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Abstract
We investigate how, in a situation with two players in which noncooperation is the
only equilibrium, cooperation can be achieved via costly investment. We find that in
the resulting equilibria, cooperation is an all-or-nothing outcome, that is, either there
is full cooperation by both players, or no cooperation at all. The cost of investment is
unrelated to the degree of cooperation that is ultimately achieved, unless the cost is
too high, in which case investment cannot in any degree overcome the disincentive to
cooperate. Moreover, the positive externalities that players have on each other in the
course of play, although they affect investment, are ultimately irrelevant to the degree
of cooperation achieved. We view our model as an explanation for the formation and
stable existence of business alliances,where the players are firms forming a partnership
defined and sustained by contractual agreements, but which is short of a merger or
acquisition.

Keywords Self-enforcing cooperation · Alliances · Theory of the firm · Bargaining
solution · Investment

JEL Classification 165 · 370 · 575 · 590 · 595 · 610 · 750

1 Introduction

We develop a simple two-firm game model to investigate how, given a situation with
two players in which noncooperation is the only equilibrium, cooperation can be
achieved via costly investment. We have in mind explaining the formation and self-
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2 H. Moulin et al.

enforcing sustainment of alliances between firms that are common in the real business
world, but we believe our game is of independent theoretical interest.

An alliance is a cooperative venture between firms that is typically formalized
through a set of contracts, rather than via a joint venture that is formally a separate
firm owned by the partner firms, or is short of a merger or acquisition.1 A canonical
example is of a large pharmaceutical company allying with a biotechnology com-
pany to produce an efficacious molecule invented by the biotech at an industrial scale,
using the complementary expertise of each firm for the profit of both.2 Similarly,
aircraft development and manufacture are undertaken by airframe manufacturers and
numerous specialized alliance partners who jointly define product features and share
development costs of modules, each subsequently undertaking responsibility for man-
ufacturing the modules it has developed.3

In our model, the cooperative technology driving the alliance needs complementary
inputs from both firms: firm 1’s investment and firm 2’s cooperative action subsequent
to the investment together determine firm 1’s cooperative benefits (and symmetrically
for firm 2). Think of firm 1 training some of its assets (machines, workers) to be com-
patible with firm 2’s technology, and firm 2 sending some of its workers to implement
the beneficial transfers.

We express these ideas with a game in two stages, an investment stage and an
execution stage. To capture the complementarities, we structure the execution stage
as a prisoner’s dilemma. We restrict the payoffs in the prisoner’s dilemma to have a
separable linear structure so as to rule out direct technological complementarities. The
benefit of defection then comes directly and only from each player’s own action.While
seemingly lacking in generality, ruling out direct technological complementarities
allows us to focus solely on the consequences of strategic behavior on outcomes that
would otherwise be masked.

What is key is that the costly investments in the first stage alter the payoffs of
the subsequent prisoner’s dilemma game. The modified payoffs resulting from the
investment achieve cooperation via the folk theorem in the second stage—cooperation
that would not occur without the investment.

What is more surprising is that, because firms are looking ahead, they have an
incentive to invest not just to achieve cooperation per se in the second stage, but to
achieve full cooperation uniquely.4 Thus, we go beyond the folk theorem, which only
yields a superset of this equilibrium.

1 In contrast with alliances, mergers and acquisitions (where the merged entity can force cooperation)
entail substantial up-front fixed costs (such as legal fees, or, with airline mergers, re-painting the airplanes
of one firm—distinct from the cost of investment) that can be avoided via an alliance; if the marginal cost
of investment is too high to support an alliance then it might then be justifiable to undertake an acquisition
or merger in order to take advantage of the firms’ technological complementarities if the fixed cost does
not eliminate all potential profit.
2 See, for example Lerner and Merges (1998) . For a history of the development of the artificial human
insulin via an alliance between the biotechnology firm Genentech and the pharmaceutical company Eli
Lilly, see Hall (2002).
3 See Dussauge and Garrette (1995) .
4 Of course this assertion rests on our specific equilibrium selection criterion: see Definition 2.
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Self-enforcing cooperation via strategic investment 3

The cooperation result does depend on investment costs not being too high. If they
are too high, there is no investment and no cooperation at all, so our theory also
explains the failure of the firms to successfully form alliances: it is all or nothing. Our
theory, therefore, has empirical relevance and has the potential to expand the theory
of the firm in general.

