
Economic Theory Bulletin (2022) 10:69–93
https://doi.org/10.1007/s40505-022-00219-1

RESEARCH ART ICLE

On the approximate purification of mixed strategies in
games with infinite action sets

Yuhki Hosoya1 · Chaowen Yu2

Received: 30 June 2021 / Accepted: 8 March 2022 / Published online: 24 March 2022
© The Author(s) 2022

Abstract
Weconsider a game inwhich the action set of eachplayer is uncountable, and show that,
fromweak assumptions on the commonprior, anymixed strategy has an approximately
equivalent pure strategy. The assumption of this result can be further weakened if
we consider the purification of a Nash equilibrium. Combined with the existence
theorem for a Nash equilibrium, we derive an existence theorem for a pure strategy
approximated Nash equilibrium under sufficiently weak assumptions. All of the pure
strategies we derive in this paper can take a finite number of possible actions.

Keywords Mixed strategy · Approximate purification · Uncountable action set ·
Conditionally atomless · Nash equilibrium

JEL Classification C62 · C65 · C72 · C73

1 Introduction

The notion of the mixed strategy was introduced by von Neumann and Morgenstern
(1944) to prove the minimax theorem, and was later used in Nash (1950) existence
theorem for a Nash equilibrium. In game theory, there are many cases in which the
existence of a solution can be guaranteed using the concept of mixed strategies. Thus,
this concept continues to be extensively used today.
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Mixed strategies have, however, been criticized for a long time because, if a player
wants to implement a mixed strategy, he/she has to prepare his/her own randomizing
device. From a positive point of view, a solution is interpreted to represent human
behaviors in the real world. However, there is almost no behavior in the real world that
can be interpreted as that of using a randomizing device. From a normative point of
view, a solution to a game is considered to be a proposal presented by the mediator of
the conflict. However, a proposal that would require each party to use a randomizing
device to resolve a dispute would be difficult for a mediator to submit and, even if
submitted, is unlikely to be accepted by each party. In conclusion, solutions derived
using mixed strategies are, in many cases, problematic.

On the other hand, in the context of Bayesian games, a strategy is described as a
function from the space of outside signals into the space of actions. This strategy is
randomized by the signal, and can take probabilistic actions without the need to use
a randomization device. As a result, the problem described above is not encountered.
Thus, if we can create a “pure strategy” that is “equivalent” to a given mixed strategy,
the problem of interpretation will disappear. The research theme of purifying mixed
strategies was born from this idea.

In this research area, it is known that a certain independence in the signal structure
results in the existence of a pure strategy that is “exactly equivalent” to a given mixed
strategy (e.g., Radner and Rosenthal 1982; Milgrom and Weber 1985). These results
have been treated in a unified manner by Khan et al. (2006). In these studies, the
set of possible actions were assumed to be finite. Khan and Rath (2009) extended
this result to the case where the action set is countably infinite. However, this result
cannot be extended to the case where the set of possible actions is uncountable, as
in the case of Cournot games. In this case, Khan and Zhang (2014) produced the
following interesting result: in games where the set of actions for each player has a
continuum cardinality, a necessary and sufficient condition for there to have to be a
pure strategy Nash equilibrium that is “exactly equivalent” to a given mixed strategy
Nash equilibrium is that the space of signals is saturated.

We view this result of Khan and Zhang (2014) as a kind of impossibility theorem.
To guarantee the existence of a pure strategy that is equivalent to a mixed strategy,
the space of signals must be saturated. As we argue in Sect. 4 of this paper, the
assumption of saturation implies that the measurable structure of the space of signals
is “very fine” in some sense, meaning that an incredible variety of randomness can
be extracted from the signals. However, in a phenomenon that can be viewed as a
game-theoretic situation, it is unlikely that players are able to receive such many
outside signals. Additionally, in many applied studies, a Polish space with a Borel
probability is adopted as the space of signals. However, any Polish space with a
Borel probability is not saturated. Therefore, it is impossible to show the existence
of an “exactly equivalent” pure strategy under the usual assumptions.

In this study, we consider another approach: the existence of a pure strategy that is
“approximately equivalent” to a given mixed strategy. Aumann et al. (1983) showed
that there exists a pure strategy that is “approximately equivalent” to an arbitrary
given mixed strategy when only certain non-atomic properties of the common prior
are assumed. This result has the weakness that it can only guarantee the existence of
an “approximately equivalent” pure strategy, but has the advantage that it does not
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require independence in the signal structure and guarantees the existence of such a
strategy in very general situations. Note that the non-atomic property is also needed
for “exact equivalence” results, and thus the assumption required for this result is
weaker than that required for “exact equivalence” results. Although the action set is
assumed to be finite in Aumann et al. (1983), we extend this result to the case where
the action set is an arbitrary compact metric space (Theorems 1, 2). Our assumption
allows that the space of signals is a Polish space with a Borel probability, and thus it
is not necessarily assumed to be saturated. In this sense, we consider that this result is
a non-trivial generalization of past studies.

The assumption regarding the common prior can be further weakened when con-
sidering the purification of a Nash equilibrium. This result was also shown byAumann
et al. (1983) for the case where each action set is finite, but this study extends this
result to the case where each action set is a compact metric space (Theorem 3). Balder
(1988) proved the existence theorem for a Nash equilibrium with mixed strategies
under certain assumptions. Connecting this result with ours, we can show the general
existence of an approximated Nash equilibriumwith pure strategies (Theorem 4). This
result is an extension of Corollary of Milgrom and Weber (1985).

Note that all pure strategies derived in our results can be considered as functions
that take values in a finite subset of the action set. This is one of the good properties
of our results, as real people are not always able to finely change their behavior in
response to signals.

In Sect. 2.1, we introduce our model and several seminal results. In Sect. 2.2, we
introduce the requirements for the common prior used in this study. In Sect. 2.3, we
explain our setup of the space of mixed strategies. Section 3 then presents our main
results. In Sect. 4, we mention several related works, and explain how our research
can be positioned within the related literature. Section 5 presents the conclusion. The
proofs of all results are given in Sect. 6.

2 Themodel

2.1 Basic notation

A game considered in this study is represented by a tuple

G = (N , (Ki )i∈N , (�,S , μ), u, (Xi ,Si , xi )i∈N ).

The set N = {1, . . . , n} is the set of all players, and Ki is the action set for
player i . We assume that each Ki is a compact metric space. The probability space
(�,S , μ) is interpreted as the space of outside signals. The probability measure μ

denotes the common prior. The function u : ∏n
i=1 Ki × � → R

m is the payoff
function. Although it is natural that n = m and ui denotes the payoff of the i-th
player, we consider that m may be not equal to n for a technical reason. If m = n,
then we say that this game is usual. We assume that u(k, ω) is continuous in k and
measurable in ω, and that there exists a positive integrable function r : � → R such
that ‖u(k, ω)‖ ≤ r(ω) for all (k, ω).
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The measurable space (Xi ,Si ) is the observation space for player i , and the
function xi : � → Xi is the observation function. We assume that, for each i ,
(Xi ,Si ) is isomorphic to ([0, 1],F ), whereF is a σ -algebra that includes all Borel
sets,1 and xi : � → Xi is measurable. Note that, by Kuratowski’s theorem,2 every
uncountable Polish spacewith theBorel σ -algebra satisfies the above requirement, and
thus our requirement for (Xi ,Si ) is not so strong. Define a function μ′ on

∏n
i=1 Xi

as follows:

μ′(A) =
∫

1{x∈A}dμ.

