
Vol.:(0123456789)

Curr Treat Options Infect Dis (2023) 15:27–52 

Dengue: Update on Clinically 
Relevant Therapeutic Strategies 
and Vaccines
Monica Palanichamy Kala1 
Ashley L. St. John1,2,3,4*,  
Abhay P. S. Rathore4*, 

Address
*,1Program in Emerging Infectious Diseases, Duke-National University of Singapore 
Medical School, 8 College Rd., Level 9, Singapore 169857, Singapore
 Email: ashley.st.john@duke-nus.edu.sg
2Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, 
National University of Singapore, Singapore, Singapore
3SingHealth Duke-NUS Global Health Institute, Singapore, Singapore
*,4Department of Pathology, Duke University Medical Center, 207 Research Rd, Durham, 
NC 27705, USA
 Email: abhay.rathore@duke.edu

Keywords Dengue fever · Vascular leakage · Therapeutics · Vaccines · Metabolic disorders · Mast cells

Opinion statement

Dengue viruses (DENV) continue to circulate worldwide, resulting in a significant burden 
on human health. There are four antigenically distinct serotypes of DENV, an infection 
of which could result in a potentially life-threatening disease. Current treatment options 
are limited and rely on supportive care. Although one dengue vaccine is approved for 
dengue-immune individuals and has modest efficacy, there is still a need for therapeutics 
and vaccines that can reduce dengue morbidities and lower the infection burden. There 
have been recent advances in the development of promising drugs for the treatment of 
dengue. These include direct antivirals that can reduce virus replication as well as host-
targeted drugs for reducing inflammation and/or vascular pathologies. There are also new 
vaccine candidates that are being evaluated for their safety and efficacy in preventing 
dengue disease. This review highlights nuances in the current standard-of-care treatment 
of dengue. We also discuss emerging treatment options, therapeutic drugs, and vaccines 
that are currently being pursued at various stages of preclinical and clinical development.
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Introduction

Dengue fever (DF), caused by the dengue virus 
(DENV), is the world’s most prevalent and impor-
tant arboviral infection. It is estimated that nearly 
390 million infections occur annually, of which 96 
million manifest clinically [1]. DENV belongs to the 
genus Flavivirus, which also comprises several other 
clinically important human pathogens, such as Zika, 
Japanese encephalitis, West Nile, and Yellow Fever 
viruses, among others. The DENV genome consists 
of a single-stranded positive-sense RNA that encodes 
for three structural (capsid, prM/M, and E) and seven 
non-structural proteins that are translated during the 
virus replication cycle [2]. The virus is spread by an 
infected mosquito bite during a blood meal and exists 
in both sylvatic and urban ecosystems [3]. The sylvatic 
cycle of DENV involves virus transmission between 
non-human primates (NHP) and mosquitos prevalent 

in the forest [4, 5] while in the urban cycle of transmis-
sion, the virus is maintained within human popula-
tion aided by urban dwelling mosquitos such as Aedes 
aegypti [6]. As the geographical distributions of these 
vectors are expanding it is likely that DENV will spread 
further [7]. There are 4 serotypes of DENV (DENV1-
4), which makes it likely that an individual will be 
exposed to the virus multiple times in their lifetime 
[8]. Latest models of dengue transmission estimate 
that 4 million cases require hospitalization each year 
[9] and account for an annual estimated cost of US 
$8.9 billion globally [10]. With an increase in urbani-
zation and climate change supporting the spread of 
the mosquito vector, some models predict an increas-
ing risk of DENV transmission, potentially impacting 
6.1 billion people by 2080 [11].

Dengue clinical course

The clinical course of DF begins with common flu-like symptoms, including 
fever, nausea, myalgia, and headache [12]. Although DF is a self-limiting mild 
disease, some patients will develop the severe form of the disease, characterized 
by plasma leakage, hemorrhaging, and shock [12]. According to the 2009 WHO 
revised guidelines, dengue disease is categorized as DF, DF with warning signs, 
and severe dengue [13] (Fig. 1). Some of the warning signs include hepatomeg-
aly, abdominal pain, mucosal bleeding, and increasing hematocrit concurrent 
with rapidly declining platelets [13]. In general, there are three phases of dengue 
disease—the febrile phase when viremia is high, the critical phase when fever 
and viremia are resolving, but the patient may experience thrombocytopenia 
and or plasma leakage that manifests as hemoconcentration and fluid accumu-
lation in tissues in severe cases, and, finally, the convalescent phase with fluid 
reabsorption and recovery [13] (Fig. 1). During the critical phase, if vascular 
complications and hemorrhage occur, the disease may also be called dengue 
hemorrhagic fever (DHF). If left untreated, patients with DHF can develop mul-
tiorgan failure and shock, known as dengue shock syndrome (DSS) [13]. Case 
fatality rates (CFRs) vary among countries but can be as high as 10–15% in some 
and < 1% in others, depending mostly on access to and quality of healthcare 
[14, 15].
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Dengue risk factors

Secondary heterologous dengue infection is the most well-established risk fac-
tor for severe dengue. This is thought to be attributable to antibody-dependent 
enhancement of infection (ADE), which occurs when viruses bound to sub-
neutralizing antibodies are opsonized by immune cells like dendritic cells, 
monocytes/macrophages through Fc receptor, which then results in increased 
virus production [8]. Moreover, cross-reactive non-neutralizing heterotypic 
antibodies can also lead to increased antibody dependent cellular cytotoxicity 
(ADCC) and excessive activation of mast cells, resulting in release of vasoactive 
mediators that have been shown to promote dengue vascular pathology [16, 
17•, 18]. Other risk factors (reviewed elsewhere [19]) include host factors like 
pre-existing metabolic diseases, age, gender, and HLA type; and may also include 
viral factors like viral load, NS1 antigenemia. Healthcare quality and access also 
influence the risk for disease progression.

Fig. 1  The clinical management and possible treatment options for dengue disease. Diagram was made using biore nder. com

https://biorender.com
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Updates in dengue supportive care

In the absence of targeted dengue therapeutics, good supportive care, 
with treatment for symptom management and fluid administration, is the 
cornerstone of clinical management of dengue (Fig. 1). WHO guidelines 
recommend acetaminophen or paracetamol for antipyretics, with a recom-
mended dose of 10 mg/kg/dose. The maximum dose for adults is 4 g/day 
and a frequency of not less than 6 h [13]. However, a recent double-blind, 
randomized, placebo controlled clinical trial (NCT02833584) raises con-
cerns on the safety and efficacy of paracetamol in dengue patients [20•]. 
The study found that compared to placebo, administering 500 mg of par-
acetamol every 4 h (median dose was 1.5 g/day) when body temperature 
exceeded 38 °C had significantly higher rate of transaminase elevation 
(22% vs 10% in placebo; incidence rate ratio 3·77, 95% CI 1·36 − 10·46, 
p = 0·011). Considering that hepatic dysfunction is a common complica-
tion of dengue and elevated liver transaminases are consistently associated 
with severe dengue [21–24], this trial raises concerns of hepatotoxicity of 
paracetamol, even at therapeutic doses, in a situation when the hepatocytes 
are already stressed [25]. Moreover, paracetamol intake did not alter mean 
and maximum body temperatures, duration of fever, length of hospitaliza-
tion, analgesic intake, and mean and maximum pain score, compared to 
the placebo group, suggesting a lack of defervescent or analgesic benefit, 
although the study was under-powered for assessment of this secondary 
outcome. Since the current WHO guidelines contraindicate aspirin and 
other non-steroidal anti-inflammatory drugs (NSAIDs) due to their anti-
platelet activity and bleeding risk and paracetamol is the only available 
therapeutic option, caution should be exercised when prescribing paraceta-
mol and transaminase levels should be monitored.

