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Abstract
A tournament graph overn players is weakly transitive at player p if it contains a
Hamiltonian path (p1, p2, . . . , pn)with p1 = p such that for all odd integers i ≤ n−2
there is an arc from pi to pi+2. We show that weak transitivity at p suffices to make
player p win any extended stepladder tournament of degree at most two.

Keywords Agenda control · Extended stepladder · Hamiltonian path · Knockout
tournament · Weak transitivity

Mathematics Subject Classification C70 · D70 · D71

1 Introduction

Knockout tournaments are widely used when it comes to the selection of an alternative
from a set of available options. These elimination formats are crucial for collecting
important insights in the analysis of electoral systems (cf. Brams and Fishburn 2002;
Laslier 1997) and also play a predominant role in sport competitions where one has to
determine the winner among a set of players. In such settings it is usually assumed that
the tournament organizer possesses reliable information, in the form of a (determin-
istic) tournament graph over the player set, about who would win the match between
every two players. The tournament organizer then specifies a seeding which labels the
leaves of a rooted binary tree by players with each internal node being reached by the
winner between the two children. The player who reaches the root of the binary tree
is the final winner of the knockout tournament.
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Agenda control has been defined in the work of Bartholdi et al. (1989) as a par-
ticular type of manipulation for knockout tournaments. Provided that the tournament
organizer has a favorite player, the question of study is whether there exists a seeding
in the rooted binary tree which makes this player the final winner of the knockout
tournament. This problem has attracted a lot of attention in the literature with the
main focus being on balanced rooted binary trees 1. It is known that the agenda control
problem restricted to balanced rooted tree is NP-hard (Aziz et al. 2018). Moreover, the
NP-hardness remains even if we further require the tournament organizer’s favorite
player to be a king 2 of the tournament graph (cf. Kim andWilliams 2015). Strengthen-
ing the notion of a king node was shown to allow for efficiently constructible seedings
making kings winners in balanced knockout tournaments (cf. Kim et al. 2017; Kim and
Williams 2015). We refer the reader to the work of Williams (2016) for an excellent
and detailed survey of the recent literature.

A well known necessary condition for a player p to win a knockout tournament is
that every node in the tournament graph should be reachable from p via a Hamiltonian
path, i.e., there should be a Hamiltonian path in the tournament graph starting at p (cf.
Moulin 1988). This condition is also sufficient when the rooted binary tree of the
knockout tournament is a stepladder (cf. Williams 2016, Claim19.6).

In the present paper, we impose the following additional restriction on at least one
such path (p1, p2, . . . , pn) with p1 = p andn being the number of players: for all
odd integers i ≤ n − 2 there should be an arc from pi to pi+2. Clearly, this kind of
weak transitivity “shortens” in a regular way the reachability from p of every node
in the tournament graph. We show then in Sect. 3 that weak transitivity at p suffices
to make player p win any extended stepladder of degree at most two. This class of
knockout tournaments is formally defined and illustrated in Sect. 2, and it includes the
standard stepladders for which the mentioned reachability condition has been shown
to be crucial. Moreover, its importance has been demonstrated in the work ofArlegi
and Dimitrov (2020) when it comes to the design of “fair” knockout tournaments in
sports competitions. Using a suitable notion of “fairness”,Arlegi and Dimitrov (2020)
show that every such knockout tournament has to be an extended stepladder of degree
at most two.

2 Preliminaries

In this section we reproduce some basic notions from graph theory. For a detailed
introduction in the field we refer the reader to the textbooks (Bang-Jensen and Gutin
2008; West 2000).