We can easily confirm that μ′ is a probability measure on
∏n

i=1 Xi . By using
μ′ instead of μ, we can assume, without loss of generality, that � = ∏n

i=1 Xi ,
S = ⊗n

i=1Si , and μ itself is a probability measure on this �. Clearly, in this case
xi (ω1, . . . , ωn) = ωi for each i . In this connection, we omit the notation S and
(Xi ,Si , xi ), and simply write this game G as (N , (Ki )i∈N , (�,μ), u).

We call a measurable function fi : Xi → Ki a pure strategy of player i . Despite
the name, the actual action of player i while following a pure strategy is randomized
by the observation of the outside signal xi . Let M 1+(Ki ) be the set of all probability
measures on Ki . We call a weakly measurable function3 fi : Xi → M 1+(Ki ) amixed
strategy.4 Because ki ∈ Ki is identified with the Dirac measure δki ∈ M 1+(Ki ), any
pure strategy is also a mixed strategy.5 f = ( f1, . . . , fn) is called a strategy profile
if each fi is a (pure or mixed) strategy of player i . To avoid confusion, we use the
notation fi,xi instead of fi (xi ). The expected payoff function U is defined by

U ( f ) =
∫

ud( f1,x1 ⊗ · · · ⊗ fn,xn )dμ.

Using Theorem 2.8 of Billingsley (1999) and applying our Lemma 1 discussed
later, we can easily show that U is a well-defined R

m-valued function.
Let fi be a mixed strategy of player i . A strategy f ′

i is exactly equivalent to fi
if and only if, for every strategy profile f−i of players other than player i and every
j ∈ {1, . . . ,m},

Uj ( fi , f−i ) = Uj ( f
′
i , f−i ).

Similarly, a strategy f ′
i is ε-equivalent to fi if and only if for every strategy profile

f−i of players other than player i ,

1 That is, F is finer than or equal to the Borel σ -algebra of [0, 1].
2 See Theorem 3.3.13 of Srivastava (1998).
3 The definition of weak measurability is explained in Sect. 2.3.
4 This namemay appear odd. Actually, this function is sometimes called by different names in this research
area. For example, Radner and Rosenthal (1982) called such a function a ‘behavior strategy’. Milgrom
and Weber (1985) called it a ‘behavioral strategy’ and discussed the relationship between this and the
‘distributional strategy’ that they used. Balder (1988) called it a ‘transition probability’. Aumann et al.
(1983) called this function a ‘mixed strategy’. The name here follows that of Khan and Zhang (2014).
5 Later, we will show rigorously that our pure strategy is actually weakly measurable.
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max
j∈{1,...,m} |Uj ( fi , f−i ) −Uj ( f

′
i , f−i )| < ε.

A pure strategy f ′
i is called an exact purification (resp. ε-purification) of the

strategy fi if f ′
i is exactly equivalent (resp. ε-equivalent) to fi .

2.2 Conditionally atomless and weakly conditionally atomless priors

Recall that each Xi is a measurable space, � = ∏n
i=1 Xi , and μ is a probability

measure on �. We say that μ is conditionally atomless for player i if the conditional
probability μ(·|x−i ) is non-atomic almost surely with respect to the marginal prob-
ability μX−i , where x−i = (x1, . . . , xi−1, xi+1, . . . , xn) and X−i = ∏

j∈N , j �=i X j

as usual.6 We also say that μ is weakly conditionally atomless for player i if for
every j ∈ N such that i �= j , μi j is conditionally atomless for player i , where
μi j (A) = μ(A × ∏

p∈N\{i, j} X p) for every measurable set A ⊂ Xi × X j .
It is known that every conditionally atomless probability for player i is weakly

conditionally atomless for player i , and that the converse is not true. See Proposition
3 and Example 2 of Yu et al. (2018) for detailed arguments. Meanwhile, if μ is not
conditionally atomless, then there may exist a mixed strategy with no ε-purification
for sufficiently small ε > 0 even when Ki is finite. Therefore, the conditional atomless
requirement is crucial for ε-purification.

2.3 Basic knowledge in the space of probability measures

In this section, we present some basic knowledge regarding the space of probability
measures on a separable and complete metric space. All of the facts mentioned in this
section are proved in ch.11 of Dudley (2002), ch.1 of Billingsley (1999), or ch.1-2 of
Parthasarathy (2014).

Let K be a separable and complete metric space. Then,M 1+(K ) denotes the set of
all Borel probability measures on K . Recall the definition of the Prohorov metric: for
a set A ⊂ K and ε > 0, let Aε = {x ∈ K |∃y ∈ A s.t. d(x, y) < ε}, wherer d denotes
the metric of K . For any P, Q ∈ M 1+(K ), define

ρ(P, Q) = inf{ε > 0|P(A) ≤ Q(Aε) + ε for each Borel set A}.

This function ρ is called the Prohorov metric. Under this metric, M 1+(K ) is sep-
arable and complete. Moreover, the convergence of (Pν) to P with respect to the
Prohorov metric is equivalent to the weak* convergence.7 Furthermore, there exists a
countable dense set P ⊂ M+

1 (K ) such that each P ∈ P has a finite support, and if
K is compact, M+

1 (K ) is also compact with respect to the Prohorov metric.

6 For rigorous definitions of marginal probability and conditional probability, see section 10.2 of Dudley
(2002).
7 Recall that Pν converges to P with respect to the weak* topology if and only if limν→∞

∫
udPν =∫

udP for every continuous and bounded function u : K → R.
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Let X be some measurable space. Then, we call a function f : X → M 1+(K )

weakly measurable if, for every continuous function v : M 1+(K ) → R, the compo-
sition v ◦ f : X → R is measurable. Note that if g : X → K is measurable, then
a function f : x → δg(x) is weakly measurable, where δg(x) is the Dirac measure.
Indeed, if we define h(k) = δk , then f (x) = (h ◦ g)(x). It is easy to show that the
function h is continuous, and thus for every continuous function v : M 1+(K ) → R,
v ◦ f = (v ◦ h) ◦ g is measurable. Thus, we have that f is weakly measurable. In this
connection, we have that every pure strategy is also a mixed strategy.

If f (X) is finite and f −1(P) is measurable for every P ∈ M 1+(K ), then we call f
a simple function.

We can obtain the following result. This is the basis of this paper.

Lemma 1 Suppose that K is a separable completemetric space, and X is ameasurable
space. LetP be a countable dense set inM 1+(K ) with respect to the Prohorov metric
ρ. Then, for every weakly measurable function f : X → M 1+(K ), there exists a
sequence ( fν) of simple functions such that the range of fν is in P for every ν, and
ρ( fν(x), f (x)) → 0 as ν → ∞ for every x ∈ X.

The next lemma asserts the equivalence between our mixed strategy and the ‘tran-
sition probability’ used in Balder (1988). Later, we will use Balder’s theorem to prove
our Theorem 4, and thus this fact is needed. In this lemma, we use the notation fx
instead of f (x) to avoid confusion.