Judicious fluid administration to ensure adequate tissue perfusion during 
the critical phase of illness is the other arm of mainstay dengue management. 
Oral rehydration with fluids other than plain water such as milk, fruit juice, 
oral rehydration solution (ORS), rice or barley water, and isotonic electro-
lyte solution is recommended in cases of mild dengue fever in patients with 
able oral intake [26, 27]. Hospitalization and intravenous (IV) fluid therapy 
are recommended in cases of insufficient oral intake, emesis, a continuous 
rise in hematocrit (HCT) of 10–20% despite oral rehydration, development 
of warning signs, and in case of impending shock/shock [26]. Randomized 
clinical trials (RCTs) have evaluated both crystalloids and colloids for pedi-
atric patients with DSS [28–30] and found no difference between the treat-
ment groups with regards to the need for rescue resuscitation with colloids or 
shock recurrence [28]. However, in the case of profound shock when patients 
have pulse pressure < 10 mm Hg, colloids are preferred since they have been 
shown to restore cardiac index and hematocrit more rapidly than crystal-
loids [28–30]. Correspondingly, current WHO guidelines recommend vol-
ume replacement with isotonic crystalloid solutions as 10 ml/kg over 1 h 
for patients with compensated shock and 20 ml/kg bolus over 15 min for 
profound decompensated, hypovolemic shock, followed by a tapering fluid 
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regimen supplemented with bolus colloid solutions as necessary [26, 27]. 
However, there have been limited clinical trials with evidence to support 
the current WHO fluid resuscitation regimen recommendations for patients 
during the critical phase of the illness. This is concerning, particularly in 
the evidence of observational studies reporting longer duration of IV fluid 
therapy, greater amounts of IV fluid therapy, and IV fluid bolus as independ-
ent risk factors for respiratory distress with fluid accumulation [31], a poten-
tial iatrogenic complication of dengue supportive treatment. Therein, fluid 
regimens that taper and restrict fluids as needed during the recovery phase of 
dengue are necessary to prevent fluid overload complications (Fig. 1). Cur-
rently, several RCTs have been registered to evaluate WHO-recommended 
fluid regimens for dengue patients with warning signs and for patients in the 
early stages of DHF: CTRI/2019/09/021026 aims to compare need-based vs 
guidelines-based fluid administration in dengue patients with warning signs; 
CTRI/2020/01/022694 aims to evaluate respiratory distress in children with 
dengue warning signs receiving current WHO-recommended fluid regimen vs 
an alternate tapering fluid regimen. Administration of albumin in crystalloid 
refractory shock was associated with shock resolution with reduced fluid over-
load symptoms in an observational study [32]. RCTs (CTRI/2018/03/012781 
and NCT04076254) have been registered to evaluate the efficacy of albumin 
administration in addition to normal (0.9%) saline for effective fluid resus-
citation of severe dengue patients. A multi-center double-blind parallel group 
RCT has also been registered (SLCTR/2022/003) in Sri Lanka to evaluate the 
effectiveness of Dextran 40 compared to 0.9% saline in preventing dengue 
shock in the early leakage phase of DHF. Results from these on-going trials 
will be important to identify the most effective fluid therapy with a reduced 
risk of iatrogenic complications for dengue case management. Additional 
considerations for fluid replacement have been reviewed elsewhere [33].

In the context of hypotensive shock without a rise in hematocrit, signifi-
cant internal bleeding should be suspected. Current guidelines are to trans-
fuse aliquots of 10 ml/kg of whole blood or 5 ml/kg of packed red blood 
cells and monitor the clinical response and posttransfusion hematocrit [26, 
27]. Thrombocytopenia (platelet count below 100 ×  109/L) is a hallmark of 
dengue infection and has been shown to have various etiologies including 
enhanced platelet clearance [34•, 35]. Low  platelet levels are associated with 
severity of dengue disease [34•, 35–37] since thrombocytopenia can precipi-
tate hemorrhage. As per current guidelines, strict bed rest, and avoidance of 
NSAIDs or any source of trauma have been the only courses of action advised 
for patients with severe thrombocytopenia (platelet count below 20 ×  109/L) 
since a RCT (NCT01030211) found that prophylactic platelet transfusion was 
not superior to supportive care in preventing bleeding and, in fact, increased 
adverse reactions [26, 38]. As such, effective drugs to treat thrombocytope-
nia are needed. A recent phase II open-labeled RCT evaluating the efficacy 
of eltrombopag to correct thrombocytopenia in moderate to severe dengue 
patients with platelet counts below 100 ×  109/L (SLCTR/2019/037) shows 
potential [39•]. Administration of 25 mg of eltrombopag, a thrombopoietin 
receptor agonist that stimulates megakaryopoiesis [40], in a short regimen for 
three days, was shown to significantly augment platelet recovery and increase 
platelet count to above the lower normal limit (LNL) (150 ×  109/L) in 91% of 



32  

patients on day-7 post enrollment, compared to 55% in the control group. 
Moreover, eltrombopag abated bleeding manifestations in 93% of grade II 
DHF patients by day-7, while intermittent bleeding with low platelet counts 
was still observed in 40% of patients in the control group. Eltrombopag also 
had a favorable safety profile with no thrombosis and no increase in adverse 
events (vomiting, diarrhea) compared to the control group. These results 
suggest that eltrombopag may be a therapeutic option for thrombocytopenia 
and for abating bleeding manifestations in dengue patients.

It is to be noted that previous interventional [38, 41] and retrospective 
studies [42] have shown that increasing platelet counts via transfusion neither 
prevented the development of severe bleeding nor shortened time to cessation 
of bleeding. Analysis of patient samples and supporting in vitro studies sug-
gest that this could be due to DENV infection and the subsequent activation 
and consumption of platelets, resulting in increased thrombus formation 
[43]. Therefore, increasing platelet count may not necessarily contribute to 
bleeding resolution and could result in increased intravascular coagulation 
since platelet activating factors may still be present in the circulation [44]. 
More trials are needed to understand the clinical efficacy of adding platelets, 
including through mechanisms to increase platelet production. Specifically 
the rate of prevention of severe bleeding, rate of bleeding resolution, and 
normalization of other coagulation abnormalities reported during DHF [44] 
should be evaluated.

Desialylation or removal of sialic acid on platelet membrane by endog-
enous neuraminidase, induced by binding of von Willebrand factor (VWN) 
to platelets, has been suggested as possible mechanism for increased platelet 
clearance in dengue patients [45]. Based on this, oseltamivir, a neuraminidase 
inhibitor that is commonly administered for influenza [45] was tested as a 
potential therapeutic for thrombocytopenia in a phase 2, TOTO trial (Treat-
ment Of Thrombocytopenia with Oseltamivir in acute dengue virus infection: 
a randomized, placebo controlled, multicenter trial) conducted in Indonesia 
(ISRCTN35227717) [46]. Unfortunately, the drug was found to be ineffective 
for both platelet recovery and preventing plasma leakage in patients with 
acute dengue with moderate to severe thrombocytopenia. This indicates that 
while many drugs may show potential as dengue therapeutics in preclinical 
development, proof of concept testing with clinical trials with predefined 
primary and secondary clinical outcomes is important.

Development of therapeutics targeting dengue virus

Considering that a higher viral burden could promote severe dengue disease 
[47, 48], identification of DENV-specific antivirals has been an important 
focus of research for dengue therapeutics. So far, clinical trials with repur-
posed drugs with antiviral activity in pre-clinical studies like balapiravir [49], 
chloroquine [50], lovastatin [51], and celgosivir [52] did not show any effi-
cacy in reducing viremia nor beneficial clinical outcomes. In this section, we 
describe both direct-acting and host factors-targeting antivirals that show the 



33Dengue: Update on Clinically Relevant Therapeutic Strategies and Vaccines Palanichamy Kala et al.

Ta
bl

e 
1.