1 A balanced rooted tree is a rooted tree where the levels of the leaves differ at most one. A formal definition
is provided in Sect. 2.
2 A nodev in a tournament graph is a king if for every other vertexu in the tournament either there is an
arc fromv tou, or there exists a third nodew such that there is an arc fromv tow and an arc fromw tou.
It is well-known that every tournament has at least one king (cf. Landau 1953). Moreover, the set of all
kings in a tournament graph is exactly the so-called uncovered set of the tournament graph (cf. Shepsle and
Weingast 1984; Yang and Guo 2017).
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Graphs A graph is a tuple G = (V , E), where V denotes a set of nodes and E
a set of edges. For ease of exposition, we also useV (G) and E(G) to denote the
node set and edge set ofG, respectively. Two nodes are adjacent if there is an edge
between them. The degree of a node is the number of nodes adjacent to it. A graph
G ′ = (V ′, E ′) is a subgraph ofG = (V , E) if V ′ ⊆ V and E ′ ⊆ E . Moreover,
if E ′ = {(u, v) ∈ E : u, v ∈ V ′}, we say thatG ′ is an induced subgraph, or more
precisely, a subgraph ofG induced byV ′. A simple path (path for short) is a sequence
(v1, v2, . . . , vt ) of nodes such that either t = 1, or t ≥ 2 and there is an edge betweenvi
andvi+1 for all i ∈ {1, 2, . . . , t − 1}. The length of a path is defined as the number
of edges in the path. A graph is connected if there exists at least one path between
every two nodes. A cycle in a graphG is a sequence (v1, v2, . . . , vt ) of nodes such
that (v1, v2, . . . , vt ) is a path and there is an edge betweenv1 andvt inG.
Trees A tree is a connected graph without cycles. A leaf in a tree is a node of degree1.
A nonleaf node is also called an internal node of the tree. It is well-known that between
every two nodes there is a unique path in a tree.

A rooted tree is a tree with a specific node called the root. Let T be a rooted tree
with root r and with at least two nodes. Letv ∈ V (T )\{r} be a nonroot node, and let
(r , v1, v2, . . . , vt , v) be the unique path from the rootr to the nodev. Then, the nodevt
is called the parent ofv, and consequentlyv a child ofvt . Moreover, all nodes exceptv
in the path are called the ancestors ofv, andv is called the descendant of these nodes.
(Note that we do not regardv as a descendant of itself) It is a folklore that for any
nonempty subset L ⊆ V (T )\{r} of nodes, there is a unique nodev such thatv is the
ancestor of all nodes in L and, moreover, for any childu ofv at least one node in L is
not the descendant ofu. This nodev is referred to as the least common ancestor of L .
For a nodev inT , the subtree of T rooted at v, denoted byTv , is the rooted tree with
rootv whose underling graph is the subgraph of T induced byv and all descendants
ofv.

A leaf-to-root path in T is a path from a leaf node to the root. The level of a nodev

is the length of the unique path fromv to the root. Hence, the root has level 0. ByΓ (T )

we denote the set of all leaves of T , andΓ (T , �) the set of all leaves of T of level �.
The height of T , denoted byh(T ), is the length of a leaf-to-root pathwith themaximum
length. Therefore, it holds that Γ (T ) = ⋃h(T )

�=0 Γ (T , �).
The trunk of T is the path from the root to the least common ancestor of the leaves

in the highest level. The distance between a leafv of T to the trunk of T is the length
of the shortest path among all paths between this leaf and the nodes in the trunk. The
branch length of T is the maximum distance between leaves and the trunk.

A binary tree is a rooted tree where each internal node has at most two children. A
full binary tree is a binary tree so that every internal node has exactly two children. A
full binary tree is balanced if the heights of all leaves differ at most one. In a full binary
tree, two nodes having the same parent are called siblings. Clearly, every nonroot node
in a full binary tree has a sibling.

A stepladder is a full binary tree such that the distance between every leaf to
the trunk is exactly one. A full binary tree of branch length at mostq is also called an
extended stepladder of degreeq (cf. Arlegi andDimitrov 2020). Therefore, stepladders
are exactly full binary trees of branch length1. We refer to Fig. 1 for an illustration.
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(a) (b) (c)

Fig. 1 An illustration of an extended stepladder of degree1 (a) and two extended stepladders of degree2
(b, c). The trunk in each tree is in gray