Lemma 2 Suppose that K is a compact metric space, and X is a measurable space.
Then, a function f : X → M 1+(K ) is weakly measurable if and only if for each Borel
set B in K , the function x → fx (B) is measurable on X.

3 Results

3.1 First result: the existence of an approximate purification

In this section, we assume that N = {1, 2}, and use the following notation: X1 =
X , K1 = K , X2 = Y , K2 = L . By assumption, K and L are compact metric spaces,
and thus are separable and complete. Recall the definition of ε-purification. That is, if
f is a mixed strategy of player 1, then a pure strategy f ′ of player 1 is an ε-purification
of f if and only if for every mixed strategy g of player 2,

max
i∈{1,...,m} |Ui ( f , g) −Ui ( f

′, g)| < ε.

Our first main result is as follows.

Theorem 1 Suppose that N = {1, 2} and μ is conditionally atomless for player 1.
Then, for every ε > 0 and every mixed strategy f of player 1, there exist a finite subset
K ′ of K and an ε-purification f ′ of f such that for every x, f ′

x is included in K ′.

As a corollary, we obtain the following result.
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Theorem 2 Suppose that N = {1, . . . , n} and μ is conditionally atomless for player
i . Then, for every ε > 0 and every mixed strategy fi of player i , there exist a finite
subset K ′

i of Ki and an ε-purification of f ′
i such that for every xi , fi,xi is included in

K ′
i .

3.2 Second result: the existence of a pure approximated nash equilibrium

We should define the notion of approximated Nash equilibria. Recall that a game is
said to be usual if and only if the dimension of the range ofU is the same as the number
of players. Suppose that the game is usual. Then, the function Ui can be seen as the
payoff of player i . For a given ε ≥ 0, the strategy profile f is an ε-Nash equilibrium
if and only if, for every strategy gi of player i ,

Ui (gi , f−i ) ≤ Ui ( f ) + ε.

We call a 0-Nash equilibrium a Nash equilibrium as usual. If f is a Nash equilibrium,
then f ′ is called an ε-purification of f if the following requirements holds.

(1) For every i , f ′
i is a pure strategy of player i .

(2) If f ′′ is another strategy profile such that f ′′
i is either fi or f ′

i for every i , then f ′′
is an ε-Nash equilibrium that satisfies

max
i∈{1,...,n} |Ui ( f

′′) −Ui ( f )| < ε.

Note that, by (2), f ′ itself is also an ε-Nash equilibrium.
Then, the following result is obtained.

Theorem 3 If the game is usual andμ is weakly conditionally atomless for all players,
then for every ε > 0 and every Nash equilibrium f , there exists an ε-purification f ′
of f such that, for each player i , the range of f ′

i is finite.

Combining our Theorem 3 and the main theorem of Balder (1988), we obtain the
following result. Let μi be the marginal probability of μ in the space Xi .

Theorem 4 Suppose that the game is usual, μ is weakly conditionally atomless for
all players, and μ is absolutely continuous with respect to μ1 ⊗ · · · ⊗ μn. Then, for
every ε > 0, there exists an ε-Nash equilibrium such that each player i chooses a pure
strategy fi and the range of fi is finite.

4 Discussion

In related research, our definition of equivalence is sometimes called the payoff equiv-
alence. There is another notion of equivalence, called the distributional equivalence.
Two strategies fi and f ′

i are distributionally equivalent if, for every Borel measurable
set 	 ⊂ Ki ,
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∫

1{ki∈	}d fi,xi dμ =
∫

1{ki∈	}d f ′
i,xi dμ.

This definition is on the exact purification. For the approximated purification, we
can define the distributional equivalence as follows: two strategy fi and f ′

i are ε-
distributionally equivalent if, for every Borel measurable set 	 ⊂ Ki ,

∣
∣
∣
∣

∫

1{ki∈	}d( fi,xi − f ′
i,xi )dμ

∣
∣
∣
∣ < ε.

If Ki is finite, then the number of possible 	 is also finite. Thus, if once we obtain
a purification result for the payoff equivalence in the setup of this paper, then we
can immediately obtain a purification result for the distributional equivalence in the
following manner: if the possibility of 	 is 	1, . . . , 	L , then for 	
, define

um+
(k, x) =
{
1 if ki ∈ 	
,

0 otherwise.

It is obvious that a result for the payoff equivalence for this u leads to a result for the
distributional equivalence. However, if Ki is infinite, then the above method cannot
be used, because the range of u becomes infinite dimensional.

In many previous studies, the finiteness of Ki and some independence of the signal
structure were assumed, and then the existence of an exact purification in both the
payoff and distributional senses was proved (see Milgrom and Weber 1985; Radner
and Rosenthal 1982; Khan et al. 2006). The finiteness requirement of Ki can be
replaced with a countability requirement (see Khan and Rath 2009). However, if Ki

is uncountable, there is an impossibility theorem regarding exact purification. That is,
if Ki is uncountable, then there may be no exact purification, even though the signal
structure satisfies the usual independence requirement (see Khan and Zhang 2014).

Our Theorem 4 is an existence theorem for an approximated Nash equilibriumwith
pure strategies. The basis for this result is an existence theorem for Nash equilibria
with mixed strategies by Balder (1988). For this result, we use the absolute continuity
of μ with respect to μ1 ⊗ · · · ⊗ μn , and independence assumption is not needed.
Similar results have already been produced for a correlated equilibrium (see Cotter
1991 and Stinchcombe 2011). Based on these results, one might think that not only
the approximated purification, but also the exact purification can be obtained from
the absolute continuity assumption alone, and the independence assumption can be
avoided. However, a counterexample for this conjecture has already been obtained in
Example 1 of Yu et al. (2018). Note that, in this counterexample, all assumptions in
Theorem 4 hold. Therefore, independence is crucial for the exact purification.

We should mention the notion of saturation. Although there are many equivalent
definitions of saturation, we think that the definition using the “essentially countably
generated” assumption is relatively easy to understand. For a givenfinitemeasure space
(�,S , μ), define N = {N ∈ S |μ(N ) = 0}. This space is said to be essentially
countably generated if there exists a countable family C ⊂ S such that the smallest
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σ -algebra that contains C ∪ N coincides with S .8 Now, choose any A ∈ S such
that μ(A) > 0 and define SA = {B ∈ S |B ⊂ A}. Then, (A,SA, μ) is also a finite
measure space. The finite measure space (�,S , μ) is said to be saturated if and only
if there is no A ∈ S such that μ(A) > 0 and (A,SA, μ) is essentially countably
generated.

Keisler and Sun (2009) showed that if a space of infinitely many players and an
uncountable action set are given, then this space is saturated if and only if every game
with this player set and action set has a Nash equilibrium. A similar result was derived
by Khan and Sagara (2016) for aWalrasian equilibrium of an economy such that there
are infinitely many agents and the commodity space is included in L∞. To the best
of our understanding, the above results require saturation because the existence of
such an equilibrium is deeply related to Lyapunov’s convexity theorem for Bochner
multi-valued integrals in infinite dimensional spaces, which is known as an equivalent
condition for saturation.

For the theory of exact purifications, the Dvoretzky–Wald–Wolfowitz theorem is
crucial, and the proof of this theorem requires Lyapunov’s convexity theorem. There-
fore, if the action set is uncountable, then we are confronted with the problem that
Lyapunov’s convexity theorem cannot be applied when the space is not saturated.
Theorem 2 of Khan and Zhang (2014) is one of the straightforward consequences of
this fact, which states that if the signal structure is not saturated, we can construct a
game in which there is no pure strategy Nash equilibrium. A concrete example of such
a game was obtained by Khan et al. (1999).