  
Su

m
m

ar
y 

of
 d

en
gu

e 
th

er
ap

eu
ti

cs
 in

 a
dv

an
ce

d 
st

ag
es

 o
f 

cl
in

ic
al

 t
es

ti
ng

Dr
ug

 n
am

e
Ta

rg
et

Pr
e-

cl
in

ic
al

 d
at

a
Cl

in
ic

al
 d

at
a

Tr
ea

tm
en

t 
op

ti
on

s 
w

it
h 

po
ss

ib
le

 b
en

efi
ts

JN
J-

64
28

18
02

NS
4B

 in
hi

bi
to

r 
th

at
 in

hi
bi

ts
 v

ira
l r

ep
lic

at
io

n
An

ti
vi

ra
l a

ct
iv

it
y 

in
 v

it
ro

 w
as

 s
ho

w
n 

fo
r 

it
s 

an
al

og
, J

NJ
-A

07
. D

ec
re

as
e 

in
 v

ire
m

ia
, v

ira
l 

bu
rd

en
, a

nd
 in

fla
m

m
at

or
y 

cy
to

ki
ne

s,
 a

nd
 

im
pr

ov
ed

 s
ur

vi
va

l i
n 

im
m

un
oc

om
pr

om
is

ed
 

m
ou

se
 m

od
el

 o
f 

DE
NV

 in
fe

ct
io

n 
[5

3•
]

Cl
in

ic
al

 t
ria

ls
 fo

r 
de

ng
ue

 p
ro

ph
yl

ax
is

 in
 

he
al

th
y 

in
di

vi
du

al
s 

(N
CT

05
20

17
94

) 
as

 w
el

l 
as

 fo
r 

de
ng

ue
 t

he
ra

py
 in

 p
at

ie
nt

s 
w

it
h 

co
nfi

rm
ed

 d
en

gu
e 

fe
ve

r 
(N

CT
04

90
69

80
) 

ar
e 

in
 p

ro
gr

es
s

Iv
er

m
ec

ti
n

An
ti

vi
ra

l a
ge

nt
 t

ha
t 

in
hi

bi
ts

 h
os

t 
nu

cl
ea

r 
im

po
rt

 r
ec

ep
to

rs
Re

du
ce

d 
vi

ra
l r

ep
lic

at
io

n 
in

 v
it

ro
 [

56
, 

57
]

Ra
nd

om
iz

ed
 d

ou
bl

e-
bl

in
d 

pl
ac

eb
o-

co
n-

tr
ol

le
d 

tr
ia

l (
n 

= 
20

3)
 s

ho
w

ed
 f

as
te

r 
NS

1 
an

ti
ge

ne
m

ia
 c

le
ar

an
ce

 b
ut

 n
o 

im
pr

ov
e-

m
en

t 
in

 v
iro

lo
gi

ca
l o

r 
cl

in
ic

al
 e

ffi
ca

cy
 

(N
CT

02
04

50
69

) 
[5

8•
]

AT
-7

52
Gu

an
os

in
e 

nu
cl

eo
ti

de
 a

na
lo

g 
in

hi
bi

ti
ng

 N
S5

 
Rd

Rp
 f

un
ct

io
n,

 in
hi

bi
ts

 v
ira

l r
ep

lic
at

io
n

Re
du

ce
d 

vi
re

m
ia

 o
n 

ce
rt

ai
n 

da
ys

 a
nd

 
im

pr
ov

ed
 s

ur
vi

va
l i

n 
im

m
un

oc
om

pr
om

is
ed

 
m

ic
e 

m
od

el
s 

in
fe

ct
ed

 w
it

h 
DE

NV
 [

63
]

Ph
as

e 
1 

(N
CT

05
36

64
39

) 
an

d 
ph

as
e 

2 
(N

CT
05

46
62

40
) 

cl
in

ic
al

 t
ria

ls
 a

re
 in

 
pr

og
re

ss
Do

xy
cy

cl
in

e
Te

tr
ac

yc
lin

e 
cl

as
s 

an
ti

bi
ot

ic
, 

in
hi

bi
ts

 v
ira

l 
en

tr
y 

an
d 

re
pl

ic
at

io
n 

by
 in

hi
bi

ti
ng

 N
S2

B-
NS

3

An
ti

vi
ra

l a
ct

iv
it

y 
ag

ai
ns

t 
al

l f
ou

r 
DE

NV
 

se
ro

ty
pe

s 
in

 v
it

ro
 [

64
]

On
e 

ra
nd

om
iz

ed
 c

lin
ic

al
 t

ria
l (

n 
= 

23
1)

 
sh

ow
ed

 r
ed

uc
ti

on
 in

 in
fla

m
m

at
or

y 
cy

to
ki

ne
s 

an
d 

an
ot

he
r 

ca
se

 c
on

tr
ol

 s
tu

dy
 

(n
 =

 1
20

) 
sh

ow
ed

 f
as

te
r 

pl
at

el
et

 r
ec

ov
er

y,
 

le
uk

oc
yt

e 
co

un
t,

 a
nd

 r
ed

uc
ed

 le
ng

th
 o

f 
ho

sp
it

al
iz

at
io

n.
 C

lin
ic

al
 t

ria
ls

 t
o 

te
st

 e
ffi

-
ca

cy
 o

f 
do

xy
cy

cl
in

e 
as

 a
 d

en
gu

e 
th

er
ap

eu
-

ti
c 

in
 p

ed
ia

tr
ic

 (
CT

RI
/2

01
8/

01
/0

11
54

8)
 

an
d 

ad
ul

t 
(C

TR
I/

20
21

/0
9/

03
66

61
) 

po
pu

-
la

ti
on

s 
ar

e 
on

-g
oi

ng
El

tr
om

bo
pa

g
Th

ro
m

bo
po

ie
ti

n 
re

ce
pt

or
 a

go
ni

st
Ni

l
Ra

nd
om

iz
ed

 o
pe

n-
la

be
l p

la
ce

bo
-c

on
tr

ol
le

d 
tr

ia
l (

n 
= 

10
1)

 s
ho

w
ed

 im
pr

ov
ed

 p
la

te
le

t 
re

co
ve

ry
, 

in
cr

ea
se

d 
pl

at
el

et
 c

ou
nt

, 
an

d 
re

du
ce

d 
bl

ee
di

ng
 m

an
if

es
ta

ti
on

s 
in

 g
ra

de
 

II
 D

H
F 

pa
ti

en
ts

 (
SL

CT
R/

20
19

/0
37

) 
[3

9•
]

U
V-

4B
En

do
ge

no
us

 a
lp

ha
 g

lu
co

si
da

se
 in

hi
bi

to
r

An
tiv

ira
l a

ct
iv

ity
 in

 v
itr

o 
[7

0]
 a

nd
 in

 v
iv

o 
[7

1]
Ph

as
e 

1a
 c

lin
ic

al
 t

ria
l (

NC
T0

20
61

35
8)

 w
it

h 
he

al
th

y 
su

bj
ec

ts
 in

di
ca

te
d 

th
at

 a
 s

in
gl

e 
do

se
 u

p 
to

 1
00

0 
m

g 
of

 U
V-

4B
 w

as
 s

af
e 

an
d 

w
el

l t
ol

er
at

ed
 [

72
]

Za
na

m
iv

ir
Ne

ur
am

in
id

as
e 

in
hi

bi
to

r 
to

 b
lo

ck
 d

es
ia

ly
la

-
ti

on
 o

n 
pl

at
el

et
 m

em
br

an
e

Re
du

ct
io

n 
in

 D
EN

V2
 N

S1
-i

nd
uc

ed
 e

nd
ot

he
lia

l 
hy

pe
rp

er
m

ea
bi

lit
y 

an
d 

va
sc

ul
ar

 le
ak

ag
e 

in
 v

it
ro

 [
73

]

Cl
in

ic
al

 t
ria

l t
o 

te
st

 e
ffi

ca
cy

 a
ga

in
st

 v
as

cu
la

r 
le

ak
ag

e 
(N

CT
04

59
74

37
) 

is
 c

ur
re

nt
ly

 o
n-

go
in

g



34  

Ta
bl

e 
1.