1.1 Literature

There are several papers that construct theoretical models intended to capture features
specific to alliances. Habib and Mella-Barral (2007) build a continuous-time model
in which firms entering into the alliance acquire “know-how,” modeled as a kind of
capital accumulation rather than from learning in the sense of Bayesian updating,
from their participation in the alliance project. The thrust of the article is that the
alliance terminates (“dissolution”) via a Texas shoot-out mechanism at some finite
but stochastic stopping time, when joint participation in the project is no longer cost-
effective, that is, when operation by one of the firms singly is more efficient; at that
point that firm buys out the other via the mechanism. As with our own model, the
participating firms provide effort to the alliance project. However, the effort is pre-
determined, that is, it is not continuously re-determined once the alliance is formed,
so strategic punishments for reduced effort are not an element of the model.

A paper by Robinson (2008) similarlymodels alliances as entailing contributions of
effort by both firms and also entailing capital investment, but in his case the capital is
reallocated from internal projects rather than formed anew. As with Habib and Mella-
Barral’s model, the firms contribute effort, but again the effort is chosen ex ante, and
given that it is a two-period model, strategic noncooperative punishments do not figure
in; rather, the focus is on the decision to form an alliance ex post of the revelation of
the productivity of alternative projects; the potential to form alliances ex post results
in greater willingness to undertake risky (“long shot”) projects.

Thus, relative to this literature, we model the crucial element of self-enforcement,
which the previous literature simply assumes. Our key point is that this self-
enforcement is driven by the investment that is the main ingredient for real-world
alliances, and the forward-looking character of the firms leads them to make the “just
right” quantity of investment needed to support this self-enforcement.

Ourmodel also has some similaritieswith Panico’s (2017)model of alliances. There
are two stages, an initial investment stage followed by a repeated non-cooperative game
with the payoff structure determined by the investment in the initial stage. Panico’s
model differs from ours in that there are exogenous complementarities, expressed via
cross-multiplication terms in the payoff functions. Our model is also different in that
firms’ investments in the first stage influence the payoffs in the second stage, and any
bargaining power arising from investment stems from the interaction of the payoffs,
that is, we completely endogenize the bargaining power of the firms.

Our model has a number of similarities with the model of duopoly by Kreps and
Scheinkman (1983): there are two stages of the game, with costly investment taking
place in the first stage, and with a Bertrand game played in the second stage that is
conditional on the investments that occurred in the first stage.
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4 H. Moulin et al.

Kreps and Scheinkman establish that the revenue functions that emerge from the
structure of the second stage are unique and have properties that allow the first stage
to be analyzed. They then find that investment in the first stage always leads to the
Cournot equilibrium in the second stage, not theBertrand equilibrium thatwould result
from the firms investing up to the competitive level. One might interpret this as the
division of the game into stages in this sense as fostering limited cooperation between
the firms and we have a similar result.

In our alliance interpretation of the game, the challenge facing the firms is to
ensure their ongoing cooperation in a self-enforcing fashion, given the difficulty of
anticipating all contingencies in contracts and the costliness of enforcing contracts.
As in Kreps and Scheinkman’s model, firms make costly investments in the first stage,
but our second stage is different in that the firms play a repeated prisoner’s dilemma,
specialized further in a manner we describe below.

1.2 Contents of the paper

In Sect. 2, we describe the model: There are two stages: in the first stage the firms each
invest Ii at some cost cIi ; the second stage game is a Prisoner’s Dilemma with payoffs
linear in the level of “cooperative action” yi by both players, with yi interpretable as
mixed strategy probabilities of cooperation, with the payoffs also determined by the
first-stage investments. A monitoring device detects defection by either player with
some probability 1 − δ and defection is then punished in grim trigger fashion.

In Sect. 3, we state and prove our main theorem, i.e., cooperation is sustained if and
only if δ, the complement of the monitoring accuracy, is larger than the marginal cost
of investment; we also propose a geometric interpretation of the result, and further
connect the result with bargaining theory. A conclusion follows.

2 Themodel

2.1 Preliminary definition:ı-grim-trigger equilibrium

Definition 1 Given a (complete information) two-person game in normal form G =
({1, 2},Y1,Y2, u1, u2) and a parameter δ, 0 < δ < 1, we call the outcome y∗ =
(y∗

1 , y
∗
2 ) a δ-grim-trigger equilibrium (δ -gt-eq.) of G if

ui (y
∗
i , y∗

j ) ≥ δ · max
xi

ui (xi , y
∗
j ) + (1 − δ) · min

x j
max
xi

ui (xi , x j ) for i = 1, 2 (1)

The classic interpretation of a grim-trigger equilibrium comes from the infinite
repetition of gameG when both players have the discount factor 1−δ (see for instance
Friedman 1986).