In contrast, for the theory of approximate purifications, Lyapunov’s convexity the-
orem is not crucial. This is the main reason why our theorems hold for possibly
non-saturated signal structures. Note that, in many applied research, the signal struc-
ture is assumed to be a Polish space with a Borel probability measure, which is never
saturated because every Polish space with a Borel probability measure is essentially
countably generated.9 Therefore, we think that our results are worthwhile.

5 Conclusion

We showed that for only weak atomless assumption on the prior, there exists an
approximate purification for any mixed strategy. This atomless requirement could be
further weakened when considering a purification of a Nash equilibrium. We did not
need any independence assumption on signal structure to show these results. Using
these results, we have succeeded in obtaining an existence theorem for an ε-Nash
equilibrium under sufficiently weak assumptions.

All of these results were obtained under the assumption that all action sets are
compact. In most of the previous studies, action sets are assumed to be finite, and in
this sense, our results are a generalization of these results. Since it has been shown

8 This definition is different from that in Khan and Zhang (2014). However, we can easily check that these
two definitions coincide, by almost the same arguments as in the proof of Proposition 3.3.2 in Dudley
(2002).
9 Note that every Polish space is second-countable.

123



78 Y. Hosoya

that this generalization is not possible in the context of exact purification, we can say
that our result is a non-trivial generalization.

It is not known whether it is possible to remove compactness of the action sets.
Since we have already used the compactness of the space in Step 1 of the proof of
Theorem 1, it is completely unknown whether such a generalization is possible.

6 Proofs

6.1 Proof of Lemma 1

BecauseP is countable,we can setP = {P1, P2, . . .}. Note that, because the function
P → ρ(Pi , P) is continuous with respect to ρ, we have that vi : x → ρ(Pi , f (x)) is
measurable. For each ν, define Iν(x) = {i ∈ {1, . . . , ν}|vi (x) = min j∈{1,...,ν} v j (x)},
and fν(x) = Pi for i = min Iν(x). Then,

fν(x) = Pi ⇔ vi (x) < v j (x) for every j ∈ {1, . . . , i − 1}
and vi (x) ≤ v j (x) for every j ∈ {i + 1, . . . , ν}.

Thus, the function fν is simple and for every x , fν(x) → f (x) as ν → ∞, which
completes the proof. ��

6.2 Proof of Lemma 2

Suppose that f : X → M 1+(K ) is a function such that for every Borel set B ⊂ K ,
x → fx (B) is measurable. We will show that this function is weakly measurable.

SinceM 1+(K ) is compact, there exists a countable dense subsetP = {P1, P2, . . .}
of M 1+(K ). For each i , define

vi (x) = ρ( fx , Pi ),

where ρ is the Prohorovmetric ofM 1+(K ).We show that each vi is measurable. Recall
that for ε > 0 and A ⊂ K ,

Aε = {k ∈ K |∃k′ ∈ K s.t. d(k, k′) < ε},

where d is the metric of K . For each Borel set A ⊂ K , define

ηA(x) = inf{ε > 0| fx (A) ≤ Pi (A
ε) + ε}.

Then, by the definition of the Prohorov metric,

vi (x) = sup
C∈C

ηC (x),
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where C denotes the set of all closed subsets of K .10 Now, for each C ∈ C and each
rational number q ∈ [0, 1], define

ϕC,q(x) =
{
q if fx (C) ≤ Pi (Cq) + q,

1 otherwise.

Since x → fx (C) is measurable, ϕC,q is measurable. Therefore, for each C ∈ C ,
ηC = infq∈[0,1]∩Q ϕC,q is measurable.

Because K is compact, it is second countable, and thus it has a countable basis
V = {V1, V2, . . .}. Define

C̃ = {C ∈ C |C = (∪ j∈MVj )
c for some finite set M ⊂ N}.

Since V is countable, so is C̃ . Fix x ∈ X and C ∈ C . There exists a subfamily V ′
of V such thatC = (∪V∈V ′V )c, and thus, there exists a decreasing sequence (A j ) j∈N
of sets in C̃ such that A j ↓ C as j → ∞. Let ε∗ = sup j∈N ηA j (x) and choose an
ε > 0. Then, by the definition of ε∗,

fx (A j ) ≤ Pi ((A j )
ε∗+ε) + ε∗ + ε,

for each j ∈ N. Therefore, by taking the limit j → ∞, we have

fx (C) ≤ Pi (∩ j (A j )
ε∗+ε) + ε∗ + ε.

We show that ∩∞
j=1(A j )

ε∗+ε ⊂ Cε∗+2ε. Choose any k ∈ ∩ j (A j )
ε∗+ε. Then, for

each j , there exists k j ∈ A j such that d(k, k j ) < ε∗ + ε. Since K is compact, we
have that there is a limit point k∗ of the sequence (k j ). By the definition of A j , we
have that k∗ ∈ C . Because d(k, k∗) ≤ ε∗ + ε < ε∗ + 2ε, we have that k ∈ Cε∗+2ε, as
desired. Therefore,

fx (C) ≤ Pi (C
ε∗+2ε) + ε∗ + 2ε.

Since ε > 0 is arbitrary, it follows that ηC (x) ≤ ε∗. Therefore, for each x ∈ X ,

vi (x) = sup
C∈C

ηC (x) = sup
C∈C̃

ηC (x),

and thus vi is measurable.
Now, for each ν, let Iν(x) = {i ∈ {1, . . . , ν}|vi (x) = min j∈{1,...,ν} v j (x)} for each

x ∈ X and define f ν
x = Pi for i = min Iν(x). Then,

f ν
x = Pi ⇔ vi (x) < v j (x) for every j ∈ {1, . . . , i − 1}

and vi (x) ≤ v j (x) for every j ∈ {i + 1, . . . , ν}.
10 See section 11.3 of Dudley (2002).
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Because each v j is measurable, we have that f ν is a simple function. Moreover,
ρ( f ν

x , fx ) → 0 as ν → ∞. Let τ : M 1+(K ) → R be a continuous function. Then, for
each ν, τ ◦ f ν is a simple function. Moreover, τ ◦ f ν → τ ◦ f pointwise as ν → ∞,
and hence τ ◦ f is measurable. This implies that f is weakly measurable, as desired.

Next, we show the opposite direction. Let f : X → M 1+(K ) be a weakly measur-
able function. It suffices to show that for every Borel set B of K , the following function
ζB : x → fx (B) is measurable. First, for each continuous function ψ : K → R,

ξψ : Q →
∫

ψdQ

is continuous. Because f is weakly measurable, for each continuous function ψ :
K → R, ξψ ◦ f is measurable. Next, let L be the family of Borel sets B ⊂ K such
that ζB is measurable on X . Fix a closed set C ⊂ K . For each ν, let

ψν(k) = max{1 − ν inf
k′∈C

d(k, k′), 0}.

Then, ψν is continuous. For each k ∈ K , ψν(k) ↓ 1C (k) as ν → ∞, and by the
monotone convergence theorem, we have that for each x ∈ X ,

∫
ψνd fx → ∫

1Cd fx .
Therefore, the sequence (ξψν ◦ f ) converges pointwise to the function ζC as ν → ∞,
which implies that C ∈ L .

