fumigatus is widely recognized as a threat to humans throughout 
the world and the risk posed by this emerging pathogen across Africa, as well 
as the level of antifungal exposure in the environment and its impact on AFR 
in humans are understudied. Given the incomplete removal or inactivation 
of antifungal agents during agricultural practices and the direct application of 
effective antifungal concentrations to agricultural products, the environmental 
dimension of AFR requires greater attention since commercial and subsistence 
agriculture is generally practiced in African countries. The potential and expec-
tation of insight into the recent advances and future perspective strategies can 
improve the effectiveness of emerging antifungal-resistant pathogen in Africa, 
and thus, it is critical to invest in reducing the burden and enhancing the clinical 
outcome of diseases.

To combat AFR A. fumigatus in Africa, it is important to improve cur-
rent diagnostic tools (e.g., antifungal drug susceptibility) and the avail-
ability of these tests in poor and disadvantaged settings. In addition, the 
use of next-generation and metagenomic sequencing has the potential to 
enable screening of this pathogen. Community engagement and advocacy 
to improve access to safe use of azole fungicides and effective therapy 
with triazoles in clinical settings are needed. However, a better under-
standing of the resistance mechanisms of this fungal pathogen is promis-
ing for the development of new strategies to target this pathogen while 
strengthening the host immune response. Comprehending this resistance 
mechanism will facilitate the high-throughput screening applications, 
with the CRISPR/Cas9 system and RNAi silencing–mediated approach 
are at the forefront of this development on inhibiting known genes asso-
ciated with AFR resistance. Ultimately, if these novel high-throughput 
approaches are used to combat the invasive AFR pathogen A. fumigatus 
in Africa, it can be expected that further improvements in this technology 
will be achieved, and some of the challenges such as efficiency will be 
overcome in the future.
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