The following formally equivalent interpretation is better suited to our model. The
players agree to play y∗; the agreement is self-enforcing because a unilateral deviation
by player i is detected by a monitoring device with probability 1− δ, then revealed to
player j who in turn punishes player i in grim trigger fashion.
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Self-enforcing cooperation via strategic investment 5

Here is the precise strategic scenario:
Each player i publicly reports, to each other and to the machine, the strategy y∗

i she
agrees to use; then the players simultaneously report their actual strategies y1, y2 to
the machine (but not to each other). With probability δ the machine does nothing and
these strategies are final; the final payoffs are ui (y1, y2). With probability 1 − δ, the
machine compares the agreed upon with the actual choices: if yi �= y∗

i while y j = y∗
j ,

the machine reveals this to player j , then gives both player a chance to pick a new
strategy; these last choices are simultaneous.

In a δ-grim-trigger equilibrium, the player j who abides by the agreement but
observes that player i does not is committed to play a strategy ensuring that player i
can at most reach her min-max utility, i. e., x j solves minx j {maxxi ui (xi , x j )}.

Naturally the game G may well have a large set of δ -gt-equilibria and this will be
the case in our model.

2.2 The investment game

We next define the two-person multi-stage game Γ .
There are two players i = 1, 2. The three positive exogenous parameters of the

model are the common cost c per unit of investment, the individual cost αi per unit of
cooperative action, and the error parameter δ of the monitoring device (equivalently,
the common discount factor 1−δ in the repetition of the Stage 2 game); also 0 < δ < 1.

Stage 1: each firms picks an investment level Ii at cost cIi (there is no restriction on
the size of Ii ); this defines the game G(I1, I2) = ({1, 2}, [0, 1], [0, 1], u1, u2) where
they choose a level of cooperation yi ∈ [0, 1]:

ui (y) = −αi yi + Ii y j − cIi for {i, j} = {1, 2} (2)

Stage 2: G(I1, I2) is played: the firms agree on a joint cooperative action y∗ and
select simultaneously and independently their actual level of cooperation y1, y2; the
monitoring device is activated, which could result in a Stage 3 where both firms pick
their final level of cooperation, as described above.

(In the repeated game interpretation, Stage 2 is simply an infinite repetition of
G(I1, I2) with common discount factor 1 − δ).

As noted in the introduction, the simple linear structure of the payoffs rules out
direct technological complementarities between the players’ actions yi . Excluding
these seemingly makes the case for cooperation harder: if no investment takes place,
the game G(0, 0) allows no cooperation at all.

2.2.1 Equilibrium selection

It follows from the following behavioral assumption in the game Γ : the players antic-
ipate that in the second stage a δ-g.t. equilibrium will emerge; moreover, they evaluate
the result of the second stage as their own worst undominated δ-gt-equilibrium.

In words: the players are confident that the cooperative opportunities afforded by
the monitoring and commitment device will be exploited, but they make the worst
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6 H. Moulin et al.

case prediction that the other player will retain full bargaining power, that is, they are
pessimistic.

Definition 2 A pessimistic equilibrium of the game Γ is a pair (I ∗
1 , I ∗

2 ) of investment
strategies such that

(i) There is a unique δ-g.t. equilibrium y∗ = (y∗
1 , y

∗
2 ) in the game G(I ∗

1 , I ∗
2 ) with

utilities (U∗
1 ,U∗

2 );
(ii) For every Ii ≥ 0 the worst δ-g.t. equilibrium for player i in G(Ii , I ∗

j ) gives him
at most utility U∗

i .

3 Themain result

Theorem 1 The null investment I = 0, with corresponding null payoffs, is always an
equilibrium of the game Γ .

If δ < c it is its unique pessimistic equilibrium.
If δ > c there is another, welfarewise superior, pessimistic equilibrium I ∗: players

fully cooperate in G(I ∗) (that is, y∗ = (1, 1)), and for each i = 1, 2:

I ∗
i = 1

1 − δ
αi ; U

∗−
i = (δ − c)I ∗

i = δ − c

1 − δ
αi (3)

If δ = c the null investment I = 0 and I ∗ are both equilibria, both with zero payoffs.