Since ζK\B = 1 − ζB , we have that B ∈ L implies K\B ∈ L . Therefore, L
contains all open sets. Moreover, if B1 ∈ L is open and B2 ∈ L is closed, then
B1 ∩ B2 ∈ L because ζB1∩B2 = ζB1 − ζB1\B2 is measurable. Let D be the set of all
Borel sets such that there exists an open B1 and a closed B2 such that B = B1 ∩ B2.
Then, D is a semiring and D ⊂ L .11 Next, define

A = {B|B = ∪ν
j=1Dj for some ν and disjoint D1, . . . , Dν ∈ D}.

Then, A is an algebra that includes all open sets.12 Note that, for each disjoint
pair B1, B2 ∈ L , we have B1 ∪ B2 ∈ L because ζB1∪B2 = ζB1 + ζB2 . This implies
that A ⊂ L . If (Aν) is an increasing (resp. decreasing) sequence of sets in L with
Aν ↑ A (resp. Aν ↓ A) as ν → ∞, then by the monotone convergence theorem, we
have that ζAν → ζA pointwise, and thus A ∈ L . This implies that L is a monotone
class that contains A . By the monotone class lemma,13 we have that L is the same
as the Borel σ -field of K . Thus, ζB is measurable for any Borel set B ⊂ K . This
completes the proof. ��

11 A family D of subsets of Z is called a semiring if (1) ∅ ∈ D , (2) for each pair A, B ∈ D , A ∩ B ∈ D ,
and (3) for each pair A, B ∈ D , A\B = ⋃k

j=1 C j for some k and disjoint C1, . . . ,Ck ∈ D . See section
3.2 of Dudley (2002) for detailed arguments.
12 See Proposition 3.2.3 of Dudley (2002).
13 See Theorem 4.4.2 of Dudley (2002).
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6.3 Proof of Theorem 1

Throughout this proof, we treat ρ as the Prohorov metric of eitherM 1+(K ) orM 1+(L).
We consider that the abbreviation of the notation K or L for Prohorov metrics should
not cause any confusion.

Note that, because K is compact, there exists a countable dense family P =
{P1, P2, . . .} ofM 1+(K ) such that each Pi has a finite support.We call a mixed strategy
simple if it is a simple function as a function from X intoM 1+(K ).

We separate the proof into eight steps.

Step 1 Suppose that f is a mixed strategy of player 1, and ( fν) is a sequence of simple
mixed strategies of player 1 that converges to f pointwise as ν → ∞. Then, for every
(x, y) ∈ X × Y and i ∈ {1, . . . ,m}, the following holds.

lim
ν→∞ sup


∈L

∣
∣
∣
∣

∫

K
ui (k, 
, x, y)d( fx − fν,x )

∣
∣
∣
∣ = 0.

Proof of Step 1 Suppose not. By taking a subsequence, we can assume that there exists
δ > 0 and a sequence (
ν) of L such that

∣
∣
∣
∣

∫

K
ui (k, 
ν, x, y)d( fx − fν,x )

∣
∣
∣
∣ ≥ δ.

Because L is compact, we can assume without loss of generality that 
ν → 
∗ ∈
L as ν → ∞. Moreover, because K and L are compact, the function (k, 
) →
ui (k, 
, x, y) is uniformly continuous, and thus for the metrics dK of K and dL of
L , there exists δ′ > 0 such that if dK (k, k′) + dL(
, 
′) < δ′, then |ui (k, 
, x, y) −
ui (k′, 
′, x, y)| < δ

8 . Because fν,x converges to fx with respect to the weak* topology,
for sufficiently large ν, dL(
ν, 


∗) < δ′ and
∣
∣
∣
∣

∫

K
ui (k, 


∗, x, y)d( fν,x − fx )

∣
∣
∣
∣ <

δ

2
.

Therefore, for any such ν,

∫

K
ui (k, 
ν, x, y)d( fν,x − fx )

≤
∫

K

(

ui (k, 

∗, x, y) + δ

8

)

d( fν,x − fx )
+

−
∫

K

(

ui (k, 

∗, x, y) − δ

8

)

d( fν,x − fx )
−

≤ δ

2
+

∫

K
ui (k, 


∗, x, y)d( fν,x − fx ) < δ,

where ( fν,x − fx )+ (resp. ( fν,x − fx )−) is the positive (resp. negative) part of the
Jordan decomposition of the measure fν,x − fx . By symmetric arguments, we can
show that
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∫

K
ui (k, 
ν, x, y)d( fν,x − fx ) > −δ,

and thus,
∣
∣
∣
∣

∫

K
ui (k, 
ν, x, y)d( fν,x − fx )

∣
∣
∣
∣ < δ,

which is a contradiction. This completes the proof of Step 1. ��
Fix any ε > 0 and any mixed strategy f of player 1. By Lemma 1, there exists a

sequence ( fν) of simple mixed strategies of player 1 such that fν → f pointwise as
ν → ∞ and the range of fν is always included in P . By Step 1 and the dominated
convergence theorem, there exists ν such that

∫

X×Y
sup

∈L

∣
∣
∣
∣

∫

K
ui (k, 
, x, y)d( fx − fν,x )

∣
∣
∣
∣ dμ <

ε

2

for every i ∈ {1, . . . ,m}. Set f ′′ = fν , and let K ′ be the union of the support of f ′′
x .

Then, K ′ is a finite set. Moreover, for every mixed strategy g of player 2,

|Ui ( f
′′, g) −Ui ( f , g)| =

∣
∣
∣
∣

∫

X×Y

∫

K×L
ui (k, 
, x, y)d(( f ′′

x − fx ) ⊗ gy)dμ

∣
∣
∣
∣

≤
∫

X×Y

∫

L

∣
∣
∣
∣

∫

K
ui (k, 
, x, y)d( f ′′

x − fx )

∣
∣
∣
∣ dgydμ

≤
∫

X×Y
sup

∈L

∣
∣
∣
∣

∫

K
ui (k, 
, x, y)d( f ′′

x − fx )

∣
∣
∣
∣ dμ

<
ε

2
.

Step 2 There exists δ > 0 such that for any two strategies g1 and g2 of player 2 and
any strategy f ′ of player 1, if ρ(g1y, g

2
y) < δ for every y ∈ Y and the support of f ′

x is
included in K ′ for every x ∈ X, then for every i ∈ {1, . . . ,m},

|Ui ( f
′, g1) −Ui ( f

′, g2)| <
ε

6
.

Proof of Step 2 Suppose not. Then, for every positive integer ν, we can choose
i, fν, g1ν , g

2
ν such that the support of fν,x is included in K ′ for every x ∈ X ,

ρ(g1ν,y, g
2
ν,y) < 1

ν
for every y ∈ Y , and

Ui ( fν, g
1
ν ) −Ui ( fν, g

2
ν ) ≥ ε

6
.

