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Abstract We study deterministic single object auctions in the private values envi-
ronment. We show that an allocation rule is implementable (in dominant strategies)
and non-bossy if and only if it is a strongly rationalizable allocation rule. With a mild
continuity condition, we show that an allocation rule is implementable and non-bossy
if and only if it is a simple utility maximizer (with appropriate tie-breaking). All our
characterizations extend the seminal result of Roberts (“Aggregation and Revelation
of Preferences”, pp. 321–348, 1979) from the unrestricted domain to the restricted
domain of single object auctions.
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1 Introduction

We study single object auctions in the standard private values model. We are interested
in characterizing deterministic allocation rules which can be implemented in domi-
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nant strategies using suitable payments. We provide precise characterizations of such
rules under an additional condition called non-bossiness. Non-bossiness specifies that
keeping the valuations of other agents fixed, if agent i changes his valuation in such a
manner such that his own allocation (i.e., whether he gets the object or not) does not
change, then the allocation of no other agent should change.

We show that implementability of a non-bossy allocation rule in dominant strategies
is equivalent to that allocation rule being a strongly rationalizable allocation rule.
Under an additional continuity like condition, this characterization can be strengthened
as follows: an implementable non-bossy allocation rule is equivalent to a simple utility
maximizer allocation rule. Simple utility maximizers transform the valuation of each
agent to a real number using non-decreasing functions that we call simple utility
functions. Then, it gives the object to an agent who has the highest non-negative
simple utility (breaking ties in a consistent manner). If all the agents have negative
simple utility, then the object is not allocated. The simple utility maximizers are a large
class of allocation rules—it includes the efficient allocation rule, constrained efficient
allocation rule with a reserve price, revenue-optimal allocation rule in Myerson (1981)
that maximizes virtual utilities of agents.

1.1 Relation to the literature

The primary objective of this paper is to characterize the set of implementable allo-
cation rules in the single object private values model. While, Myerson (1981) pro-
vides a monotonicity condition that is necessary and sufficient, it is only an implicit
characterization. We are interested in a functional form explicit characterization of
implementable allocation rule.

A benchmark result that answers such a question for the unrestricted domain is
Roberts (1979). Consider a general mechanism design set up with private values and
quasi-linear utility. Let A be a finite set of alternatives. Suppose |A| ≥ 3. The type of
agent i is denoted as vi ∈ R

|A| and vi (a) denotes the valuation of agent i for alternative
a. Roberts (1979) shows that if type space of every agent is R

|A|, then for every onto
and implementable allocation rule f , there exists λ1, . . . , λn ≥ 0, not all of them
equal to zero, and κ : A → R such that at every valuation profile v,

f (v) ∈ arg max
a∈A

[ ∑
i∈N

λivi (a) + κ(a)

]
.

Such allocation rules are called affine maximizer allocation rules. The unrestricted
type space plays a crucial role in Roberts’ theorem. It is well known that there are
implementable allocation rules in restricted domains that are not affine maximizers.
However, few concrete characterizations are known in any such restricted domain.

There have been some extensions of Roberts‘ affine maximizer theorem. Mishra and
Sen (2012) show that if the type space is a multidimensional open interval, an additional
condition neutrality along with implementability implies affine maximization. Carba-
jal et al. (2013) provide an extension where they consider infinite set of alternatives
but types are continuous functions on these alternatives (or satisfy some topological
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properties). Marchant and Mishra (2012) show that the set of implementable allocation
rules expand if we just have two alternatives. Lavi et al. (2003) characterize almost
affine maximizers (affine maximizers for large enough values) in specific combinato-
rial auction domains using various additional conditions.

The single object auction model is a restricted domain since each agent only places
a non-negative value on the alternative where he is allocated the object and places zero
value on all the other alternatives. This is a severe restriction on the set of all possible
types, and hence, all the earlier results do not have any implication on this model. As
is well known, in a restricted domain, the possibility to manipulate is smaller for an
agent, and hence, a larger set of allocation rules are implementable. Roberts’ theorem
shows that if the domain is unrestricted, then every allocation rule maximizes an affine
combination of valuations of agents. Our results show that in the single object auction
model, we get some form of maximization but it is no longer an affine maximization.
To our knowledge, this is one of the very few papers that has characterized non-affine
maximizers. Because of this reason, our methodology of proof differs from proving
the Roberts’ theorem.

A work related to ours is Archer and Tardos (2002). They consider the single
object auction model and show that if the object is always allocated then the only
implementable allocation rules satisfying non-bossiness and three more additional
conditions are min function allocation rules. 1 Min function allocation rules are simple
utility maximizer allocation rules, but with some additional limiting and continuity
properties. Though our characterization of simple utility maximizer is related to their
result, it has several important differences. First, their result requires that we always
sell the good. This rules out any allocation rule with a reserve price, such as Myer-
son’s revenue maximizing allocation rule. Further, our proof shows that allowing the
object to be not sold adds several non-trivial complications in deriving our results.
Second, they seem to require different types of range and tie-breaking conditions than
our continuity requirement. On the other hand, our characterization of simple utility
maximizer makes it explicit the way ties need to be broken. Finally, they have no
analog of our other characterization.

There have been many simplifications of the original proof of Roberts (Jehiel et
al. 2008; Lavi 2007; Dobzinski and Nisan 2009; Vohra 2011; Mishra and Sen 2012).
But none of these proofs show how Roberts’ theorem can be extended to a restricted
domain like the single object auction model. Unlike most of the literature, our goal is
not to characterize “affine maximizers”—indeed, all our characterizations capture a
larger class of implementable allocation rules than affine maximizers.

Instead of characterizing implementable allocation rules, one can characterize the
set of dominant strategy mechanisms directly by imposing conditions on mechanisms
rather than just on allocation rules. A contribution along this line is Ashlagi and
Serizawa (2011). They show that any mechanism which always allocates the object,
satisfies individual rationality, non-negativity of payments, anonymity in net utility,

1 Archer and Tardos (2002) consider a more general environment than ours in which a planner needs to
select a path in a graph, where each edge represents an agent. Informally, their three additional conditions
are various range and tie-breaking conditions, and called edge autonomy, path autonomy, and sensitivity.
The non-bossy condition is called independence by them.
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and dominant strategy incentive compatiblity must be the Vickrey auction. This result
is further strengthened by Mukherjee (2013), who shows that any strategy-proof and
anonymous (in net utility) mechanism which always allocates the object must use the
efficient allocation rule. Further, Sakai (2012) characterizes the Vickrey auction with
a reserve price using various axioms on the mechanism (this includes an axiom on
the allocation rule which requires a weak version of efficiency). By placing minimal
axioms on allocation rules, we are able to characterize a broader class of allocation
rules than these papers.

2 The single object auction model

A seller is selling an indivisible object to n potential agents (buyers). The set of agents
is denoted by N := {1, . . . , n}. The private value of agent i for the object is denoted
by vi ∈ R++. The set of all possible private values of agent i is Vi ⊆ R++—note
that we do not allow zero valuations. We will use the usual notations v−i and V−i to
denote a profile of valuations without agent i and the set of all profiles of valuations
without agent i , respectively. Let V := V1 × V2 × · · · × Vn .