Tournament graphs Let P be a set ofn players, n ≥ 2.We assume that information is
available about the match outcome (no ties) for every pair of players; that is, for p ∈ P
and p′ ∈ P\ {p}, either p beats p′ or p′ beats p. This information is represented as a
tournament graph over P , denoted byGP . That is,GP is a directed graph with node
set P such that, for every two different players p, p′ ∈ P , there is an arc from p to p′
if and only if p beats p′. AHamiltonian path inGP is a sequence (p1, p2, . . . , pn) ofn
different nodes such that there is an arc from pi to pi+1 for all i ∈ {1, 2, . . . , n − 1}.
Knockout tournaments For a set P of players and a rooted full binary treeT of |P|
leaves, a seeding is a one-to-one mapping from P toΓ (T ). A knockout tournament
is a 4-tuple (P, T , ϕ,GP ) where ϕ is a seeding from P toΓ (T ), andGP is a tour-
nament graph over P . Given a knockout tournament (P, T , ϕ,GP ), players reaching
internal nodes of T are determined as follows. Initially, a player p occupies a leaf
nodev ifϕ(p) = v. Then, two players occupying two sibling-nodes compete, and the
winner moves to the parent node. This procedure continues until some player reaches
the root. The corresponding player is then called the final winner of the knockout
tournament (P, T , ϕ,GP ).

We use the notion (P ′, Tv, ϕ
′,GP [P ′]) for the knockout tournament restricted to

the subtree of T rooted at nodev. That is, P ′ = {p ∈ P : ϕ(p) ∈ Γ (Tv)} is the
set of all players seeded to the leaves of Tv byϕ, ϕ′ is the seeding which maps P ′
toΓ (Tv) such that for every p ∈ P ′ it holds that ϕ′(p) = ϕ(p), and GP [P ′] is the
subtournament ofGP induced by P ′.

3 Weak transitivity and agenda control

As briefly elaborated in the Introduction, the weak transitivity of a tournament
graph strengthens the mentioned necessary condition for making a distinguished
player win a given knockout tournament. More precisely, we say that a tourna-
ment graphGP is weakly transitive at some player p1 if there is a Hamiltonian path
� = (p1, p2, . . . , pn) inGP such that for all odd integers i ≤ n − 2 there is an arc
from pi to pi+2. We call� the witness ofGP at p1 in this definition. (Note that ifGP

is weakly transitive at some player p1, it may have more than one witness.) See Fig. 2
for an illustration of a weakly transitive tournament.

Our main result (Theorem1) shows that, provided T is an extended stepladder
of degree at most two, weak transitivity ofGP at some player p ∈ P suffices for
the existence of a seeding ϕ : P → Γ (T ) making player p the final winner of
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Fig. 2 A weakly transitive tournament. Note that not all arcs are shown. Missing arcs in the tournament
can be set arbitrarily. That is, besides the displayed arcs, no additional restrictions are placed on how the
other arcs should look like

the knockout tournament (P, T , ϕ,GP ). Before unfolding this result, we present the
following useful lemma.

Lemma 1 Let T be a full binary tree with four leaves, P = {p1, p2, p3, p4} a set of
four players, andGP a tournament graph over P such that p1 beats p2 and p3, and p3
beats p4. Then there exists a seedingϕ : P → Γ (T ) making p1 the final winner of
(P, T , ϕ,GP ),

Proof There are only two full binary trees with four leaves.

Figure3 displays these two trees as well as the desired seedings making player p1
the final winner of (P, T , ϕ,GP ). �	
Theorem 1 Let P be a set of players,GP a tournament graph over P, and T an
extended stepladder of degree at most two with n = |P| leaves. If GP is weakly
transitive at some player p ∈ P, then there is a seedingϕ : P → Γ (T ) making p the
final winner of (P, T , ϕ,GP ).

Proof We proceed by induction. The assertion clearly holds when there are two or
three players. Due to Lemma1, the theorem holds when there are four players. Let us
now assume that the statement is correct when there are at most k players and show
that it also holds when there aren = k + 1 players, k ≥ 4.