Because M 1+(L) is compact and K ′ is finite, we have that the following mapping

P → max
k∈K ′

∫

L
ui (k, 
, x, y)dP
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is uniformly continuous with respect to the Prohorov metric ρ. Therefore,

max
k∈K ′

∫

L
ui (k, 
, x, y)d(g1ν,y − g2ν,y) → 0

as ν → ∞. By the dominated convergence theorem,

ε

6
≤ Ui ( fν, g

1
ν ) −Ui ( fν, g

2
ν )

=
∫

X×Y

∑

k∈K ′
fν,x ({k})

∫

L
ui (k, 
, x, y)d(g1ν,y − g2ν,y)dμ

≤
∫

X×Y
max
k∈K ′

∫

L
ui (k, 
, x, y)d(g1ν,y − g2ν,y)dμ

→ 0 as ν → ∞,

which is a contradiction. This completes the proof of Step 2. ��
Step 3 There exist a finite subset L ′ ⊂ L and {Q1, . . . , QN } ⊂ M1+(L) such that the
support of Q j is included in L ′ for all j , and for every mixed strategy g of player 2,
there exists a simple mixed strategy g′ of player 2 such that g′

y = Q j for some j and
ρ(gy, g′

y) < δ for every y ∈ Y , where δ > 0 is given in Step 2.

Proof of Step 3 Because L is compact, there exists a countable dense subset Q of
M 1+(L) such that every Q ∈ Q has a finite support. Therefore, there exists a finite set
L ′ ⊂ L and {Q1, . . . , QN } ⊂ M 1+(L) such that the support of Q j is included in L ′ for
all j , and for every Q ∈ M 1+(L), there exists j such that ρ(Q, Q j ) < δ. Choose any
mixed strategy g of player 2, and define g′

y = Q j∗ , where j∗ = min{ j |ρ(gy, Q j ) <

δ}. Then, g′ is a simplemixed strategy such that g′
y = Q j for some j andρ(gy, g′

y) < δ

for every y ∈ Y , as desired. This completes the proof of Step 3. ��
Until the end of Step 7, we assume that ui is nonnegative for all i . Define

c =
∑

(i,k,
)∈{1,...,m}×K ′×L ′

∫

X×Y
ui (k, 
, x, y)dμ.

If c = 0, then we can add um+1(k, l, x, y) ≡ 1, and thus we can assume without
loss of generality that c > 0. Define Y ′ = Y × {1, . . . ,m} × K ′ × L ′ and a measure
ν on the set X × Y ′ such that

ν(A × {(i, k, 
)}) = c−1
∫

A
ui (k, 
, x, y)dμ.

Define

ci,k,
(y) =
∫

X
ui (k, 
, x, y)μ(dx |y),
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di,k,
(y) =
{
0 if ci,k,
(y) = 0,

1
ci,k,
(y)

otherwise.

If y′ = (y, i, k, 
), then

ν(T |y′) = di,k,
(y)
∫

T
ui (k, 
, x, y)μ(dx |y),

νY ′(S × {(i, k, 
)}) = c−1
∫

S
ci,k,
(y)dμY .

In particular, di,k,
(y) = 1
ci,k,
(y)

for almost all (y, i, k, 
) ∈ Y ′ with respect to νY ′ ,
and thus ν is conditionally atomless for player 1.

Step 4 Let T be a measurable subset of X. Then, there exists a sequence of the parti-
tions ({HM

1 , . . . , HM
M }) of T such that

lim
M→∞

∫

Y ′

(

max
j

ν(HM
j |y′)

)

dνY ′ = 0.

Proof of Step 4 By assumption on X , we can assume without loss of generality that
X = [0, 1], and the σ -algebra F of X includes all Borel sets. First, we show that
every probability measure P on ([0, 1],F ) is atomless if and only if the cumulative
distribution function F(x) = P([0, x]) satisfies F(0) = 0 and is uniformly continu-
ous.

Suppose that P is atomless. Then, P({x}) = 0 for all x ∈ [0, 1], and thus F(0) = 0
and F is left-continuous. Because every cumulative distribution function is right-
continuous, we have that F is continuous. Since [0, 1] is compact, F is uniformly
continuous.

Conversely, suppose that F(0) = 0 and F is uniformly continuous. Then, P({x}) =
0 for all x ∈ [0, 1]. For every set B ∈ F ,

max
i∈{1,...,m} P(B ∩ [(i − 1)/m, i/m])
≤ max

i∈{1,...,m}[F(i/m) − F((i − 1)/m)] → 0 as m → ∞,

which implies that B is not an atom of P . Thus, our claim is correct.
For M ∈ N, define

HM
1 = T ∩ [0, M−1],

and for j ∈ {2, . . . , M},

HM
j = T∩]( j − 1)M−1, jM−1].

Weshow that this sequence ({HM
1 , . . . , HM

M })of partitions of T satisfies the require-
ment of our claim.
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Fix any y′ ∈ Y ′ such that ν(·|y′) is atomless. By our previous argument, we have
that the cumulative distribution function x → ν([0, x]|y′) is uniformly continuous
and ν({0}|y′) = 0, and thus

lim
M→∞

(

max
j

ν(HM
j |y′)

)

= 0.

Because ν is conditionally atomless for player 1, we have that ν(·|y′) is atomless for
almost all y′ with respect to νY ′ . Therefore, by the dominated convergence theorem,
we have that

lim
M→∞

∫

Y ′

(

max
j

ν(HM
j |y′)

)

dνY ′ = 0,

as desired. This completes the proof of Step 4. ��
LetRK ′

be the set of all real-valued function on K ′. For s ∈ R
K ′
, wewrite sk instead

of s(k), and define ‖s‖ =
√∑

k∈K ′ s2k as usual. Let �K ′
be the set of all s ∈ R

K ′

such that sk ≥ 0 for all k ∈ K ′ and
∑

k∈K ′ sk = 1. Moreover, let V K ′
be the set of all

s ∈ R
K ′

such that there exists k ∈ K ′ such that sk = 1 and sk′ = 0 for all k′ ∈ K ′\{k}.
Step 5 Suppose that s ∈ �K ′

. Then, for every measurable set T in X and κ > 0, there
exists a measurable function b : T → V K ′

such that

∫

Y ′

∥
∥
∥
∥ν(T |y′)s −

∫

T
b(x)ν(dx |y′)

∥
∥
∥
∥ dνY ′ < κ.

Proof of Step 5 Let �′ be some probability measure space and Z1, Z2, . . . be an inde-
pendent family of random variables defined on �′ such that Z j (ω) ∈ V K ′

and
E(Z j ) = s.14 Note that, by definition, we have that

∑
k Var(Z

j
k ) ≤ 1. Define

HM
1 , . . . , HM

M as in Step 4, and

bM (x, ω) = Z j (ω) if x ∈ HM
j .

Then, we have that

∫

T
bM (x, ω)ν(dx |y′) =

M∑

j=1

ν(HM
j |y)Z j (ω),

14 The existence of such �′ and Z1, Z2, . . . can easily be shown. For example, let �i be a copy of K
′ with

probability Pi such that Pi ({k}) = sk . Let �
′ be the product probability space ∏∞

i=1 �i , and

Zik (k1, k2, . . .) =
{
1 if k = ki ,

0 if k �= ki .

Then, Z1, Z2, . . . satisfies all our requirements.
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and thus,

E

(∫

T
bM (x, ω)ν(dx |y′)

)

= ν(T |y′)s.