  
(c

on
ti

nu
ed

)

Dr
ug

 n
am

e
Ta

rg
et

Pr
e-

cl
in

ic
al

 d
at

a
Cl

in
ic

al
 d

at
a

VI
S5

13
Pa

n-
se

ro
ty

pe
 a

nt
i-

DE
NV

 m
on

oc
lo

na
l a

nt
i-

bo
dy

Di
m

in
is

he
d 

ci
rc

ul
at

in
g 

in
fe

ct
io

us
 D

EN
V 

in
 

NH
Ps

 [
88

],
 a

nd
 r

ed
uc

ed
 v

ira
l l

oa
d 

w
it

h 
im

pr
ov

ed
 s

ur
vi

va
l i

n 
im

m
un

oc
om

pr
om

is
ed

 
m

ic
e 

m
od

el
s 

of
 D

EN
V 

in
fe

ct
io

n 
[8

7]

Cl
in

ic
al

 t
ria

l i
n 

pr
og

re
ss

 
(C

TR
I/

20
21

/0
7/

03
52

90
)

Ke
to

ti
fe

n
Pr

ev
en

t 
m

as
t 

ce
ll 

de
gr

an
ul

at
io

n 
an

d 
re

le
as

e 
of

 v
as

oa
ct

iv
e 

pr
od

uc
ts

Re
du

ce
d 

va
sc

ul
ar

 le
ak

ag
e 

in
 m

ou
se

 m
od

el
s 

of
 D

EN
V 

in
fe

ct
io

n 
[1

6,
 1

8]
Cl

in
ic

al
 t

ria
l i

n 
pr

og
re

ss
 (

NC
T0

26
73

84
0)

M
on

te
lu

ka
st

Cy
st

ei
ny

l l
eu

ko
tr

ie
ne

 r
ec

ep
to

r 
an

ta
go

ni
st

Re
du

ce
d 

va
sc

ul
ar

 le
ak

ag
e 

in
 m

ou
se

 m
od

el
s 

of
 D

EN
V 

in
fe

ct
io

n 
[1

8]
On

e 
ra

nd
om

iz
ed

 o
pe

n-
la

be
l c

lin
ic

al
 t

ria
l 

(n
 =

 2
00

) 
re

po
rt

ed
 r

ed
uc

ed
 in

ci
de

nc
e 

an
d 

re
la

ti
ve

 r
is

k 
of

 D
SS

 (
na

rr
ow

 p
ul

se
 

pr
es

su
re

 <
 2

0 
m

m
H

g 
an

d 
hy

po
te

ns
io

n 
fo

r 
ag

e)
 [

95
].

 A
 r

an
do

m
iz

ed
, 

do
ub

le
-b

lin
d,

 
pl

ac
eb

o 
co

nt
ro

lle
d,

 s
up

er
io

ri
ty

 t
ria

l 
(N

CT
04

67
34

22
) 

to
 t

es
t 

ef
fic

ac
y 

of
 m

on
-

te
lu

ka
st

 is
 c

ur
re

nt
ly

 o
n-

go
in

g
Ru

pa
ta

di
ne

Du
al

 P
AF

 a
nd

 h
is

ta
m

in
e-

1-
re

ce
pt

or
 a

nt
ag

o-
ni

st
Re

du
ce

d 
va

sc
ul

ar
 le

ak
ag

e 
in

 m
ou

se
 m

od
el

 
of

 D
EN

V 
in

fe
ct

io
n 

[9
4]

Ra
nd

om
iz

ed
 p

la
ce

bo
-c

on
tr

ol
le

d 
tr

ia
l 

(n
 =

 1
83

) 
di

d 
no

t 
sh

ow
 r

ed
uc

ti
on

 in
 le

ak
-

ag
e,

 b
ut

 im
pr

ov
ed

 p
la

te
le

t 
co

un
ts

 a
nd

 
liv

er
 e

nz
ym

e 
va

lu
es

 (
SL

CT
R/

20
14

/0
23

) 
[9

4]
M

et
fo

rm
in

Or
al

 a
nt

i-
hy

pe
rg

ly
ce

m
ic

 a
ge

nt
, 

AM
PK

 a
ct

iv
a-

to
r

An
ti

vi
ra

l e
ff

ec
t 

in
 D

EN
V 

in
fe

ct
ed

 c
el

ls
 

in
 v

it
ro

 [
10

1]
A 

re
tr

os
pe

ct
iv

e 
st

ud
y 

(n
 =

 2
23

) 
sh

ow
ed

 
de

cr
ea

se
d 

ri
sk

 o
f 

se
ve

re
 d

en
gu

e 
w

it
h 

m
et

fo
rm

in
 u

se
 in

 d
en

gu
e 

pa
ti

en
ts

 w
it

h 
di

ab
et

es
 [

10
3•

].
 C

lin
ic

al
 t

ria
l i

n 
pr

og
re

ss
 

(N
CT

04
37

74
51

) 
[1

04
]

Ca
ric

a 
pa

pa
ya

 
le

af
 e

xt
ra

ct
An

ti
-i

nfl
am

m
at

or
y 

ag
en

t,
 a

ug
m

en
ts

 
m

eg
ak

ar
yo

cy
te

 d
ev

el
op

m
en

t 
an

d 
pl

at
el

et
 

fo
rm

at
io

n

Re
du

ce
d 

pr
od

uc
ti

on
 o

f 
pr

oi
nfl

am
m

at
or

y 
cy

to
ki

ne
s 

[1
18

] 
an

d 
in

cr
ea

se
d 

pl
at

el
et

 
co

un
t 

in
 v

iv
o 

[1
19

]

Th
re

e 
ra

nd
om

iz
ed

 c
on

tr
ol

le
d 

tr
ia

ls
 s

ho
w

ed
 

an
 im

pr
ov

em
en

t 
in

 p
la

te
le

t 
co

un
ts

 
[1

06
–1

08
]

Vi
ta

m
in

 E
Un

cl
ea

r 
m

ec
ha

ni
sm

. 
Ca

n 
ac

t 
as

 a
n 

an
ti

ox
i-

da
nt

Ni
l

Ra
nd

om
iz

ed
 p

la
ce

bo
-c

on
tr

ol
le

d 
tr

ia
ls

 
sh

ow
ed

 f
as

te
r 

pl
at

el
et

 r
ec

ov
er

y 
(n

 =
 6

6)
 

[1
14

] 
an

d 
re

du
ce

d 
liv

er
 e

nz
ym

e 
de

ra
ng

e-
m

en
t 

(n
 =

 1
27

) 
(S

LC
TR

/2
01

5/
01

2)
 [

11
3]

Vi
ta

m
in

 D
Un

cl
ea

r 
m

ec
ha

ni
sm

. 
Ca

n 
in

cr
ea

se
 c

al
ci

um
 

av
ai

la
bi

lit
y 

fo
r 

im
m

un
e 

ce
ll 

ac
ti

va
ti

on
Re

du
ce

d 
vi

ra
l r

ep
lic

at
io

n 
an

d 
in

fla
m

m
at

or
y 

cy
to

ki
ne

s 
pr

od
uc

ti
on

 in
 v

it
ro

 [
12

0]
Ra

nd
om

iz
ed

 c
lin

ic
al

 t
ria

l (
n 

= 
12

4)
 s

ho
w

ed
 

re
du

ce
d 

re
la

ti
ve

 r
is

k 
fo

r 
DH

F 
(P

, 
si

gn
ifi

-
ca

nc
e 

fo
r 

tr
en

d 
w

as
 0

.0
58

8)
 [

11
5]



35Dengue: Update on Clinically Relevant Therapeutic Strategies and Vaccines Palanichamy Kala et al.

Ta
bl

e 
1.

  
(c

on
ti

nu
ed

)

Dr
ug

 n
am

e
Ta

rg
et

Pr
e-

cl
in

ic
al

 d
at

a
Cl

in
ic

al
 d

at
a

Vi
ta

m
in

 C
Un

cl
ea

r 
m

ec
ha

ni
sm

. 
Ca

n 
ac

t 
as

 a
n 

an
ti

ox
i-

da
nt

Ni
l

Re
tr

os
pe

ct
iv

e 
st

ud
y 

(n
 =

 2
00

) 
fo

un
d 

im
pr

ov
ed

 p
la

te
le

t 
re

co
ve

ry
 a

nd
 r

ed
uc

ed
 

ho
sp

it
al

iz
at

io
n 

du
ra

ti
on

 in
 t

re
at

-
m

en
t 

gr
ou

p 
[1

17
].