Letv andu be the two children of the root of T such that |V (Tv)| ≥ |V (Tu)|. In
addition, let (p1, p2, . . . , pn) be a witness ofGP , where p1 = p. So, p1 beats both p2
and p3. Moreover, for each positive integer i ≤ n, let P≥i = {pi , pi+1, . . . , pn}. AsT
has branch length at most two, it suffices to consider the following three cases.

Case1: There are no leaves in the first level of T , i.e., Γ (T , 1) = ∅.
In this case, the subtreeTu must contain exactly two leaves and Tv contains

exactlyn − 2 leaves (see Fig. 4).
By induction, there is a seedingϕ′ from P≥3 to the leaves of Tv so that p3 is the final

winner of (P≥3, Tv, ϕ
′,GP [P≥3]). Then we construct the desired seedingϕ : P →

Γ (T ) based onϕ′ as follows:
– ϕ(pi ) = ϕ′(pi ) for all pi ∈ P≥3 and
– {ϕ(p1), ϕ(p2)} = Γ (Tu, 1).

As p1 beats both p2 and p3, we know that p1 is the final winner of (P, T , ϕ,GP ).

Case2: There is exactly one leaf in the first and second levels of T , respectively, i.e.,
|Γ (T , 1)| = |Γ (T , 2)| = 1.

Let x and y denote the two children ofv, and without loss of generality, we assume
that |V (Tx )| ≥ ∣

∣V (Ty)
∣
∣ (see Fig. 5).
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Fig. 4 Illustration of the seeding
in Case1

Fig. 5 Illustration of the seeding in Case2

Due to the induction, there is a seedingϕ′ from P≥3 to Γ (Tx ) such that p3 is the
final winner of (P≥3, Tx , ϕ′,GP [P≥3]). Then we construct the desired seedingϕ :
P → Γ (T ) based onϕ′ as follows:
– ϕ(pi ) = ϕ′(pi ) for all pi ∈ P≥3;
– ϕ(p2) = y; and
– ϕ(p1) = u.

It is easy to check that p1 is the final winner of (P, T , ϕ,GP ).

Case3: There is exactly one leaf in the first level, but there are no leaves in the second
level, i.e., |Γ (T , 1)| = 1 and Γ (T , 2) = ∅.

We further distinguish between the following two sub-cases.

Case3.1: |Γ (T , �)| ∈ {0, 2, 4} for each � ∈ {2, 3, . . . , h(T )}.
As T has branch length at most two, it must be that |Γ (T , h(T ))| = 4 and

|Γ (T , �)| = 2 holds for each � ∈ {3, 4, . . . , h(T ) − 1}. Letting t = h(T ) − 1,
the number of players is then exactlyn = 2t + 1 (odd number). Now we design a
seedingϕ from P toΓ (T ) as illustrated in Fig. 6.

The precise definition of the seeding is as follows. We divide the player set
{p3, p4, . . . , p2t−2} into t − 2 subsets P3, P5, . . . , P2t−3 such that each subset Pj ,
where j ∈ {3, 5, . . . , 2t − 3}, consists of the players p j and p j+1. We pair up the
players in P3, P4, . . . , P2t−3, one by one, in the leaves from the ones in the second-
lowest level to the ones in the second-highest level, respectively. That is, for each
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Fig. 6 Illustration of the seeding in Case3.1

j ∈ {3, 5, . . . , 2t − 3}, we let {ϕ(p j , p j+1)} = Γ (T ,
j+3
2 ). Then, we pair up p2

and pn , and pair up pn−1 and pn−2 in the highest level leaves. In other words, we set