Meanwhile, for almost all y′ ∈ Y ′,

E

(∥
∥
∥
∥ν(T |y′)s −

∫

T
bM (x, ω)ν(dx |y′)

∥
∥
∥
∥

2
)

= E

⎛

⎜
⎝

∥
∥
∥
∥
∥
∥
ν(T |y′)s −

∑

j

ν(HM
j |y′)Z j (ω)

∥
∥
∥
∥
∥
∥

2
⎞

⎟
⎠

=
∑

k

Var

⎛

⎝
∑

j

ν(HM
j |y′)Z j

k

⎞

⎠

=
∑

j

(ν(HM
j |y′))2

∑

k

Var(Z j
k )

≤
∑

j

(ν(HM
j |y′))2

≤ max
j

ν(HM
j |y′),

where the last inequality follows from Hölder’s inequality. Therefore, by Step 4 and
Fubini’s theorem, for sufficiently large M , we have that

E

(∫

Y ′

∥
∥
∥
∥ν(T |y′)s −

∫

T
bM (x, ω)ν(dx |y′)

∥
∥
∥
∥

2

dνY ′

)

=
∫

Y ′
E

(∥
∥
∥
∥ν(T |y′)s −

∫

T
bM (x, ω)ν(dx |y′)

∥
∥
∥
∥

2
)

dνY ′ < κ2.

Hence, there exists ω ∈ �′ such that

(∫

Y ′

∥
∥
∥
∥ν(T |y′)s −

∫

T
bM (x, ω)ν(dx |y′)

∥
∥
∥
∥ dνY ′

)2

≤
∫

Y ′

∥
∥
∥
∥ν(T |y′)s −

∫

T
bM (x, ω)ν(dx |y′)

∥
∥
∥
∥

2

dνY ′ < κ2,

where the first inequality is verified by the Cauchy–Schwarz inequality. Hence, we
can set b(x) = bM (x, ω). This completes the proof of Step 5. ��
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For every bounded measurable function h : X → R
K ′
, define a seminorm

‖h‖ν =
∫

Y ′

∥
∥
∥
∥

∫

X
h(x)ν(dx |y′)

∥
∥
∥
∥ dνY ′ .

Note that, if h is a mixed strategy of player 1 and the support of hx is always
included in K ′, then hx can be seen as an element of �K ′

, and thus h can be treated
as a bounded measurable function from X into R

K ′
, and the seminorm ‖h‖ν can be

defined.

Step 6 For every κ > 0 and every mixed strategy h of player 1 such that hx ∈ �K ′

for all x ∈ X, there exists a pure strategy h′ of player 1 such that h′
x ∈ �K ′

for all
x ∈ X and

‖h − h′‖ν < κ.

Proof of step 6 Clearly, h : X → �K ′
ismeasurable in the usual sense, and thus, by the

dominated convergence theorem, there exists a simple mixed strategy h′′ : X → �K ′

such that

‖h − h′′‖ν ≤ κ

2
.

Meanwhile, the range of h′′ is a finite set {p1, . . . , pq}. Let Tj = (h′′)−1(p j ).
Then, applying Step 5 for T = Tj and s = p j , we have that there exists a measurable
function b j : Tj → V K ′

such that

∫

Y ′

∥
∥
∥
∥
∥

∫

Tj

(h′′
x − b j (x))ν(dx |y′)

∥
∥
∥
∥
∥
dνY ′ <

κ

2q
.

Define h′
x = b j (x) if x ∈ Tj . Then, h′ is a function from X into V K ′

, and thus it
is actually a pure strategy. Moreover,

‖h′′ − h′‖ν =
∫

Y ′

∥
∥
∥
∥

∫

X
(h′′

x − h′
x )ν(dx |y′)

∥
∥
∥
∥ dνY ′ <

κ

2
.

Thus,

‖h − h′‖ν ≤ ‖h − h′′‖ν + ‖h′′ − h′‖ν < κ,

as desired. This completes the proof of Step 6. ��
Step 7 The claim of this theorem is correct if ui is nonnegative for each i .
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Proof of step 7 Recall that we have already fixed ε and f , f ′′ before Step 2. By Step
6, there exists a pure strategy f ′ such that

‖ f ′′ − f ′‖ν <
ε

6c|K ′||L ′| .

Choose any strategy g of player 2. By Step 3, there exists a simple mixed strategy g′
of player 2 such that the support of g′

y is included in L ′ and ρ(gy, g′
y) < δ for every

y ∈ Y . For hk(x) = f ′′
x ({k}) − f ′

x ({k}),
∣
∣
∣
∣

∫

Y
g′
y({
})

∫

X
hk(x)ui (k, 
, x, y)μ(dx |y)dμY

∣
∣
∣
∣

≤
∫

Y
g′
y({
})

∣
∣
∣
∣

∫

X
hk(x)ui (k, 
, x, y)μ(dx |y)

∣
∣
∣
∣ dμY

= c
∫

Y×{(i,k,
)}
g′
y({
})di,k,
(y)

∣
∣
∣
∣

∫

X
ci,k,
(y)hk(x)ν(dx |y′)

∣
∣
∣
∣ dνY ′

= c
∫

Y×{(i,k,
)}
g′
y({
})

∣
∣
∣
∣

∫

X
hk(x)ν(dx |y′)

∣
∣
∣
∣ dνY ′

≤ c‖ f ′′ − f ′‖ν <
ε

6|K ′||L ′| .

Therefore, we have that

|Ui ( f
′′, g′) −Ui ( f

′, g′)| <
ε

6
.

By Step 2, this implies that

|Ui ( f
′′, g) −Ui ( f

′, g)| ≤ |Ui ( f
′′, g) −Ui ( f

′′, g′)| + |Ui ( f
′′, g′) −Ui ( f

′, g′)|
+ |Ui ( f

′, g′) −Ui ( f
′, g)|

<
ε

2
.

Therefore,

|Ui ( f , g) −Ui ( f
′, g)| ≤ |Ui ( f , g) −Ui ( f

′′, g)| + |Ui ( f
′′, g) −Ui ( f

′, g)| < ε,

as desired. This completes the proof of Step 7. ��
Step 8 The claim of this theorem is correct.

Proof of step 8 Define

vi (k, l, x, y) =
{
max{ui (k, l, x, y), 0} if 1 ≤ i ≤ m,

max{−ui−m(k, l, x, y), 0} if m + 1 ≤ i ≤ 2m,
.
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Then, applying Step 7 for a nonnegative function v : K × L × X × Y → R
2m , we

obtain the desired result. This completes the proof of Step 8. ��

6.4 Proof of Theorem 2

We construct a modified game of the original game as follows. First, there are two
players, one is i and another is 0. The observation spaces, the common prior, and
the payoff function are the same as those in the original game. The action set and
the observation function of player i are the same as those of the original game,
whereas the action set and the observation function of player 0 are

∏
j �=i K j and

x−i = (x1, . . . , xi−1, xi+1, . . . , xn), respectively. Because the prior μ is condition-
ally atomless for player i in the original game, it has the same property in this modified
game. Therefore, by Theorem 1, for each ε > 0 and each mixed strategy fi of player
i , there exists a pure strategy f ′

i such that for some finite subset K ′
i of Ki , f ′

i,xi
∈ K ′

i
for any xi ∈ Xi and for each mixed strategy g of player 0 in the modified game,

max
j∈{1,...,m} |Uj ( fi , g) −Uj ( f

′
i , g)| < ε.