 C
lin

ic
al

 t
ria

ls
 f

or
 

Vi
ta

m
in

 C
 a

lo
ne

 (
SL

CT
R/

20
17

/0
28

) 
an

d 
in

 c
om

bi
na

ti
on

 w
it

h 
Vi

ta
m

in
 B

1 
(C

TR
I/

20
19

/0
9/

02
12

44
) 

ar
e 

in
 p

ro
gr

es
s

Zi
nc

Un
cl

ea
r 

m
ec

ha
ni

sm
Ni

l
Ra

nd
om

iz
ed

 d
ou

bl
e-

bl
in

d 
pl

ac
eb

o-
co

n-
tr

ol
le

d 
tr

ia
l (

n 
= 

50
) 

(T
CT

R2
01

51
11

00
01

) 
sh

ow
ed

 r
ed

uc
ed

 h
os

pi
ta

liz
at

io
n 

du
ra

ti
on

, 
bu

t 
no

 im
pr

ov
em

en
t 

in
 o

th
er

 c
lin

ic
al

 o
r 

la
bo

ra
to

ric
al

 o
ut

co
m

es
 [

11
6]

Tr
ea

tm
en

t 
op

ti
on

s 
w

it
ho

ut
 s

up
po

rt
 f

or
 b

en
efi

ts

Pa
ra

ce
ta

m
ol

An
ti

-p
yr

et
ic

Ni
l

Ra
nd

om
iz

ed
 d

ou
bl

e-
bl

in
d 

pl
ac

eb
o-

co
n-

tr
ol

le
d 

tr
ia

l (
n 

= 
12

3)
 s

ho
w

ed
 w

or
se

 li
ve

r 
en

zy
m

e 
de

ra
ng

em
en

ts
 in

 t
he

 t
re

at
m

en
t 

gr
ou

p,
 w

it
h 

no
 im

pr
ov

em
en

t 
in

 o
th

er
 

cl
in

ic
al

 o
r 

la
bo

ra
to

ric
al

 p
ar

am
et

er
s.

 
(N

CT
02

83
35

84
) 

[2
0•

]
Os

el
ta

m
iv

ir
Ne

ur
am

in
id

as
e 

in
hi

bi
to

r 
to

 b
lo

ck
 d

es
ia

ly
la

-
ti

on
 o

n 
pl

at
el

et
 m

em
br

an
e

On
e 

ex
 v

iv
o 

st
ud

y 
sh

ow
ed

 t
ha

t 
os

el
ta

m
iv

ir
 

re
du

ce
d 

de
si

al
yl

at
io

n 
on

 p
la

te
le

ts
 f

ro
m

 
he

al
th

y 
do

no
rs

 [
45

]

Ra
nd

om
iz

ed
 d

ou
bl

e-
bl

in
d 

pl
ac

eb
o-

co
nt

ro
lle

d 
tr

ia
l (

n 
= 

70
) 

di
d 

no
t 

sh
ow

 im
pr

ov
em

en
t 

in
 

pl
at

el
et

 r
ec

ov
er

y 
or

 p
la

sm
a 

le
ak

ag
e 

pa
ra

m
-

et
er

s 
(I

SR
CT

N3
52

27
71

7)
 [

46
]



36  

most potential as dengue therapeutics and are in advanced stages of clinical 
testing. These have also been summarized in Table 1 and Fig. 1.

A direct-acting dengue therapeutic with promising preclinical data is the 
JNJ-A07, NS4B inhibitor developed by Janssen Pharmaceuticals [53•]. The 
drug was identified from a set of 2000 related molecules that were generated 
by modifying the structure of a ketoindole compound that showed inhibi-
tion against DENV2 infection [54]. The drug inhibited DENV replication 
complex formation by inhibiting the interaction between the NS4B protein, 
a multi-transmembrane protein at the endoplasmic reticulum, and NS3, a 
serine protease-helicase [55]. JNJ-A07 showed antiviral activity against all four 
dengue serotypes as well as 21 clinical isolates in vitro. Immunocompromised 
murine models infected with lethal as well as sub-lethal DENV2 doses and 
in models of antibody-dependent enhancement showed rapid decrease in 
viremia and viral burden in organs, regardless of whether JNJ-A07 treatment 
was started at the onset of infection or a delayed treatment. Reduction in 
pro-inflammatory cytokines like IL-18, IFN-γ, TNF, and IL-6 and increase 
in survival percentage were also observed in the drug-treated infected mice. 
Hemoconcentration or fluid accumulation in tissues and immune response 
parameters such as neutralizing antibody titers following infection in the 
drug-treated group were not assessed. This is important since the rapid sup-
pression of viremia by the drug could lead to weakened antibody produc-
tion that could precipitate severe dengue in a subsequent dengue infection. 
Currently, JNJ-64281802, an analog of JNJ-A07, has been registered for two 
phase 2, randomized, double-blind, placebo-controlled clinical trials to study 
its efficacy for dengue prophylaxis in healthy individuals (NCT05201794) 
as well as for dengue therapeutics in patients with confirmed dengue fever 
(NCT04906980).

Ivermectin, a broad-spectrum antiparasitic drug against helminth infec-
tion, has been previously shown to inhibit all four dengue serotypes in vitro 
by inhibiting the host nuclear import proteins that were important for nuclear 
localization of the dengue NS5 protein with RNA-dependent RNA polymerase 
(RdRp) function [56, 57]. A phase 2/3 randomized, double-blind, placebo-
controlled trial (NCT02045069) was conducted to study the efficacy of a 
once-daily dose of ivermectin 400 μg/kg for 2–3 days in adult dengue patients 
[58•]. Interestingly, the study reported faster NS1 antigenemia clearance upon 
ivermectin treatment, with no difference in viremia, viral clearance, or any 
beneficial clinical outcomes including fever, DHF incidence, hospitalization, 
pleural effusion, hemoconcentration, or fluid requirements [58•]. High NS1 
levels have been previously shown to be a risk factor for the development 
of dengue hemorrhagic fever [59] since it can induce pathologic comple-
ment activation [60] as well as independently induce vascular leakage [61] 
by disrupting the endothelial glycocalyx [62]. Hence, while this current trial 
did not report any clinical efficacy at this dosing regimen, further studies 
to understand the pharmacodynamics of ivermectin and its mechanism of 
action with regards to NS1 are warranted.

AT-752, an orally available guanosine nucleotide analog recently devel-
oped by Atea Pharmaceuticals, also functions by targeting the RdRp func-
tion of the NS5 protein [63]. The drug functions by metabolizing into an 
active triphosphate metabolite, AT-9010, intracellularly, which acts as a GTP 
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analog and is incorporated into RNA by RdRp, therein inhibiting viral replica-
tion. Correspondingly, AT-281, the prodrug of AT-752 inhibited DENV2 and 
DENV3 in vitro and AT-752 showed reduced viremia (albeit only at day 6 and 
8 post infection) and improved survival in DENV2-infected immunocompro-
mised mice. Currently, the drugs are in phase 1 (NCT05366439) and phase 
2 (NCT05466240) double-blind, randomized, placebo-controlled studies to 
assess the safety and antiviral activity in the dengue human challenge model 
and in dengue patients, respectively.

Doxycycline, a broad-spectrum tetracycline-class antibiotic and antima-
larial, has shown some efficacy as an antiviral against DENV1-4 in vitro by 
inhibiting NS2B-NS3 protease activity, resulting in reduced viral entry and 
replication [64]. A randomized clinical trial (with no placebo control arm) 
in Brazil, testing doxycycline for its efficacy as an anti-inflammatory drug 
in dengue infection showed reduction in pro-inflammatory cytokines IL-6 
and TNF in the treatment group compared to patients receiving standard 
symptomatic and supportive care [65]. A case–control study in India showed 
that doxycycline-treated dengue patients showed faster recovery of platelet 
and leukocyte counts and reduced hospital stay [66]. However, these studies 
so far have not been robust double-blind randomized placebo-controlled 
clinical trials with defined end point measurements. One such clinical trial 
(CTRI/2018/01/011548) is currently registered in India to study the efficacy of 
doxycycline as a dengue antiviral in a pediatric population and could clarify 
whether doxycycline has use as dengue therapeutic.