The set of alternatives is denoted by A := {e0, e1, . . . , en}, where each ei is a vector
in R

n . In particular, e0 is the zero vector in R
n and ei is the unit vector in R

n with i-th
component 1 and all other components zero. The j-th component of the vector ei will
be denoted by ei

j . The alternative e0 is the alternative where the seller keeps the object

and for every i ∈ N , ei is the alternative where agent i gets the object. Notice that
our model focuses on deterministic alternatives. Every agent i ∈ N gets zero value
from any alternative where he does not get the object. An allocation rule is a mapping
f : V → A. For every v ∈ V and for every i ∈ N , the notation fi (v) ∈ {0, 1} will
denote if agent i gets the object ( fi (v) = 1) or not ( fi (v) = 0) at valuation profile v

in allocation rule f .
Payments are allowed and agents have quasi-linear utility functions over payments.

A payment rule of agent i ∈ N is a mapping pi : V → R.

Definition 1 An allocation rule f is implementable (in dominant strategies) if there
exist payment rules (p1, . . . , pn) such that for every agent i ∈ N and for every
v−i ∈ V−i

vi fi (vi , v−i ) − pi (vi , v−i ) ≥ vi fi (v
′
i , v−i ) − pi (v

′
i , v−i ) ∀ vi , v

′
i ∈ Vi .

In this case, we say (p1, . . . , pn) implement f and the mechanism ( f, p1, . . . , pn) is
incentive compatible.

Myerson (1981) showed that the following notion of monotonicity is equivalent to
implementability: see also Laffont and Maskin (1980) for a similar characterization.

Definition 2 An allocation rule f is monotone if for every i ∈ N , for everyv−i ∈ V−i ,
and for every vi , v

′
i ∈ Vi with vi < v′

i and fi (vi , v−i ) = 1, we have fi (v
′
i , v−i ) = 1.

The equivalence of monotonicity and implementability does not require any restriction
on the space of valuations [see Vohra (2011), for instance].
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3 Implementation, non-bossiness, and rationalizability

We now introduce the notion of rationalizability in our model. At every profile of
valuations, by choosing an alternative, the mechanism designer assigns values to each
agent—zero to all agents who do not get the object but positive value to the agent who
gets the object. Denote by 1vi the vector of valuations in R

n+, where all the components
except agent i have zero and the component corresponding to agent i has vi . Further,
denote by 10 the n-dimensional zero vector. For convenience, we will write 10 as
1v0 at any valuation profile. Using this notation, at a valuation profile (v1, . . . , vn), a
mechanism designer’s choice of an alternative in A can lead to the selection of one
of the following (n + 1) vectors in R

n+ to be chosen −1v0 , 1v1 , . . . , 1vn . We will refer
to these vectors as utility vectors. Any allocation rule f can alternatively thought of
choosing utility vectors at every valuation profile. The domain of valuations Vi of agent
i gives rise to a set of feasible utility vectors where only agent i gets positive value.
In particular, define for every i ∈ N , Di := {1vi : vi ∈ Vi }. Further, let D0 := {1v0}
and V0 = {0}. Denote by D := D0 ∪ D1 ∪ D2 ∪ . . . ∪ Dn , the set of all utility
vectors consistent with the domain of profile of valuations V . To define the notion
of a rational allocation rule, we will use orderings (reflexive, complete, and transitive
binary relation) on the set of utility vectors D. For any ordering 	 on D, let 
 be the
asymmetric component of 	 and ∼ be the symmetric component of 	. A strict linear
ordering is an anti-symmetric ordering with no symmetric component. An ordering
	 on D is monotone if for every i ∈ N , for every vi , v

′
i ∈ Vi with vi > v′

i , we have
1vi 
 1v′

i
. Our notion of rational allocation requires that at every profile of valuations

it must choose a maximal element among the utility vectors at that valuation profile,
where the maximal element is defined using a monotone ordering on D.

We now formally define a rationalizable allocation rule. For every allocation rule
f , let G f : V → D be a social welfare function induced by f , i.e., for all v ∈ V ,
G f (v) = 1v j if f (v) = e j for any j ∈ {0, 1, . . . , n}.
Definition 3 An allocation rule f is rationalizable if there exists a monotone ordering
	 on D such that for all v ∈ V , G f (v) 	 1v j for all j ∈ {0, 1, . . . , n}. In this case,
we say 	 rationalizes f .

An allocation rule f is strongly rationalizable if there exists a monotone strict
linear ordering 
 on D such that for all v ∈ V , 1vi 
 1v j for all j ∈ {0, 1, . . . , n}\{i},
where G f (v) = 1vi . In this case, we say 
 strongly rationalizes f .

We will investigate the relationship between (strongly) rationalizable allocation
rules and implementable allocation rules. The following lemma establishes that a
rational allocation rule is implementable.

Lemma 1 Every rationalizable allocation rule is implementable.

Proof Consider a rationalizable allocation rule f and let 	 be the corresponding
ordering on D. Fix an agent i and valuation profile v−i . Consider two valuations of
agent i : vi and v′

i with vi < v′
i with f (vi , v−i ) = ei . By definition of 	, 1vi 	 1v j

for all j ∈ (N ∪ {0})\{i}. Since 	 is monotone, 1v′
i

 1vi . By transitivity, 1v′

i

 1v j

for all j ∈ (N ∪ {0})\{i}. Then, by the definition of 	, f (v′
i , v−i ) = ei . Hence, f is

monotone, and hence, implementable. �
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The converse of Lemma 1 is not true. The following example establishes that.

Example 1 Suppose there are two agents: N = {1, 2}. Suppose V1 = V2 = R++.
Consider an allocation rule f defined as follows. At any valuation profile (v1, v2), if
max(v1 − 2v2, v2 − v1) < 0, then f (v1, v2) = e0. Else, if v1 − 2v2 < v2 − v1, then
f (v1, v2) = e2 and if v1 − 2v2 ≥ v2 − v1, then f (v1, v2) = e1. It is easy to verify
that f is monotone, and hence, implementable. �


We argue that f is not a rationalizable allocation rule. Assume for contradiction that
f is a rationalizable allocation rule and 	 is the corresponding monotone ordering.
Consider the profile of valuation (v1, v2), where v1 = 1 and v2 = 2. For ε > 0 but
arbitrarily close to zero, f (v1, v2 − ε) = e2. Hence, 1v2−ε 	 1v0 . By monotonicity,
1v2 
 1v0 . Now, consider the profile of valuations (v′

1, v2), where v′
1 = 2 + ε and

v2 = 2. Note that f (v′
1, v2) = e0. Hence, 1v0 	 1v2 . This is a contradiction.