Now, for each j �= i , choose any mixed strategy f j of player j in the original game.
Then, the profile f−i = ( f1, . . . , fi−1, fi+1, . . . , fn) is a mixed strategy of player 0
in the modified game. Therefore, by the above inequality, we have

max
j∈{1,...,m} |Uj ( fi , f−i ) −Uj ( f

′
i , f−i )| < ε,

as desired. This completes the proof. ��

6.5 Proofs of Theorems 3–4

Theorem 3.1 of Balder (1988) showed that under the assumptions of Theorem 4, there
exists a Nash equilibrium such that every strategy is, in his terminology, a ‘transition
probability’. Lemma 2 said that our ‘mixed strategy’ is equivalent to this ‘transition
probability’ of Balder (1988). Therefore, Theorem 3 implies Theorem 4, and it suffices
to show Theorem 3.

We need a lemma.

Lemma 3 Suppose that G1, . . . ,Gm are two player games, and for every game G j ,
player 1 has the same observation set X0 and action set K0. Moreover, suppose that
for any j , the common prior μ j in the game G j is conditionally atomless for player
1. Then, for every ε > 0 and every mixed strategy f of player 1, there exists a pure
strategy f ′ of player 1 such that f ′ is ε-equivalent to f in every game G j , and the
range of f ′ is finite.

Proof We can assume that the payoff function u j of the game G j is a real-valued
function: if not, then we can replace G j with games G j

1, . . . ,G
j
M , where M is the

dimension of the range of u j , every G j
i has the same observation sets, action sets,
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and the common prior as G j , and the payoff function of G j
i is u j

i . Let Y
j and L j be

the observation set and the action set for player 2 in G j , respectively. We can assume
without loss of generality that Y 1, . . . ,Ym are disjoint. Define Y = Y 1 ∪ · · · ∪ Ym ,
L = L1 × · · · × Lm , and

μ(B) =
m∑

j=1

1

m
μ j (B ∩ (X0 × Y j ))

for each measurable set B ⊂ X0 × Y . Moreover, for each j , define

u j (k0, 
, x0, y) =
{
u j (k0, 
 j , x0, y) if y ∈ Y j ,

0 otherwise,

where 
 = (
1, . . . , 
m). Consider the game G = ({1, 2}, (K , L), (X0 × Y , μ), u).
We can easily check thatμ is conditionally atomless for player 1. By Theorem 1, there
exists an (ε/m)-purification f ′ of f in the game G such that the range of f ′ is finite.
For each j , choose any mixed strategy g j of player 2 in game G j and y∗

j ∈ Y j . If

y ∈ Y j , define

gy = g1y∗
1

⊗ · · · ⊗ g j−1
y∗
j−1

⊗ g j
y ⊗ g j+1

y∗
j+1

⊗ · · · ⊗ gmy∗
m
.

By Lemma 2, we can easily check that g is a mixed strategy of player 2 in the game
G. Therefore,

ε

m
> |Uj ( f , g) −Uj ( f

′, g)| = 1

m
|U j ( f , g j ) −U j ( f ′, g j )|,

which completes the proof of Lemma 3. ��
Choose any Nash equilibrium f . We construct pure strategies f ′

1, . . . , f ′
n recur-

sively. Let 1 ≤ m ≤ n and suppose that for i < m, f ′
i is already defined. Define

Hm = {h|h j = f j for j ≥ m, h j = f j or h j = f ′
j for j < m}.

Note that, this set is finite, and in particular, H1 = { f }. For any j �= m and h ∈ Hm ,
we construct a two player game Gmjh = ({m, j}, (Km, K j ), (Xm × X j , μmj ), umjh)

by defining umjh(km, k j , xm, x j ) from the following integral:

∫

∏

∈N\{m, j}(X
×K
)

u(k, x)d

⎛

⎝
⊗


∈N\{m, j}
h
,x


⎞

⎠ μ(dx−mj |xm, x j ),

where x−mj = (x1, . . . , xm−1, xm+1, . . . , x j−1, x j+1, . . . , xn). Because μ is weakly
conditionally atomless, the family (Gmjh) satisfies all requirements of Lemma 3, and
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thus there exists a pure strategy f ′
m of player m such that

max
i∈N |Umjh

i ( fm, g j ) −Umjh
i ( f ′

m, g j )| <
ε

3n−m+1

for any j �= m and mixed strategy g j of player j in game Gmjh , and the range of f ′
m

is finite.
We use mathematical induction to show that if h ∈ Hm , h is an (ε/3n−m+1)-Nash

equilibrium, and

max
i∈N |Ui (h) −Ui ( f )| <

ε

3n−m+1 .

If m = 1, then H1 = { f }, and this result is obvious. Suppose that this result holds
for some m ∈ {1, . . . , n}, and choose any h′ ∈ Hm+1. If h′

m = fm , then h′ ∈ Hm ,
and thus, our claim automatically holds. Hence, we assume that h′

m = f ′
m . Let h be a

strategy profile such that h j = h′
j for j �= m and hm = fm . Then, h ∈ Hm , and thus,

for any j �= m, umjh is defined and, for a mixed strategy g j of player j ,

Umjh( fm, g j ) = U (g j , h− j ),

Umjh( f ′
m, g j ) = U (g j , h

′− j ).

Choose any mixed strategy g′
i of player i and set g′

j = h′
j for all j �= i . If i = m,

then g′
j = h j for all j �= m, and by the induction hypothesis,

Ui (g
′) −Ui (h) ≤ ε

3n−m+1 .

Therefore, for some j �= m,

Ui (g
′) −Ui (h

′) = Ui (g
′) −Ui (h) +Ui (h) −Ui (h

′)

≤ Ui (g
′) −Ui (h) + |Umjh

i ( fm, h j ) −Umjh
i ( f ′

m, h j )|
<

ε

3n−m+1 + ε

3n−m+1

<
ε

3n−(m+1)+1
.

Hence, we assume that i �= m. Let g j = g′
j if j �= m and gm = hm . Because of the

induction hypothesis,

Ui (g) −Ui (h) ≤ ε

3n−m+1 .

Meanwhile,

|Ui (g
′) −Ui (g)| = |Umih

i ( f ′
m, gi ) −Umih

i ( fm, gi )| <
ε

3n−m+1 ,
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|Ui (h
′) −Ui (h)| = |Umih

i ( f ′
m, hi ) −Umih

i ( fm, hi )| <
ε

3n−m+1 .

Therefore,

Ui (g
′) −Ui (h

′) = Ui (g
′) −Ui (g) +Ui (g) −Ui (h) +Ui (h) −Ui (h

′)
≤ |Ui (g

′) −Ui (g)| +Ui (g) −Ui (h) + |Ui (h) −Ui (h
′)|

<
ε

3n−m+1 + ε

3n−m+1 + ε

3n−m+1

= ε

3n−(m+1)+1
.

Thus, h′ is an (ε/3n−(m+1)+2)-Nash equilibrium. Moreover,

|Ui (h
′) −Ui ( f )| ≤ |Ui (h

′) −Ui (h)| + |Ui (h) −Ui ( f )| <
ε

3n−(m+1)+1
.

This completes the proof of this induction. In particular, to set m = n + 1, we have
that f ′ is an ε-purification of the Nash equilibrium f . This completes the proof. ��
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