3.1 Interpretation

The most striking feature of the result is that, whether cooperation is sustainable or
not, we select a unique pessimistic equilibrium outcome. That cooperation is full,
y∗ = (1, 1), or null, y∗ = (0, 0), is not surprising when the payoffs are linear in
strategies.

The key comparison is between the cost per unit of investment c, and the error
parameter δ of the monitoring device: full cooperation is feasible if and only if c < δ.
The individual cost αi of the cooperative action plays no role. Unsurprisingly, a low
investment cost makes cooperation easier to achieve but as is evident in the formula
for investment in Eq. (3), the total quantity of investment is completely unrelated to
the cost, as long as the marginal cost is below the c < δ threshold.

That a more accurate (smaller δ) monitoring device makes cooperation harder
to enable seems counter-intuitive. It is important that the δ > c requirement applies
to the first stage investment, not the second stage repeated game. The cost parameter
c is the marginal cost of investment; correspondingly, δ is the marginal payoff from
that investment in benefit. What is the benefit? It is the potential gain from defection,
weighted by the probability of not being monitored; see Eq. (6). A larger δ increases
the probability that a defector can successfully defect, conditional on the other player
playing cooperate, that is, y j = 1. However, we also see from examining the left hand
side of (6) that for cooperation to be possible, the right hand side must be positive, that
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Self-enforcing cooperation via strategic investment 7

is, δ > c is necessary for cooperation. The payoffs are then the net marginal benefit
of investment multiplied by the degree of investment, as is evident in Eq. (3).

Once the δ > c threshold is satisfied, investment takes place in the first stage that
is sufficient for cooperation to occur, but no more than that. Thus, the cone that we
describe in Lemma 1 collapses to a ray in equilibrium; investment has taken place just
sufficient for this, that is, for the folk theorem to apply.5

3.2 Proof

We begin with a preliminary lemma: given an investment pair (I1, I2), what are the
undominated equilibria of the second-stage game? If there is insufficient investment
then the non-cooperative equilibrium is the only equilibrium, butwith sufficient invest-
ment there is a line of Pareto-dominant equilibriawhich in general is not a singleton. At
a threshold pair of investments, this continuum of Pareto-dominant equilibria reduces
to a point.

Lemma 1 (pessimistic) payoffs in the game Γ

Set γi (Ii ) = (1− δ)
Ii
αi
, i = 1, 2. Recall that U−

i (I ; δ) is player i’s worst undomi-
nated δ-gt-equ. in G(I ).

(1) If γ1 · γ2 < 1 the only δ-gt-eq. of G(I ) is y = (0, 0), and U−
i (I ; δ) = −cIi for

i = 1, 2.
(2) If γ1, γ2 ≥ 1 the undominated δ-gt-eqs cover the two intervals [(1, 1

γ1
), y∗],

[y∗, ( 1
γ2

, 1)]. Player 1 ’s worst is (1, 1
γ1

), player 2 ’s worst is ( 1
γ2

, 1), and

U−
i (I ; δ) = δ

1 − δ
αi − cIi for i = 1, 2 (4)

(3) If γ2 < 1 < γ1 and γ1 · γ2 ≥ 1 the undominated δ-gt-eqs cover the interval
[(1, 1

γ1
), (1, γ2)], and

U−
1 (I ; δ) = δ

1 − δ
α1 − cI1 ; U

−
2 (I ; δ) = (δ − c)I2 (5)

(and a symmetric statement by exchanging the role of the players).

Proof We prove the lemma. In G(I ), the minmax payoff of each player is −cIi ,
because player i cannot get a positive payoff if y j = 0 . And the dominant defection
is to provide no cooperation at all. Therefore, inequality (1) for player i reads

− αi yi + Ii y j − cIi ≥ δ Ii y j − cIi ⇐⇒ yi ≤ γi y j (6)

If γ1γ2 < 1, these two inequalities together, for i and for j , allow only y1 = y2 = 0,
which proves statement 1).

5 The pessimism assumption implies inconsistent beliefs across the two players, except in equilibrium,
where those beliefs become consistent.
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8 H. Moulin et al.