A feature of this example is that at valuation profile (v1, v2), the allocation rule was
choosing e2. But when valuation of agent 1 changed tov′

1, it chose e0 at valuation profile
(v′

1, v2). Hence, agent 1 could change the outcome without changing his own outcome.
As we show next, such allocation rules are incompatible with rationalizability.

We will now show that the set of implementable and non-bossy allocation rules are
characterized by strongly rationalizable allocation rules.

Definition 4 An allocation rule f is non-bossy if for every i ∈ N , for every v−i ∈ V−i

and for every vi , v
′
i ∈ Vi with fi (vi , v−i ) = fi (v

′
i , v−i ), we have f (vi , v−i ) =

f (v′
i , v−i ).

Non-bossiness requires that if an agent does not change his own allocation (i.e.,
whether he is getting the object or not) by changing his valuation, then he should not
be able to change the allocation of anyone. It was first proposed by Satterthwaite and
Sonnenschein (1981).

Lemma 2 A strongly rationalizable allocation rule is non-bossy.

Proof Let f be a strongly rationalizable allocation rule with 
 being the correspond-
ing ordering on D. Fix an agent i and v−i ∈ V−i . Consider vi , v

′
i ∈ Vi such that

f (vi , v−i ) = e j �= ei . By definition, 1v j 
 1vk for all k ∈ (N ∪ {0})\{ j}. Suppose
f (v′

i , v−i ) = el �= ei . By definition, 1vl 
 1vk for all k ∈ (N ∪ {0})\{l}. Assume
for contradiction el �= e j . Then, we get that 1v j 
 1vl and 1vl 
 1v j , which is a
contradiction. �


This leads to the formal connection between implementability and rationalizability.

Theorem 1 An allocation rule is implementable and non-bossy if and only if it is
strongly rationalizable.

The proof of Theorem 1 is in the Appendix. Theorem 1 reveals a surprising connec-
tion between rationalizability and single object auction design. Notice that Theorem
1 does not require any restriction on Vi . If the strict linear ordering we constructed
in the proof of Theorem 1 can be represented using a utility function, then the char-
acterization will be even more direct. If for every agent i ∈ N , Vi is finite, then it is
possible. But, as the next example illustrates, this is not always possible.
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Example 2 Suppose N = {1, 2} and V1 = V2 = R++. Consider the allocation rule f
such that for all valuation profiles (v1, v2), f (v1, v2) = e1 if v1 ≥ 1, f (v1, v2) = e2

if v1 < 1 and v2 ≥ 1, and f (v1, v2) = e0 otherwise. It can be verified that f is
implementable (monotone) and non-bossy. By Theorem 1, f is strongly rationalizable.
Now, consider the strict linear order defined in the proof of Theorem 1 that strongly
rationalizes f —denote it by 
 f . If v1 = v2 = 1, we have f (v1, v2) = e1. Hence,
1v1 
 f 1v2 . �


Now, consider the following definition.

Definition 5 An ordering 	 on the set D is separable if there exists a countable set
Z ⊆ D such that for every x, y ∈ D with x 
 y, there exists z ∈ Z such that
x 	 z 	 y.

It is well known that an ordering on D has a utility representation if and only if it is
separable Fishburn (1970). We show that 
 f is not separable. Consider v1 = v2 = 1.
By definition of f , 1v1 
 f 1v2 
 f 1v0 . Note that since 
 f is monotone, any utility
vector between 1v1 and 1v2 (according to 
 f ) will be of the form 1v2+ε or 1v1−ε for
some ε > 0. But, f (v1, v2 + ε) = e2 implies that 1v2+ε 
 f 1v1 for all ε > 0. Also,
f (v1 − ε, v2) = e2 implies that 1v2 
 f 1v1−ε for all ε > 0. Hence, there cannot exist
z ∈ D such that 1v1 
 f z 
 f 1v2 .

3.1 Simple utility maximization

We saw that the strict linear ordering that strongly rationalizes an allocation rule may
not have a utility representation. The aim of this section is to explore minimal con-
ditions that allow us to define a new ordering for any implementable and non-bossy
allocation rule which has a utility representation. Our extra condition is a continuity
condition.

Definition 6 An allocation rule f satisfies Condition C∗ if for every i, j ∈ N (i �= j)
and for every v−i j , for every ε > 0, there exists a δε,v−i j > 0 such that for every vi , v j

with f (vi , v j , v−i j ) = ei , we have f (vi + ε, v j + δε,v−i j , v−i j ) = ei .

Condition C∗ requires some version of continuity of the allocation rule. It says that
if some agent i is winning the object at a valuation profile, for every increase in value
of agent i , there exists some increase in value of agent j such that agent i continues
to win the object.

If f is monotone (implementable) and non-bossy, then Condition C∗ implies that
for every i, j ∈ N (i �= j) and for every v−i j , for every ε > 0, there exists a δε,v−i j > 0
such that for every vi , v j with f (vi , v j , v−i j ) = ei , we have f (vi +ε, v j +δ, v−i j ) =
ei for all 0 < δ < δε,v−i j . To see this, choose some δ ∈ (0, δε,v−i j ) and assume
for contradiction, f (vi + ε, v j + δ, v−i j ) = ek for some k �= i . If k = j , then by
monotonicity, f (vi +ε, v j +δε,v−i j , v−i j ) = e j , which is a contradiction to Condition
C∗. If k �= {i, j}, then by non-bossiness, f (vi + ε, v j + δε,v−i j , v−i j ) ∈ {e j , ek},
again a contradiction to Condition C∗. Since we will use Condition C∗ along with
implementability and non-bossiness, we can freely make use of this implication.
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We will now introduce a new class of allocation rules.

Definition 7 An allocation rule f is a simple utility maximizer (SUM) if there
exists a non-decreasing function Ui : Vi → R for every i ∈ N ∪ {0}, where
U0(0) = 0, such that for every valuation profile v ∈ V , f (v) = e j implies that
j ∈ arg maxi∈N∪{0} Ui (vi ).

Notice that an SUM allocation rule is simpler to state and, hence, more suitable
for practical use than a strongly rationalizable allocation rule. The aim of this section
is to show that the SUM allocation rules are not much different from the strongly
rationalizable allocation rules.

It can be easily seen that not every SUM allocation rule is non-bossy. For instance,
consider the efficient allocation rule that allocates the good to an agent with the high-
est value. Suppose there are three agents with valuations 10, 10, 8, respectively, and
suppose that the efficient allocation rule allocates the object to agent 1. Consider the
valuation profile (10, 10, 9) and suppose that the efficient allocation rule now allocates
the object to agent 2. This violates non-bossiness. As we will show that such violations
can happen in case of ties (as was the case here with ties between agents 1 and 2), and
when ties are broken carefully, an SUM allocation rule becomes non-bossy.

Similarly, not every SUM allocation rule is implementable. For instance, consider
an example with two agents {1, 2} with V1 = V2 = R++. Let U1(v1) = 1 and
U2(v2) = v2. Now, suppose we pick agent 1 as the winner of the object at valuation
profile (1, 1) but pick agent 2 as the winner of the object at valuation profile (2, 1).
Note that this is consistent with simple utility maximization but violates monotonicity,
and hence, not implementable.