{ϕ(pn), ϕ(pn−1), ϕ(pn−2), ϕ(p2)} = Γ (T , h(T )),

such thatϕ(p2) and ϕ(pn), and ϕ(pn−1) and ϕ(pn−2), respectively, are siblings in T .
Finally, we seed p1 to the first level leaf, i.e., {ϕ(p1)} = Γ (T , 1). AsGP is weakly
transitive at p1 with the witness (p1, p2, . . . , pn) andn is odd, we know that pn−2
beats both pn and pn−1. This implies the player reaching the least common ancestor
of the leaves in the highest level is either p2 or pn−2. Moreover, for each subset Pj ,
j ∈ {3, 5, . . . , 2t − 3}, the player reaching the parent ofϕ(p j ) andϕ(p j+1) is p j .
Again, asGP is weakly transitive at p1 with witness (p1, p2, . . . , pn), for every j ∈
{3, 5, . . . , 2t −3}, it holds that the player p j beats the player p j+2. As a consequence,
the player reaching the parent of the parent ofϕ(p j ) for each j ∈ {3, 5, . . . , 2t − 3} is
either p2 or the player p j . In otherwords, the player reaching a trunk node at level� ≥ 1
is either p2 or p2�+1. Hence, either p2 or p3 reaches the second node in the trunk. As p1
beats both p2 and p3, we can conclude that p1 is the final winner of (P, T , ϕ,GP ).

Case3.2: |Γ (T , �)| = 3 for some � ∈ {3, 4, . . . , h(T )}.
Let i be the smallest integer such that in the level i there are exactly three leaves.

Let z denote the leave in level i whose parent is in the trunk of T . Letw be the sibling
of z (which is a trunk node inT ). Obviously, there are exactly2(i − 1) leaves of levels

at most i , i.e.,
∣
∣
∣
⋃i

�=1 Γ (T , �)

∣
∣
∣ = 2(i − 1). Due to the induction, there is a seedingϕ′

from P≥2i−1 to the leaves in the subtree rooted atw such that p2i−1 is the final winner
of (P≥2i−1, Tw, ϕ′,GP [P≥2i−1]). We design a seedingϕ from P to Γ (T ) as follows
(seeFig. 7).

First, we seed players in P≥2i−1 to the same nodes as inϕ′, i.e., ϕ(p j ) =
ϕ′(p j ) for all p j ∈ P≥2i−1. Then, similar to Case3.1, we divide the player set
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Fig. 8 A tournament graph over eight players. All missing arcs are backwards

{p3, p4, . . . , p2i−2} into i − 2 subsets P3, P5, . . . , P2i−3 where Pj = {p j , p j+1}
for each j ∈ {3, 5, . . . , 2i − 3}. We seed p1 in the first level leaf, and pair up play-
ers in each Pj , j ∈ {3, 5, . . . , 2i − 3}, in the leaves of level j+3

2 . That is, we let
{ϕ(p1)} = Γ (T , 1), let

{
ϕ

(
p j

)
, ϕ

(
p j+1

)} = Γ

(

T ,
j + 3

2

)

\{z}

for all j ∈ {3, 5, . . . , 2i − 3}. Finally, we seed p2 to the leaf z, i.e., ϕ(p2) = z. The
player reaching then the parent of z is either p2 or p2i−1. Moreover, asGP is weakly
transitive with witness (p1, p2, . . . , pn), we know that p j beats p j+1 and p j+2 for all
j ∈ {1, 3, 5, . . . , 2i − 3}. As a consequence, the player reaching the parent of ϕ(p j )

and ϕ(p j+1) is p j for all j ∈ {3, 5, . . . , 2i−3}. Similar to Case3.1, we can see that the
player reaching a trunk node at level�, where � ≤ i − 2, is either p2 or p2�+1. Hence,
either p2 or p3 reaches the second node in the trunk. As p1 beats both p2 and p3, we
can conclude that p1 is the final winner of (P, T , ϕ,GP ). �	

Remark 1 Notice that the seedings constructed in Lemma1 and Theorem1 assign the
distinguished player to a leaf in the lowest level of the corresponding rooted binary
tree.

Let us finally provide an example showing that Theorem1 does not extend to
full binary trees of branch length at most three. For this, let the player set be
P = {p1, . . . , p8}, the tournament graphGP as shown in Fig. 8, and the rooted
binary treeT be balanced of eight leaves (and thus an extended stepladder of degree
three).

Clearly,GP is weakly transitive at p1. Notice that a player has to win three matches
in order to reach the root of T . Since p1 beats only two players inGP , we conclude
that no seeding in T can make this player the final winner of the tournament.
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