DENV infection and replication also require host factors that could be 
potential drug targets. N-linked glycosylation of viral proteins (pre-membrane 
(prM) and envelope (E) proteins) mediated by host α- glucosidase in the 
endoplasmic reticulum is important for viral assembly and subsequent release 
of mature, infectious DENV particles [67]. Celgosivir, an alpha-glucosidase 
inhibitor, had impaired folding and trapping of NS1 and significant antivi-
ral activity when tested in vivo in mouse models of dengue infection [68]. 
Although the previous trial did not meet its primary outcome of reducing 
viremia or fever, subsequent evaluation of the pharmacokinetic endpoints 
of the trial inferred that a revised dosing regimen that would increase the 
steady-state trough concentrations of the drug in the patient serum might be 
more efficacious [52, 69]. UV-4B (N-(9′-methoxynonyl)-1-deoxynojirimycin), 
another alpha-glucosidase inhibitor, also showed antiviral activity against 
all four serotypes of dengue in vitro [70]. In vivo studies using immunosup-
pressed mice showed decreased viremia and viral burden and improved sur-
vival in a lethal ADE model of dengue disease [71]. A Phase 1a clinical trial 
(NCT02061358) with healthy subjects, evaluating the safety, tolerability, and 
pharmacokinetics of the drug, indicated that a single dose of up to 1000 mg 
UV-4B was safe and well tolerated [72]. The efficacy of this drug in dengue 
patients has yet to be determined.

Similar to oseltamivir mentioned earlier, Zanamivir, another neurami-
nidase inhibitor, has shown inhibition of DENV2 NS1-induced endothelial 
hyperpermeability in vitro by inhibiting endogenous sialidase [73]. Consider-
ing that the TOTO trial failed to show any clinical benefit, the efficacy of zan-
amivir in vivo remains speculative. A phase 1 pilot randomized, double-blind, 
placebo-controlled clinical trial for the evaluation of the safety and efficacy 
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of five days of intravenous zanamivir treatment to treat vascular permeability 
syndrome (NCT04597437) is currently on-going.

There are several other direct-acting antivirals and host-directed anti-
virals (reviewed by others [74–77])—both novel and repurposed drugs, 
which are still in varying stages of pre-clinical development.

Monoclonal therapeutics

An obstacle for the development of monoclonal antibody (mAb) thera-
peutics against DENV has been the identification of antibodies capable 
of cross-neutralizing DENV1-4, which make up a minority of antibod-
ies induced by natural infection [78]. Many of the dominant antibod-
ies following natural infection target the immunodominant epitopes of 
the E protein fusion loop and the prM proteins, which can be involved 
in ADE [79]. Most mAb development pipelines have focused on the 
goals of either developing broadly cross-neutralizing antibodies or pro-
ducing antibody cocktails [80]. Cross-reactive neutralizing antibodies 
can be formed against domains I, II, and III of the E protein, yet those 
against the quaternary structure of E protein dimers are more likely to be 
potently cross-neutralizing [78, 79]. However, even highly potent neu-
tralizing antibodies can induce ADE at intermediate concentrations [8, 
81], emphasizing the importance of safety testing of mAbs to identify 
the optimal therapeutic window and concentration. The risk of ADE can 
also be mitigated by engineering LALA substitutions in the heavy chain 
[82, 83]. Monovalent mAb therapeutics also have the risk of becoming 
obsolete if viral immune evasion results in loss of neutralizing epitopes, 
as has been shown in the real world during the SARS-CoV-2 pandemic 
[84], and in animal models of DENV mAb testing [82]. Development of 
mAb as therapeutics or prophylactics for dengue has also been compre-
hensively reviewed elsewhere [85, 86] and three candidates for human 
use are currently in clinical trials.

VIS513, a humanized pan-serotype anti-DENV mAb developed by Vis-
terra (Cambridge, Massachusetts) has been engineered to bind domain III 
of the E protein of all 4 DENV serotypes [87]. Administration of VIS513 
either 24 h or 5 days post dengue infection in non-human primates was 
found to diminish infectious DENV in circulation without altering the 
endogenous antibody response [88]. In the murine model of antibody-
enhanced DENV infection, VIS513 had increased protection of immu-
nocompromised mice from lethal primary and secondary infection [87]. 
VIS513 is currently in phase 2, a single-blind, randomized, parallel-group, 
dose-ranging, single-dose study in India to study its safety and efficacy 
in adults with dengue fever (CTRI/2021/07/035290). AV-1, developed 
by AbViro LLC (NCT04273217), and Dengushield, developed by Serum 
Institute of India Pvt. Ltd. (NCT03883620) are other human monoclonal 
antibodies currently in phase 1, placebo-controlled, clinical trials with 
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goals to determine the safety and pharmacokinetics in healthy adults. How-
ever, details on their preclinical development, target epitopes, and efficacy 
against DENV have not yet been published.

Development of therapeutics targeting host

Many severe dengue symptoms are thought to result from a pathological 
host immune response [8]. Mast cells, in particular, have been identified 
as an important drug target for the treatment of severe dengue patholo-
gies including vascular permeability, plasma leakage, and thrombocytope-
nia [89, 90]. Mast cells are granulated innate immune cells located along 
host-environment interfaces like epithelial and endothelial barriers such 
that they can quickly respond to invading pathogens [91]. During DENV 
infection in the skin, mast cells are activated in response to the virus and 
degranulate to release an extensive array of preformed mediators like lyso-
somal enzymes (β-hexosaminidase), biogenic amines, histamine and sero-
tonin, mast cell-specific proteases–tryptase, chymase, and carboxypeptidase 
A3 and cytokines, such as TNF. In addition, mast cell activation leads to the 
de novo synthesis of lipid mediators—eicosanoids: leukotrienes and pros-
taglandins, and platelet activating factor (PAF), as well as other cytokines 
and chemokines, that subsequently aid recruitment of cytotoxic cells that 
help with viral clearance [92, 93]. In contrast to the localized protective 
response, pre-clinical studies with immunocompetent and immunocom-
promised mice showed that widespread mast cell activation during sys-
temic DENV infection results in excessive release of vasoactive mast cell 
mediators including leukotrienes, PAF [94], and proteases tryptase and 
chymase [16, 18] that cause vascular leakage by disrupting the endothelium  
[17•]. Importantly, injection of tryptase at similar concentrations detected 
in the plasma of severe dengue patients was sufficient to induce a tempera-
ture drop indicative of shock in mice [17•]. Moreover, elevated tryptase 
levels correlated with increasing severity of DHF and DSS in humans [17•]. 
Tryptase inhibiting drug, nafamostat mesylate significantly reduced vascu-
lar leakage in DENV infected mice and was effective even after the delayed 
treatment [17•]. While tryptase function is specific to the vascular endothe-
lium, serotonin released peripherally by mast cells during DENV infection 
was shown to induce thrombocytopenia [34•]. Activation of platelets by 
serotonin, sensed using 5HT2 receptors, triggered aggregation and destruc-
tion of platelets during DENV infection [34•]. Accordingly, treatment of 
mice using 5HT2 receptor antagonists, ketanserin and sarpogrelate reversed 
thrombocytopenia in DENV-infected mice [34•]. These studies highlighted 
that mast cell degranulation and mast cell products can be targeted in vivo 
with already clinically available drugs like mast cell stabilizers ketotifen 
and cromolyn [18], and inhibitors of mast cell products like nafamostat 
mesylate [17•] (for tryptase), montelukast (for leukotrienes) [18], ketan-
serin (for peripheral serotonin) [34•], and rupatadine (for PAF and hista-
mine-1-receptor block) [94]. Ketotifen is currently in a phase 4 randomized 
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clinical trial in Singapore that has concluded patient enrollment, where 
the primary endpoint of clinical fluid accumulation has been measured by 
MRI (NCT02673840). A preliminary randomized placebo-controlled clini-
cal trial (SLCTR/2014/023) testing efficacy of rupatadine for acute dengue 
patients revealed improved platelet counts, reduction in liver transaminases 
suggesting reduced tissue inflammation, and reduction in volume of plural 
effusions on certain days of the study protocol in their post hoc analyses 
despite failing to meet its primary endpoint of reduction in fluid leakage 
(pleural effusion or ascites) [94]. Further studies are needed to evaluate 
the efficacy of rupatadine against dengue vasculopathy. A preliminary open 
labeled, randomized clinical trial in Pakistan provided some early evidence 
towards the efficacy of montelukast in reducing risk for DSS, as defined 
by narrow pulse pressure < 20 mmHg and hypotension for age [95]. Mon-
telukast 10 mg was given once daily for 5 days. There was no change in 
hemoconcentration, or platelet counts although the overall DSS frequency 
reported in the cohort was very high (40%). The authors reported reduced 
incidence and relative risk of DSS in patients treated with montelukast, 
however the study lacks power analysis and a predefined significant statis-
tical difference between the groups. A phase 2/3 multicentre, randomized, 
double-blind, placebo controlled, superiority trial (NCT04673422) is cur-
rently on-going in Thailand to study the effect of montelukast in preventing 
dengue with warning signs in dengue patients.