Now, consider the following modification of the SUM allocation rule.

Definition 8 An allocation rule f is a simple utility maximizer (SUM) with order-
based tie-breaking if there exists a non-decreasing function Ui : Vi → R for every
i ∈ N ∪{0}, where U0(0) = 0, and a monotone strict linear ordering 
 on D such that
for every valuation profile v ∈ V , f (v) = e j implies that j ∈ arg maxi∈N∪{0} Ui (vi )

and 1v j 
 1vk for all k �= j and k ∈ arg maxi∈N∪{0} Ui (vi ), i.e., j is the unique simple
utility maximizer according to 
.

The tie-breaking rule that we specified is very general. It covers some intuitive
tie-breaking rules such as having an ordering over N ∪ {0} and breaking the tie in
simple utility maximization using this ordering.

Lemma 3 An SUM allocation rule with order-based tie-breaking is implementable.

Proof Suppose f is an SUM allocation rule with order-based tie-breaking. Let the
corresponding simple utility functions be U0, U1, . . . , Un and 
 be the ordering used
to break ties. At any valuation profile v, let W (v) = { j ∈ N ∪ {0} : U j (v j ) ≥
Uk(vk) ∀ k ∈ N ∪ {0}}. Fix an agent i and the valuation profile of other agents at
v−i . Consider vi , v

′
i such that vi < v′

i and f (vi , v−i ) = ei . Then, by SUM max-
imization, i ∈ W (vi , v−i ). Further, by order-based tie-breaking 1vi 
 1v j for all
j ∈ W (vi , v−i ). SinceUi is non-decreasing,Ui (v

′
i ) ≥ U j (v j ) for all j ∈ (N∪{0})\{i}.

Hence, i ∈ W (v′
i , v−i ). Again, by order-based tie-breaking, 1v′

i

 1vi 
 1v j for all
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j ∈ W (v′
i , v−i ). This implies that f (v′

i , v−i ) = ei . So, f is monotone, and hence,
implementable. �


An SUM allocation rule with order-based tie-breaking is also non-bossy.

Lemma 4 An SUM allocation rule with order-based tie-breaking is non-bossy.

Proof Let f be an SUM allocation rule with order-based tie-breaking and v be a
valuation profile such that f (v) �= e j for some j ∈ N . Suppose f (v′

j , v− j ) �= e j .
Then, by definition, the unique simple utility maximizer of f remains the same in
(v j , v− j ) and (v′

j , v− j ). So, f (v j , v− j ) = f (v′
j , v− j ), and hence, f is non-bossy. �


We are now ready to state the main result of this section.

Theorem 2 Suppose Vi = (0, βi ), where βi ∈ R++ ∪ {∞}, for all i ∈ N and f is
an allocation rule satisfying Condition C∗. Then, f is implementable and non-bossy
if and only if it is a simple utility maximizer with order-based tie-breaking.

The proof of Theorem 2 is given in the Appendix. We note that the affine maximizers
in Roberts’ theorem can be obtained using linear functions Ui for every i ∈ N . The
virtual utility maximizer in Myerson (1981) takes the form Ui (vi ) = vi − 1−Fi (vi )

fi (vi )
,

where Fi and fi are, respectively, the cumulative density function and density function
of the distribution of valuation of agent i . Hence, many standard allocation rules in
theory and practice are simple utility maximizers.

Further, it is well known that revenue equivalence Myerson (1981) implies that for
any implementable allocation rule, the payments are determined uniquely up to an
additive constant. Thus, by characterizing implementable allocation rules, we charac-
terize the class of dominant strategy incentive compatible mechanisms.

Appendix: Omitted proofs

Proof of Theorem 1
By virtue of Lemmas 1 and 2, we only need to show that if an allocation rule f is
implementable and non-bossy then it is strongly rationalizable. We do the proof in
several steps.

Step 1. For any i, j ∈ N ∪ {0} with i �= j , consider 1vi and 1v j for some vi ∈ Vi

and v j ∈ Vj . Suppose for some v−i j , we have f (vi , v j , v−i j ) = ei . We will show
that if f is non-bossy, then f (vi , v j , v

′−i j ) �= e j for all v′−i j . Consider any k /∈ {i, j}
and the profile (vi , v j , v

′
k, v−i jk). By non-bossiness, f (vi , v j , v

′
k, v−i jk) ∈ {ei , ek}.

Repeating this argument for all k /∈ {i, j}, we get f (vi , v j , v
′−i j ) �= e j .

Step 2. We will first define binary relations 
 on D × D 2 using f as follows. For
every i, j ∈ N ∪ {0} with i �= j , 1vi ∈ Di and 1v j ∈ D j , define 1vi 
 1v j if there is
some v−i j such that f (vi , v j , v−i j ) = ei . Further, for every i ∈ N and every vi ∈ Vi ,

2 To remind, D is the set of all utility vectors given the type space.
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define 1vi +ε 
 1vi for all ε > 0 such that (vi + ε) ∈ Vi . Using Step 1, if 1vi 
 1v j ,
then 1v j � 1vi . Hence, 
 is anti-symmetric. Further, 
 is irreflexive by definition.
Step 3. Let D f := {x ∈ D : G f (v) = x for some v ∈ V }. We now show that 

satisfies the following conditions:

1 for every x, y ∈ D f , either x 
 y or y 
 x (but not both), where D f = {x ∈ D :
G f (v) = x for some v ∈ V },

2 for every x ∈ D f and for every y /∈ D f , x 
 y,
3 for all v ∈ V , 1vi 
 1v j for all j ∈ {0, 1, . . . , n}\{i}, where G f (v) = 1vi .

Proof of (1). Pick x, y ∈ D f . By definition, there is v ∈ V , such that G f (v) = x . If
x = 1vi , then f (v) = ei . Suppose y = 1v′

i
. Then, by definition, either x 
 y or y 
 x .

Hence, suppose y = 1v′
j

for some j �= i . Then, by monotonicity and non-bossiness,

f (vi , v
′
j , v−i j ) ∈ {ei , e j }. Hence, either x 
 y or y 
 x . Since 
 is anti-symmetric,

either x 
 y or y 
 x but not both.

Proof of (2). Pick x ∈ D f but y /∈ D f . By definition, there is v ∈ V , such that
G f (v) = x . If x = 1vi , then f (v) = ei . Suppose y = 1v′

i
. Then, if v′

i > vi , we have

f (v′
i , v−i ) = ei by monotonicity, and this contradicts the fact that y /∈ D f . Hence,

v′
i < vi , and by definition, x 
 y.

Suppose y = 1v′
j

for some j �= i . Then, by monotonicity and non-bossiness,

f (vi , v
′
j , v−i j ) ∈ {ei , e j }. Using the fact that y /∈ D f , we get that f (vi , v

′
j , v−i j ) = ei .