Assume γ1γ2 ≥ 1 for the rest of the proof. Inequalities (6) cut the cone D = {y =
(y1, y2)| 1

γ1
≤ y2

y1
≤ γ2} in the square [0, 1]2. This cone is a line if and only if γ1γ2 = 1,

otherwise its dimension is two.
For player 1, unless y = 0, inequality (6) implies

y2
y1

≥ 1

γ1
>

α1

I1
	⇒ −α1y1 + I1y2 > 0;

therefore, his payoff increases when y increases along the ray [0, y]; by a similar
argument, player 2’s increases too. We conclude that the undominated δ-gt-eq. of
G(I ) are exactly on the intersection of D with the North East frontier of [0, 1]2
(equivalently, the NE frontier of D ∩ [0, 1]2).

If γ1 ≥ 1 and γ2 ≥ 1, this frontier contains the full cooperation outcome y∗ and
is given by statement 2). And if γ2 < 1 < γ1 this frontier avoids y∗ and is contained
inside the face y1 = 1 of [0, 1]2, as described in statement 3).

Finally, the worst undominated δ-gt-eq. for player 1 is (1, 1
γ1

) in both cases, but for

player 2 it is ( 1
γ2

, 1) in the former and (1, γ2) in the latter. This gives Eq. (4) and (5),
respectively, after a simple computation. ��

We can now prove the theorem.

Proof The first statement is clear. If the other player does not invest, I cannot get a
positive payoff in G(I ) and will get a strictly negative one if I invest.

Next, for each of the three types of investment profiles I discussed in Lemma 1,
we check for possible Nash equilibria.

If I is such that γ1(I1)γ2(I2) < 1 we have U−
i (I ; δ) = −cIi for i = 1, 2, so the

only possible equilibrium is I = 0.
If γ1(I1) ≥ 1 and γ2(I2) ≥ 1, and at least one of these inequalities is strict, say

γ1(I1) > 1, then U−
1 (I ; δ) decreases strictly in I1 (see (4)) so this cannot be an

equilibrium. The only possibility is γ1(I1) = γ2(I2) = 1, which means that I = I ∗
and the payoffs are given by ( 3). This cannot be an equilibrium if δ < c because each
player is better off defecting and guaranteeing a non-negative payoff. But if δ ≥ c,
we check now it is a Nash eq.. By (4) if Player 1 raises his investment to I1 > I ∗

1 his
payoff becomes U−

1 (I1, I ∗
2 ) = δ I ∗

1 − cI1 < δ I ∗
1 − cI ∗

1 = U−
i (I ∗). If he lowers I1

below I ∗
1 , he gets U

−
1 (I1, I ∗

2 ) = −cI1, a much sharper loss.
Note that if δ = c, the payoffs are both zero at I ∗.
It remains to check the case of a profile I such that γ2(I2) < 1 < γ1(I1) and

γ1(I1)γ2(I2) ≥ 1. We claim I cannot be a Nash equilibrium. If δ > c , by (5) U−
2 (I )

increases strictly in I2, so player 2 is not best replying. If δ ≤ c, then we use (5) again
to compute

γ1(I1) > 1 = γ1(I
∗
1 ) 	⇒ I1 > I ∗

1 	⇒ U−
1 (I ) = δ I ∗

1 − cI1 < 0

proving the claim. ��
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Self-enforcing cooperation via strategic investment 9

Fig. 1 Geometric representation of the game

3.3 Geometric interpretation

Our second-stage game is equivalent to a prisoner’s dilemma in which the game
frontier of the mixed-strategy payoffs form a parallelogram; Taub and Kibris (2004)
demonstrate the basic properties of this game. In themodel here, investment by player 1
shifts the right facet of the game frontier to the right, leaving the left facet unaffected.
The rightward shift of the right facet also flattens the upper and lower facets, but
leaves in place the payoffs of the partner player, and also preserves the parallelogram
structure.6 Viewing the players as firms forming an alliance, this corresponds crudely
to firm 1’s ability to increase the output capacity of its own factory whilst leaving the
output of the partner player’s factory unaffected.

The I ∗ equilibrium achieved here corresponds to the apex of a rectangle that is
traced out by all investment pairs (I1, I2) that minimally achieve cooperation, so that
the Pareto dominant equilibrium set consists of a single point (see the orange dashed
rectangle in Figs. 1a, b ), as described in point (3) of Lemma 1. Only the parameters
α1 and α2 are needed to describe it; the positive externality terms from the investments
Ii y j are rendered irrelevant after the investment stage has attained the apex, as long
as the cost is below the threshold. The content of Theorem 1 is that Fig. 1a, in which
player 2 is not fully cooperating, is not an equilibrium of the game Γ : in Fig. 1b,
both players are fully cooperating on the Pareto frontier, and investment takes place
sufficient for this to be the only outcome.