As metabolic disorders like obesity and diabetes are increasingly rec-
ognized risk factors for severe dengue [96•, 97•, 98, 99], metabolic drugs 
are being investigated as potential dengue therapeutics. For example, 
Metformin, is a well-established oral anti-hyperglycemic agent adminis-
tered to diabetic patients. Its primary mechanism of action is to activate 
adenosine monophosphate (AMP)-activated protein kinase (AMPK), an 
important cellular energy sensor that is activated in conditions of low 
cellular energy levels to maintain homeostasis by upregulating lipid, 
protein, and glucose metabolism [100]. Interestingly, in vitro studies 
show that DENV impairs AMPK phosphorylation, which leads to down-
stream upregulation of HMG-CoA reductase activity, the rate-limiting 
step in cholesterol biosynthesis [101]. DENV proteins NS3 and NS4A 
colocalize in this resultant lipid-enriched environment which is shown 
to be conducive to enhanced DENV replication complex formation [101, 
102]. Consistent with this mechanism of DENV replication, metformin 
showed a significant dose-dependent antiviral effect in DENV-infected 
cells in vitro [101]. Correspondingly, a retrospective study in confirmed 
dengue patients with diabetes showed that metformin use was associated 
with decreased risk of developing severe dengue, and further, there was 
a dose-dependent inverse relationship between metformin intake and 
dengue severity [103•]. However, it is unclear from this study whether the 
effects of metformin on diabetic control or on DENV replication may be 
linked to the use of this drug. Currently, an open-label, two-phase dose 
escalation trial (NCT04377451) of metformin in dengue patients with 
obesity (MeDO) is on-going in Vietnam [104], which should clarify the 
therapeutic utility of metformin in dengue patients during acute disease.
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Other potential therapy–bioactive compounds

Many plant-based bioactive compounds have also been recognized to have 
anti-dengue activity in vitro and in vivo and have been summarized in a 
recent review [105]. Among these, Carica papaya leaf extract (CPLE) has 
been recognized for its platelet augmenting effect in both pediatric and 
adult dengue patients [107, 108]. Results from these randomized, placebo-
controlled clinical trials showed that administration of CPLE thrice daily 
enhanced platelet recovery rate, with a statistically significant increase in 
platelet levels in the intervention group from day 3 of treatment. While 
the mechanism of action is not yet completely understood, a recent study 
indicates that CPLE increases the expression of thrombopoietin receptor, 
CD110, also known as the myeloproliferative leukemia protein (cMpl), 
on platelets and megakaryocytes which is important for megakaryocyte 
proliferation and platelet formation [109]. Micronutrients are signifi-
cant immunomodulators [110] and thus are often prescribed as supple-
ments in addition to standard supportive care for dengue patients [111, 
112]. Clinical trials showed a reduction in liver derangements [113] and 
increased platelet recovery [114] upon vitamin E supplementation in 
addition to supportive therapy in dengue patients when compared to the 
control group. Other smaller RCTs with vitamin D [115] and zinc sup-
plementation (TCTR20151110001) [116] showed reduced relative risk of 
DHF and decreased duration of hospital stay respectively. A retrospective 
observational study investigating the effect of vitamin C supplementation 
in dengue fever reported increased platelet recovery and reduced hospi-
talization duration in patients receiving vitamin C [117]. Currently, two 
phase-II clinical trials have been registered to study the efficacy of vita-
min C (SLCTR/2017/028, Sri Lanka) and vitamin C and B1 combination 
(CTRI/2019/09/021244, India) in reducing morbidity in dengue patients.

Vaccine development

Given the lack of specific dengue therapeutics and significant economic 
and public health burden, WHO considers dengue vaccine development 
an urgent priority [121]. Two main challenges prevail in dengue vaccine 
development. Firstly, the vaccine should confer effective and balanced pro-
tection against all four dengue serotypes. Tetravalent vaccine formulations 
developed with this aim are hindered by antigenic competition, wherein 
the immune response is skewed towards more immunodominant serotype-
specific dengue antigens. Secondly, ADE poses a significant challenge in 
dengue vaccine development since vaccine-mediated sub-optimal protec-
tion to any of the dengue serotypes can confer a risk of severe dengue in 
a subsequent infection. Currently, there are at least seven dengue vaccines 
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in various stages of development and clinical trials [122, 123•, 124–129]. 
We will discuss selected vaccine candidates that have progressed furthest 
in clinical development here.

CYD-TDV (chimeric yellow fever virus–DENV–tetravalent dengue vaccine) 
aka Dengvaxia, developed by Sanofi Pasteur, was the first dengue vaccine to 
be licensed based on three clinical trials [130–132] and has been approved 
in certain countries, but is limited for use in individuals with prior dengue 
infection. It is a tetravalent live attenuated vaccine that uses the yellow fever 
YF17D vaccine strain as the backbone, substituting the prM and E proteins 
with the corresponding genes of the four wild-type dengue serotypes. It is 
administered subcutaneously as a 3-dose regimen scheduled 6 months apart 
in the population aged 9–45 years. In the pooled analysis of 25-month effi-
cacy data from phase 3 trials in population aged 2–16 years (CYD14, CYD15 
and CYD57) overall vaccine efficacy for symptomatic virologically confirmed 
dengue (VCD) was 60.3% (95% CI: 55.7–64.5). It has been proposed that 
the limited efficacy of the vaccine could result from the mismatched non-
structural proteins from the YF17D backbone, potentially limiting the effi-
cacy of the vaccine in inducing a protective T cell response against DENV 
[8]. Interestingly, for children, the vaccine efficacy was higher for those in 
older age groups with 65.6% (95% CI: 60.7–69.9) in those aged 9–16 years, 
than the younger age group with 44.6% (95% CI: 31.6–55.0) for those aged 
2–8 years old [122]. For both age groups, specific vaccine efficacy for DENV1 
and DENV2 was 40–50%, whereas it was 70–85% for DENV3 and DENV4. 
The vaccine seemed to be most efficacious against hospitalization and severe 
dengue with pooled vaccine efficacy across all age groups as 72.7% (95% CI: 
62.3–80.3) and 79.1% (95% CI: 60.0–89.0) respectively, not stratified by 
serostatus [122]. Increased relative risk of hospitalization in children aged 
2–9 years of 1.58% (95% CI: 0.83–3.02) versus 0.5% (95% CI: 0.29–0.86) in 
children aged 9–16 years was observed. Since 80% of the 9–16 years popula-
tion were baseline seropositive, it was hypothesized that baseline serostatus 
of the patient could possibly influence dengue risk wherein the vaccine could 
potentially precipitate severe dengue in seronegative patients via ADE [133]. 
Indeed, vaccine efficacy was higher for seropositive individuals (70–80%) 
than for seronegative individuals (14.4–52.5%) for both age groups. A fol-
low-up case-cohort study re-analyzing data from the three trials along with 
retrospective inference of serostatus of the individuals based on blood taken 
at 13 months post-vaccination, found that there was an increased risk of 
hospitalization and severe dengue in seronegative individuals [134]. The haz-
ard ratio (HR) (vaccine vs. control) for hospitalization was 1.75 (95% CI: 
1.14–2.70) and that for severe dengue was 2.87 (95% CI:1.09–7.61) in seron-
egative patients compared to corresponding HRs of 0.32 (95% CI: 0.23–0.45) 
and 0.31 (95% CI: 0.17–0.58) in seropositive patients. In accordance with 
this, the latest WHO Strategic Advisory Group of Experts on immunization 
recommends pre-vaccination screening as the preferred strategy for countries 
considering CYD-TDV vaccination as part of their dengue control program. 
With this strategy, only seropositive individuals with evidence of a labora-
tory or antibody test confirmed past dengue infection would be vaccinated. If 
pre-vaccination screening is not feasible, vaccination can still be considered if 
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the recent seroprevalence rate in the area has been documented to be at least 
80% by 9 years of age [135].