Hence, x 
 y.

Proof of (3). At any valuation profile (v1, . . . , vn), if f (v1, . . . , vn) = ei , then, by
definition, 1vi 
 1v j for all j �= i .

Step 4. We show that 
 is transitive. Suppose for some i ∈ N , 1vi +ε 
 1vi for some
ε > 0 such that vi + ε ∈ Vi . Also, for some j �= i , 1vi 
 1v j . Then, by definition, for
some v−i j , f (vi , v j , v−i j ) = ei . By monotonicity, f (vi + ε, v j , v−i j ) = ei . Hence,
1vi +ε 
 1v j .

We also know that for some i ∈ N and for some ε > 0, δ > 0, if 1vi +ε+δ 
 1vi +ε

and 1vi +ε 
 1vi , then 1vi +ε+δ 
 1vi .
Finally, pick vi ∈ Vi , v j ∈ Vj and vk ∈ Vk such that 1vi 
 1v j and 1v j 
 1vk , where

i, j, k are distinct. This means, f (vi , v j , v
′−i j ) = ei for some v′−i j . By monotonic-

ity and non-bossiness, f (vi , v j , vk, v
′−i jk) ∈ {ei , ek}. But, 1v j 
 1vk implies that

f (vi , v j , vk, v
′−i jk) �= ek . Hence, f (vi , v j , vk, v

′−i jk) = ei . Hence, 1vi 
 1vk . This
shows that 
 is transitive.

Step 5. We show that f is strongly rationalizable. Since
 is an anti-symmetric, irreflex-
ive and transitive binary relation on D × D, we can extend it to an anti-symmetric,
irreflexive, complete, and transitive binary relation 
′ on D × D due to Szpilrajn’s
extension theorem: see Fishburn (1970) for instance. By definition of 
′ and Step 3,
at any valuation profile (v1, . . . , vn), if f (v1, . . . , vn) = ei , then, 1vi 
′ 1v j for all
j �= i . By definition, 
′ is monotone. Hence, f is strongly rationalizable.
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Proof of Theorem 2.
By Lemmas 3 and 4, an SUM allocation rule with order-based tie-breaking is imple-
mentable and non-bossy. We show that every implementable and non-bossy allocation
rule satisfying Condition C∗ is an SUM allocation rule with order-based tie-breaking.
We do the proof in various steps. Throughout we assume that Vi = (0, βi ), where
βi ∈ R++ ∪ {∞}, for all i ∈ N .

Step 1. In this step, we show that if f is implementable and non-bossy allocation rule
satisfying Condition C∗, then there is an ordering 	 f on D which rationalizes f . We
construct this specific 	 f in this step. 3

Suppose f is an implementable and non-bossy allocation rule satisfying Condition
C∗. We first define the notion of a winning set. The winning set of allocation rule f at a
valuation profile v is denoted as W f (v), and defined as follows. For any i ∈ N , we say
ei ∈ W f (v) if for all ε > 0, we have f (vi +ε, v−i ) = ei , where (vi +ε) ∈ Vi . We say
that e0 ∈ W f (v) if for all ε > 0, we have f ({v j − ε} j∈N ) = e0, where (v j − ε) ∈ Vj

for all j ∈ N . The first claim is that W f (v) is non-empty for all valuation profiles v.

Lemma 5 If f is implementable and non-bossy, then for every value profile v, f (v) ∈
W f (v).

Proof Consider an implementable and non-bossy allocation rule f and a valuation
profile v. If f (v) = e j �= e0, then by monotonicity f (v j +ε, v− j ) = e j for all ε > 0.
Hence, f (v) ∈ W f (v).

If f (v) = e0, then consider any ε > 0 and a valuation profile v′ such that v′
i −ε > 0

for all i ∈ N . We argue that f (v′) = e0, and hence, e0 = f (v) ∈ W f (v). Assume
for contradiction that f (v′) = e j �= e0. Now, we go from v′ to v by increasing the
valuation of one agent at a time. By monotonicity, f (v j , v

′− j ) = e j . Now, pick any

k ∈ N\{ j}. Then, either f (v j , vk, v
′− jk) = ek or by non-bossiness f (v j , vk, v

′− jk) =
e j . In both cases, we see that f (v j , vk, v

′− jk) �= e0. Continuing in this manner, we

will reach the valuation profile v and get that f (v) �= e0, a contradiction. �

Step 1.1. In this step, we show that an implementable and non-bossy allocation rule
satisfying Condition C∗ satisfies a form of independence property.

Definition 9 An allocation rule f satisfies binary independence if for any pair of
alternatives e j , ek ∈ A and any pair of valuation profiles v, v′ such that 1v j = 1v′

j
and

1vk = 1v′
k
, the following conditions hold: (1) if ek ∈ W f (v) and e j ∈ W f (v′), then

ek ∈ W f (v′) and (2) if e j ∈ W f (v) and ek /∈ W f (v), then ek /∈ W f (v′).

Intuitively, the binary independence property says that the comparison of any pair
of utility vectors is independent of what the other utility vectors are.

Proposition 1 An implementable and non-bossy allocation rule satisfying Condition
C∗ satisfies binary independence.

3 Notice that by Theorem 1, if f is implementable and non-bossy, then it is a strongly rationalizable
allocation rule, and hence, a rationalizable allocation rule. The novelty of this step of the proof is to be able
to construct a specific ordering which rationalizes f .
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Proof We will use the following lemma to prove the proposition. �

Lemma 6 Suppose v and v′ are two distinct valuation profiles such that vi ≥ v′

i for
all i ∈ N. Let B(v, v′) = {ei ∈ A : vi > v′

i }. If f is an implementable and non-bossy
allocation rule, then W f (v)\B(v, v′) ⊆ W f (v′).

Proof Let f be an implementable and non-bossy allocation rule and v and v′ be two
distinct valuation profiles with vi ≥ v′

i for all i ∈ N . We will go from v to v′ by
lowering one agent’s value at a time. Pick any e j ∈ B(v, v′). Consider a new type
profile v′′ such that the value of every agent i �= j remains vi and the value of agent
j is v′

j , which is strictly less than v j . Pick any ek ∈ W f (v) such that ek �= e j . Then,
we consider two cases.

Case 1: ek �= e0. We argue that ek ∈ W f (v′′). Assume for contradiction that ek /∈
W f (v′′). Then, for some ε > 0, we have f (vk + ε, v′

j , v−k j ) �= ek . If f (vk +
ε, v′

j , v−k j ) = e j , then by monotonicity, we have f (vk + ε, v j , v−k j ) = e j . This

is a contradiction since ek ∈ W f (v). If f (vk + ε, v′
j , v−k j ) = el /∈ {e j , ek}, then

monotonicity and non-bossiness implies that f (vk + ε, v j , v−k j ) ∈ {el , e j }. But this
contradicts ek ∈ W f (v).