To gain intuition about the rectangle, starting from the no-investment state, begin
with a boxwith apexes at (0, 0) and (−α1,−α2) (shaded in green in Fig. 1a, b). Thefirst
key observation is that this box is invariant with respect to all subsequent investment
such that minimal cooperation is maintained, as these investments do not affect the
αi . Now notice that the box can be transferred to the apex of the no-investment game,
and to any intermediate game in which investment achieves minimal cooperation, as

6 This flattening of the upper and lower facets reduces the endogenous bargaining power of the rival player
as defined in Taub and Kibris (2004).
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10 H. Moulin et al.

illustrated in panel (a). The slope of the diagonal of the box is equal to the ratio of the
marginal payoffs from a player playing Defect, starting from a position of (Cooperate,
Cooperate). In this sense, the apex solution I ∗ reflects the bargaining power of the
players that is determined by their potential gains from defection and is not affected by
investment. (Its exact locus also depends on δ; however, the coefficient δ

1−δ
is simply

the conversion of the stock value of the equilibrium payoff into a flow value and as
such is only a scaling coefficient.)

3.4 Correspondence with a bargaining solution

The uniqueness of the apex outcome and the irrelevance of the positive externality
terms Ii y j and of the cost parameter once the minimum-cost threshold is crossed
suggest that the apex solution is also a bargaining solution.

Bargaining is a formalization of a cooperative game, typically with two players, in
which there is a trade-off between the rewards the players can receive. By agreeing on
axioms that must hold for the decision on how to trade off rewards, a unique outcome
can be achieved. The most well-known bargaining solutions include the Nash solution
and theKalai–Smorodinski solution,whichhas a variant knownas theKalai–Rosenthal
(Kalai andRosenthal 1978) solution.Details about these and other bargaining solutions
can be found in Osborne and Rubinstein (1990) and Friedman (1986, especially pp.
205 ff). These solutions have geometric representations and the fact that our game
has a geometric interpretation leads to the connection with bargaining theory: the box
with apexes at (0, 0) and (−α1,−α2) that we previously pointed out in Fig. 1a is in
some sense the mirror image of the geometric construction of the Kalai–Rosenthal
solution, in which one would draw a box from the same starting points extending into
the positive quadrant rather than the negative quadrant.7

At the I ∗ solution, the apex point 1−δ
δ

(α1, α2) is the Kalai–Rosenthal solution by
construction: the slope of the diagonal in Fig. 1b is the slope of the ray to the solution.

The rectangle with apex 1−δ
δ

(α1, α2) traced out by the investment pairs that achieve
minimal cooperation (the orange rectangle in Fig. 1a) can be viewed as the bargaining
set available to the players before they undertake investment. Assuming that they
coordinate investment to just achieve minimal cooperation, it is only points on this
rectangle that are available to them as equilibria from an ex ante point of view. (This is
analogous toKreps and Scheinkman’s R functions.) The apex of this rectangle trivially
satisfies both the Kalai–Smorodinsky and the Kalai–Rosenthal constructions. In this
sense, our model is equivalent to a bargaining solution.

4 Conclusion

We have an all-or-nothing outcome: either agents fully cooperate if the marginal cost
of investment is below the monitoring threshold or they do not cooperate at all.

7 The Kalai–Smorodinsky bargaining solution uses the maximal individually rational payoffs to draw the
box, whilst Kalai–Rosenthal uses the maximal payoffs from a deviation, which is what we are using here.
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Self-enforcing cooperation via strategic investment 11

The folk theorem predicts cooperation, but rests on a requirement of patience that
does not seem to have much of an empirical correlate. Our model bridges this gap
in that, with the interpretation of 1 − δ as equivalent to a discount factor, or as the
monitoring precision of a coordinating device, cooperation emerges regardless of
patience or precision, as long as it is not too costly, in the sense of the requirement
that c ≤ δ.

We believe that our model explains the existence of alliances. Alliances are a sig-
nificant part of the business landscape: they typically entail joint investment and the
cooperation they embody is long lasting. We also explain the failure of alliances to
form, and both the existence and failures of alliances rest on the interaction of costs and
patience (or, alternatively, interpreting δ as the monitoring and enforcement structure),
which do have empirical correlates.
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