QDENGA® or TAK-003 by Takeda Pharmaceuticals is another live-attenuated 
tetravalent dengue vaccine that has been recently licensed for use in Indonesia 
for individuals aged 6 to 45 [136], and has received marketing authorization 
in the European Union for individuals aged 4 and above [137], regardless of 
their prior dengue exposure status. It is currently undergoing regulatory review 
in other dengue-endemic countries in Asia and Latin America [138, 139]. Using 
attenuated DENV2 PDK-53 virus as backbone, the other chimeric dengue virus 
were engineered by substituting the prM and E genes of DENV2 for that of 
wild-type DENV1 16007, DENV3 16562, or DENV4 1036 virus [140]. It is 
administered subcutaneously as a 0.5 mL dose in a two dose regimen scheduled 
3 months apart [136, 137]. The approval is based on the Tetravalent Immuni-
zation against Dengue Efficacy Study (TIDES) trial which included more than 
28,000 participants. The primary endpoint of the study was the overall vac-
cine efficacy against VCD in the first 11 months and was found to be 80·2% 
(95% CI: 73·3–85·3) [141]. However, subsequent follow-up studies at 18-, 
24- and 36-months vaccination showed waning of vaccine efficacy over time 
with cumulative vaccine efficacy against VCD at 62% (95% CI: 56.6–66.7) 
[123•, 124–143]. Nonetheless, vaccine efficacy against hospitalized VCD was 
more robust and maintained from 90.4% (95% CI: 82.6–94.7) at 18 months 
to 83.6% (95% CI: 76.8–88.4) at 3 years after the second dose. Importantly, the 
year 3 cumulative data indicated no age effect and showed comparable overall 
vaccine efficacy against VCD (65% vs 54.3%) and hospitalized VCD (86% vs 
77.1%) for seropositive and seronegative individuals. When cumulative vaccine 
efficacy was analyzed for specific serotypes, similar vaccine efficacy regardless 
of baseline serostatus was observed for DENV-1 (seropositive: 56.2% (95% CI: 
43.7–66.0) vs seronegative: 43.5% (95% CI: 21.5–59.3)) and DENV2 (seroposi-
tive: 83.4% (95% CI: 76.4–88.3) vs seronegative: 91.9% (95% CI: 83.6–96.0)). 
However, while vaccine efficacy was 52.3% (95% CI: 36.6–64.2) for DENV-3 
and 60.7% (95% CI: 16.0–81.6) for DENV-4 in seropositive individuals, no 
efficacy was observed for DENV-3 (− 23.4% (95% CI: − 125.3–32.4)) and effi-
cacy against DENV-4 was inconclusive in seronegative patients [123•]. Notably 
seronegative patients showed higher hospitalization rate (0.2%) compared to 
placebo (< 0.1%) for DENV-3 infection [123•], raising concerns that serostatus 
might also affect safety outcomes with this vaccine, similarly to Dengvaxia [144]. 
While this relative risk was inconclusive and was attributed by the authors to the 
small number of DENV-3 cases and differences in clinical practice geographi-
cally, further analyses are warranted to ensure no increased hazard risk due to 
ADE in seronegative patients. Moreover, the gradual waning efficacy needs to be 
addressed. A new clinical trial (NCT03999996) to assess the impact of a booster 
dose 15- and 24-months post  1st dose of vaccine is currently on-going. In addi-
tion, the presence of non-structural (NS) proteins from the DENV-2 backbone 
in Qdenga was shown to elicit NS-proteins specific T-cell mediated immunity 
in samples from phase 2 trial [145], however, it is notable that the protection 
offered by this vaccine is highest against DENV2, the strain from which the virus 
backbone originates. This might point to the importance of ensuring that future 
DENV vaccine development prioritizes generating tetravalent immunity with 
respect to both antibodies and T cell epitopes.
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TV003/TV005, developed by National Institute of Allergy and Infectious 
Diseases (NIAID), is a live attenuated virus vaccine in clinical testing. TV003/
TV005 was developed by introducing 30 nucleotide deletions in the 3’ untrans-
lated region and additional mutations in non-structural proteins to engineer live 
attenuated dengue virus—rDEN1Δ30, rDEN3Δ30/31 and rDEN4Δ30. Attenu-
ated DENV-2 virus was engineered as a chimeric virus by substituting the prM 
and E proteins in rDEN4Δ30 with that of DENV-2 [146]. TV003  (103 PFU) and 
TV005  (104 PFU) differ in the dosage of rDEN2/4Δ30 component. Two rand-
omized placebo controlled phase I trials evaluating safety and immunogenic-
ity of TV003 and TV005 found a low grade rash as the most frequent adverse 
reaction [147, 148]. Importantly, pooled analysis from both the trials showed 
between 64%-100% seroconversion following a single dose of TV003 [149]. 
Compared to placebo, TV003 induced serotype specific neutralizing antibodies 
and showed protection against viremia, rash, and neutropenia when challenged 
with an attenuated DENV2 strain, rDEN2Δ30, 6-months post vaccination [150]. 
TV003 has since been licensed by the Butantan Institute in Brazil and manufac-
tured as a lyophilized TDV named Butantan-DV. A double blind, randomized, 
placebo-controlled phase II trial showed seroconversion for all four dengue sero-
types 91-days post single dose of Butantan-DV in both seronegative (76%-92%) 
and seropositive (77–82%) individuals with rash as the main adverse reaction 
[124]. Seroconversion was defined by PRNT50 cutoff titers (≥ 1/10) for seronega-
tive individuals and as a four-fold or higher increase in pre-existing neutralizing 
antibody titer after immunization for the seropositive individuals. Butantan-DV 
elicited neutralizing antibodies against all four DENV serotypes with 75% of 
the participants developing tetravalent neutralizing humoral response after a 
single vaccine dose. Notably, the neutralizing antibody geometric mean titer was 
significantly higher in DENV-exposed individuals than DENV-naive participants 
for DENV-1, DENV-2, and DENV-3, but not for DENV-4 (p = 0·077). Presence 
of non-structural proteins of three different serotypes in Butantan-DV also ini-
tiated cellular immune response as evidenced by antigen specific CD8 + T cell 
responses when stimulated ex vivo with DENV-derived peptide pool in 94% of 
the vaccinated individuals as compared to 13% in placebo 91 days post first dose 
of vaccination [124]. This vaccine is currently in phase III clinical trial in Brazil 
with 16,944 participants divided into three age groups (18–59 years, 7–17 years, 
and 2–6 years).

Conclusion

The current standard of care for dengue remains supportive care. Timely fluid 
management has shown to be effective in lowering deaths due to severe dengue. 
However, due to the late onset of warning signs, it can be difficult to manage 
severe dengue solely guided by symptomatic interventions and is often too late 
too little for the interventions to be effective. Therefore, there is a dire need for 
effective drugs that can reduce dengue viral infection and reduce the likelihood 
of developing severe disease. Moreover, an integrated approach utilizing both 
efficacious vaccines and drugs will be required to combat dengue globally. As 
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highlighted in this review, there are new and promising drugs and vaccines for 
the control of dengue at various stages of clinical development.
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