Case 2: ek = e0. Since e0 ∈ W f (v), for any ε > 0 such that v̄i := vi − ε > 0 for
all i ∈ N , we have f (v̄1, . . . , v̄n) = e0. Note that v′

i − ε = vi − ε = v̄i for all i �= j
for any ε. Now, fix any ε > 0 such that v′

j − ε > 0. Consider the valuation profile

(v̄− j , v
′
j − ε). Since f (v̄1, . . . , v̄n) = e0 and v̄ j = v j − ε > v′

j − ε, by monotonicity

and non-bossiness, we have f (v′
j − ε, v̄− j ) = e0. Hence, e0 ∈ W f (v′′).

This establishes that ek ∈ W f (v′′) for any ek �= e j . Hence, W f (v)\{e j } ⊆
W f (v′′). Repeating this argument for other elements of B(v, v′) one by one, we
conclude that W f (v)\B(v, v′) ⊆ W f (v′). �


Now, let f be an implementable and non-bossy allocation rule satisfying Condition
C∗. Pick any pair of alternatives e j , ek ∈ A and any pair of valuation profiles v, v′
such that 1v j = 1v′

j
and 1vk = 1v′

k
. We will show that f satisfies both (1) and (2) of

Definition 9.

Property 1 Suppose ek ∈ W f (v) and e j ∈ W f (v′). We will show that ek ∈ W f (v′).
Construct a new type profile v′′ such that v′′

i = min(vi , v
′
i ) for all i ∈ N. Note that

1v′′
j
= 1v j = 1v′

j
and 1v′′

k
= 1vk = 1v′

k
. By Lemma 6, e j , ek ∈ W f (v′′). Now, assume

for contradiction that ek /∈ W f (v′). We now consider various cases.

Case 1: e j , ek ∈ A\{e0}. Since ek /∈ W f (v′), there exists ε > 0 such that f (v′
k +

ε, v′−k) �= ek . By monotonicity and non-bossiness, for all ε′ > 0 we have f (v′
j +

ε′, v′
k + ε, v′− jk) �= ek . Further, we show that f (v′

j + ε′, v′
k + ε, v′− jk) = e j for all

ε′ > 0. To see this, suppose f (v′
j + ε′, v′

k + ε, v′− jk) = el for some el /∈ {e j , ek}.
Then, by monotonicity and non-bossiness, we get f (v′

j + ε′, v′
k, v

′− jk) = el , and

this contradicts e j ∈ W f (v′). Hence, f (v′
j + ε′, v′

k + ε, v′− jk) = e j for all ε′ >
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0. Now, applying monotonicity and non-bossiness again, for all ε′ > 0, we have
f (v′

j +ε′, v′
k +ε, v′′− jk) = e j . Since ek ∈ W f (v′′), we have f (v′

j , v
′
k + ε

2 , v′′− jk) = ek .

By Condition C∗, there is an ε′ > 0 such that f (v′
j + ε′, v′

k + ε, v′′− jk) = ek . This is
a contradiction.
Case 2: e j = e0. We have to show that e0 ∈ W f (v′) implies ek ∈ W f (v′). Assume
for contradiction that ek /∈ W f (v′) but e0 ∈ W f (v′). For this, we first show that there
is some εi > 0 for every i ∈ N such that f (v′

k + εk, {v′
i − εi }i �=k) = e0.

To see this, suppose f (v′
k + εk, {v′

i − εi }i �=k) = ek for all {εi }i∈N . Fix any l �= k.
Then, by Condition C∗, for every ε there is a δ such that, f (v′

k + εk + ε, (v′
l − εl +

δ), {v′
i − εi }i �=k,l) = ek for all {εi }i∈N . Fix some ε > 0. By, Condition C∗, we can

choose εl = δ. Also, let εk = ε. Hence, we get f (v′
k + 2ε, v′

l , {v′
i − εi }i �=k,l) = ek .

Repeating this, we reach f (v′
k + (n − 1)ε, v′−k) = ek . Since n > 1, we get that

ek ∈ W f (v′). But this contradicts the fact that ek /∈ W f (v′).
Similarly, suppose f (v′

k + εk, {v′
i − εi }i �=k) = el for some l �= 0, k. Then, by

monotonicity and non-bossiness, we get that f ({v′
i −εi }i∈N ) = el . This means f ({v′

i −
εi }i∈N ) �= e0. Now, choose ε′ < mini∈N εi . Then, consider the profile {v′

i − ε′}i∈N .
By repeated application of monotonicity and non-bossiness, f ({v′

i − ε′}i∈N ) �= e0.
This contradicts e0 ∈ W f (v′).

This shows that there is some εi > 0 for all i ∈ N such that f (v′
k + εk, {v′

i −
εi }i �=k) = e0. By monotonicity and non-bossiness, f (v′

k + εk, {v′′
i − εi }i �=k) = e0.

But ek ∈ W f (v′′) implies that f (v′′
k + εk, v

′′−k) = ek (to remind, v′
k = v′′

k ). But
monotonicity and non-bossiness implies that f (v′

k + εk, {v′′
i − εi }i �=k) = ek . This

gives us a contradiction.

Case 3: ek = e0. We have to show that if e j ∈ W f (v′) then e0 ∈ W f (v′). Assume
for contradiction e0 /∈ W f (v′). We first show that for some ε > 0 and ε′ > 0,
f (v′

j − ε, {v′
i − ε′}i �= j ) = e j .

To see this, suppose that f (v′
j − ε, {v′

i − ε′}i �= j ) = e0 for all ε, ε′. Then, by

monotonicity and non-bossiness, we see that f ({v′
i − min(ε, ε′)}i∈N ) = e0 for all

ε, ε′. But this contradicts e0 /∈ W f (v′).
Similarly, suppose that f (v′

j − ε, {v′
i − ε′}i �= j ) = el for some l ∈ N\{ j} and for all

ε, ε′. By Condition C∗, there is some δ := δε′,v′−l j
< ε′ such that f (v′

j −ε+δ, v′
l , {v′

i −
ε′}i �= j,l) = el for all ε, ε′. Since δ is independent of ε, we can choose ε = δ

2 for every
ε′. Hence, we have f (v′

j + δ
2 , v′

l , {v′
i − ε′}i �= j,l) = el for every ε′. Further, since

e j ∈ W f (v′), we know that f (v′
j + δ

2 , v′− j ) = e j for all ε′. By repeatedly applying

monotonicity and non-bossiness, we get that f (v′
j + δ

2 , v′
l , {v′

i − ε′}i �= j,l) = e j for
every ε′. This gives us a contradiction.

This shows that f (v′
j − ε, {v′

i − ε′}i �= j ) = e j for some ε > 0 and ε′ > 0. By
repeatedly applying monotonicity and non-bossiness, we get that f (v′

j − ε, {v′′
i −

ε′}i �= j ) = e j for some ε > 0 and ε′ > 0. Since e0 ∈ W f (v′′), we know that f ({v′
i −

min(ε, ε′)}i∈N ) = e0. By repeatedly applying monotonicity and non-bossiness, we
get that f (v′

j − ε, {v′′
i − ε′}i �= j ) = e0. This is a contradiction.

This concludes the proof of Property (1) in Definition 9.
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Property 2 This follows by applying Property (1). To see this, pick any e j , ek ∈ A
and v, v′ as in Definition 9. Suppose e j ∈ W f (v) but ek /∈ W f (v′). We need to show
that ek /∈ W f (v′). Assume for contradiction ek ∈ W f (v′). Then, by changing the role
of v and v′ in (1), we get that ek ∈ W f (v), which is a contradiction.

Step 1.2. In this step, we define two binary relations on the set of utility vectors
D. For any i ∈ N and for any vi , v

′
i ∈ Vi with vi > v′

i , we define 1vi 
 f 1v′
i
.

Further, for every i ∈ N and every vi ∈ Vi , we define 1vi ∼ f 1vi (reflex-
ive). For any i, j ∈ N ∪ {0} (with i �= j) and any vi ∈ Vi and v j ∈ Vj ,
we define 1vi 
 f 1v j , if there exists v′ such that 1v′

i
= 1vi , 1v′

j
= 1v j , and

ei ∈ W f (v′) but e j /∈ W f (v′); and 1vi ∼ f 1v j , if (a) there exists a valua-
tion profile v′ such that 1v′

i
= 1vi , 1v′

j
= 1v j , and ei , e j ∈ W f (v′) or (b) at

every valuation profile v′ such that 1v′
i

= 1vi , and 1v′
j

= 1v j , we have ei , e j /∈
W f (v′).

Notice that ∼ f is a symmetric and reflexive binary relation. Further, 
 f is anti-
symmetric. To see this, fix some x, y ∈ D. If x, y ∈ Di for some i ∈ N , and x = 1vi

and y = 1v′
i

with vi > v′
i then, by definition, x 
 f y. If x ∈ Di and y ∈ D j for

some i �= j , and there is a valuation profile v with 1vi = x and 1v j = y. Suppose
ei ∈ W f (v) but e j /∈ W f (v). Now, consider any other valuation profile v′ such that
1vi = 1v′

i
= x and 1v j = 1v′

j
= y. By Proposition 1, e j /∈ W f (v′). Hence, 
 f is

anti-symmetric.
Finally, we show that the relations 
 f and ∼ f are disjoint. To see this, consider the

case where x ∈ Di and y ∈ D j for some i �= j , and there is a valuation profile v with
1vi = x and 1v j = y. Suppose ei , e j ∈ W f (v). Now, consider any other valuation
profile v′ such that 1vi = 1v′

i
= x and 1v j = 1v′

j
= y. By Proposition 1, ei ∈ W f (v′)

if and only if e j ∈ W f (v′). Hence, x �
f y and y �

f x .

Step 1.3. We define 	 f to be the union of the two binary relations 
 f and ∼ f . Notice
that 	 f is a complete binary relation with symmetric part being ∼ f and anti-symmetric
part being 
 f . In this step, we show that 	 f is transitive. For this, we will show that

 f and ∼ f are transitive, and this in turn will imply that 	 f is transitive. Pick any
x, y, z ∈ D such that x �= y �= z. We consider three cases.

Case 1. Suppose x, y, z ∈ Di for some i ∈ N and x = 1vi , y = 1v′
i
, z = 1v′′

i
. Suppose

x 
 f y and y 
 f z. Then, it must be vi > v′
i > v′′

i . By definition, we have x 
 f z.

Case 2. x, y ∈ Di but z ∈ D j for some i, j where i �= j . Suppose x = 1vi , y = 1v′
i
,

and z = 1v j . Suppose x 
 f y and y 
 f z. Note that x 
 f y implies vi > v′
i . We

consider two subcases.

Case 2a. Suppose j �= 0. Since y 
 f z, there is a valuation profilev′′ such that v′′
i = v′

i ,
v′′

j = v j , and ei ∈ W f (v′′) but e j /∈ W f (v′′). Now consider the type profile v̄, where

v̄k = v′′
k if k �= i and v̄i = vi . We show that ei ∈ W f (v̄) and e j /∈ W f (v̄), and this will

show that x 
 f z. Since ei ∈ W f (v′′), we know that f (v′
i + ε, v j , v

′′−i j ) = ei for all

ε > 0. By monotonicity, f (vi + ε, v j , v
′′−i j ) = ei for all ε > 0. Hence, ei ∈ W f (v̄).
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Since e j /∈ W f (v′′), there is some ε > 0 such that f (v′
i , v j + ε, v′′−i j ) �= e j . By

monotonicity and non-bossiness, f (vi , v j + ε, v′′−i j ) �= e j . Hence, e j /∈ W f (v̄).

Case 2b. Suppose j = 0. So, z is the n-dimensional zero vector. Since y 
 f z, there
is a valuation profile v̄ with 1v̄i = 1v′

i
= y and ei ∈ W f (v̄) but e0 /∈ W f (v̄). Now,

consider the valuation profile v′′ ≡ (vi , v̄−i ). Since vi > v′
i , by monotonicity, we have

ei ∈ W f (v′′).
Since e0 /∈ W f (v̄), there is some ε > 0 such that f ({v̄k −ε}k∈N ) �= e0. Now, since

vi > v′
i , by monotonicity and non-bossiness, f (vi − ε, {v̄k − ε}k �=i ) �= e0. Hence,

e0 /∈ W f (v′′).

Case 3. x ∈ Di , y ∈ D j , z ∈ Dk , where i, j, k are distinct. Suppose x = 1vi , y = 1v j ,
and z = 1vk . Here, we will consider transitivity of both 
 f and ∼ f .

Case 3a: Transitivity of 
 f . Suppose x 
 f y and y 
 f z. Since x 
 f y, there is some
valuation profile v′′ where 1v′′

i
= x, 1v′′

j
= y, and ei ∈ W f (v′′) but e j /∈ W f (v′′).

First, note that i �= 0. To see this, since y 
 f z there is a valuation profile v′ where
1v′

j
= y, 1v′

k
= z, and e j ∈ W f (v′) but ek /∈ W f (v′). But 1v′

i
= x implies that

y 	 f x , which contradicts x 
 f y. Hence, i �= 0.
Suppose v′′

k < vk . Since ei ∈ W f (v′′), for every ε > 0, f (v′′
i + ε, v′′

j , v
′′
k , v′′−i jk) =

ei . By monotonicity and non-bossiness, f (v′′
i + ε, v′′

j , vk, v
′′−i jk) ∈ {ei , ek} for every

ε > 0. But f (v′′
i + ε, v′′

j , vk, v
′′−i jk) = ek for any ε > 0 will imply that z 	 f y, and

this will contradict y 
 f z. Hence, f (v′′
i + ε, v′′

j , vk, v
′′−i jk) = ei for every ε > 0.

So, ei ∈ W f (v′′
i , v′′

j , vk, v
′′−i jk). Since y 
 f z, ek /∈ W f (v′′

i , v′′
j , vk, v

′′−i jk). Hence,

x 
 f z.
Suppose v′′

k ≥ vk . As before, since ei ∈ W f (v′′), for every ε > 0, f (v′′
i +

ε, v′′
j , v

′′
k , v′′−i jk) = ei . By monotonicity and non-bossiness, f (v′′

i +ε, v′′
j , vk, v

′′−i jk) =
ei for every ε > 0. Hence, ei ∈ W f (v′′

i , v′′
j , vk, v

′′−i jk). Since y 
 f z, ek /∈
W f (v′′

i , v′′
j , vk, v

′′−i jk). Hence, x 
 f z.

Case 3b: Transitivity of ∼ f . Suppose x ∼ f y and y ∼ f z. Suppose for every
valuation profile v′ such that 1v′

i
= x and 1v′

j
= y, we have ei , e j /∈ W f (v′).

Further, suppose for every valuation profile v̄ with 1v̄ j = y and 1v̄k = z, we have
e j , ek /∈ W f (v̄). Consider any valuation profile v′′ such that 1v′′

i
= x and 1v′′

k
= z.

Assume for contradiction ei ∈ W f (v′′). Consider the valuation profile v̂ such that
1v̂ j = y and v̂l = v′′

l for all l �= j . Since 1v̂k = z, by definition e j , ek /∈ W f (v̂). By

monotonicity and non-bossiness, ei ∈ W f (v̂). But, this is not possible since 1v̂i = x
implies that ei , e j /∈ W f (v̂). This means that at every valuation profile v′′ with 1v′′

i
= x

and 1v′′
k

= z we must have ei , ek /∈ W f (v′′). Hence, x ∼ f z.

Now, consider the case where y ∼ f z and there is some valuation profile v′ such
that 1v′

j
= y, 1v′

k
= z, and e j , ek ∈ W f (v′). If x = 1v0 , then by Proposition 1, ei ∈

W f (v′), and this immediately implies that x ∼ f z. Suppose x = 1vi and i �= 0. Then,
either j �= 0 or k �= 0. We consider the case of j �= 0—the proof for k �= 0 is similar.
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Since e j ∈ W f (v′), f (v′
j + ε, v′− j ) = e j for all ε > 0. By monotonicity and non-

bossiness, f (v′
j +ε, vi , v

′−i j ) ∈ {ei , e j } for all ε > 0. If f (v′
j +ε, vi , v

′−i j ) = ei , then

by monotonicity and non-bossiness, ei ∈ W f (v′
j , vi , v

′−i j ). Since, x 
 f y and y 
 f

z, by repeated application of Proposition 1, we get that e j , ek ∈ W f (v′
j , vi , v

′−i j ). This

implies that x 
 f z. Similarly, if f (v′
j +ε, vi , v

′−i j ) = e j , then e j ∈ W f (v′
j , vi , v

′−i j ).

Again, using the fact that x 
 f y and y 
 f z, by repeated application of Proposition 1,
we get that ei , ek ∈ W f (v′

j , vi , v
′−i j ). So, x 
 f z.

Step 1.4. We conclude Step 1 by showing that f is a rationalizable allocation rule
and 	 f rationalizes f . Note that the ordering 	 f , defined in Steps 1.2 and 1.3, is
a monotone ordering. By Lemma 5, for every valuation profile v, f (v) ∈ W f (v).
Hence, by definition of 	 f , G f (v) 	 f 1vi for all i ∈ N ∪ {0}. This shows that f is a
rationalizable allocation rule and 	 f rationalizes f .

Step 2. In this step, we show that if f is a non-bossy allocation rule satisfying Condition
C∗, then it is implementable if and only if it is an SUM allocation rule. By Lemma 3,
an SUM allocation rule is implementable. Suppose f is an implementable and non-
bossy allocation rule satisfying Condition C∗. By Step 1, f can be rationalized by
the monotone ordering 	 f , defined as in Step 1.2. We say that 	 f has a utility
representation if there exists a utility function U : D → R such that for all x, y ∈ D
we have U (x) > U (y) if and only if x 
 f y.

Step 2.1. In this step, we will show that 	 f is separable in the sense of Definition
5. Let Z := {x ∈ D : x = 1vi for some i ∈ N ∪ {0} and vi is rational}. Note that
since the set of rational numbers is countable, Z is a countable subset of D. Now, pick
x, y ∈ D such that x 
 f y. If x, y ∈ Di for some i ∈ N , then let x = 1vi and y = 1v′

i
.

By definition, vi > v′
i . Then, we can find a rational v′′

i such that vi > v′′
i > v′

i (this is
because the set of rational numbers is a dense set). Let z = 1v′′

i
. By definition, z ∈ Z

and x 
 f z 
 f y. Now, assume that x = 1vi and y = 1v j for some i, j ∈ N ∪ {0}
with i �= j . We consider various cases.

Case A. Suppose i �= 0 and j �= 0. Since x 
 f y, there is a valuation profile v ≡
(vi , v j , v−i j ) such that ei ∈ W f (v) but e j /∈ W f (v). Since e j /∈ W f (v), there is some
ε > 0 such that f (vi , v j + ε, v−i j ) �= e j . This means that e j /∈ W f (vi , v j + ε

2 , v−i j ).
Consider any δ > 0. Since f (vi , v j + ε

2 , v−i j ) �= e j , by monotonicity and non-
bossiness, f (vi + δ, v j + ε

2 , v−i j ) �= e j . Since ei ∈ W f (v), f (vi + δ, v j , v−i j ) = ei .
By monotonicity and non-bossiness, f (vi + δ, v j + ε

2 , v−i j ) ∈ {ei , e j }. This implies
that f (vi +δ, v j + ε

2 , v−i j ) = ei . Hence, ei ∈ W f (vi , v j + ε
2 , v−i j ). Then, x = 1vi 


1v j + ε
2


 1v j = y. Since the set of rational numbers is dense, we can find a z ∈ Z

arbitrarily close to 1v j + ε
2

such that x 
 f z 
 f y.

Case B. Suppose i �= 0 and j = 0. Since x 
 f y, there is a valuation profile (vi , v−i )

such that ei ∈ W f (vi , v−i ) but e0 /∈ W f (vi , v−i ). This means for some δ > 0, we
have f ({v j − δ} j∈N ) �= e0. Suppose f ({v j − δ} j∈N ) = ek for some k �= 0. Then,
1vk−δ 	 f y. Since ei ∈ W f (vi , v−i ), we get that x = 1vi 	 f 1vk 
 f 1vk−δ . Hence,
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x 
 f 1vk−δ 	 f y. Since the set of rational numbers is dense, we can choose a z ∈ Z
arbitrarily close to 1vk−δ such that x 
 f z 	 f y.
Case C. Suppose i = 0 and j �= 0. Since x 
 f y, there is a valuation profile (v j , v− j )

such that e j /∈ W f (v j , v− j ) but e0 ∈ W f (v j , v− j ). Then, for some ε > 0, we have
f (v j + ε, v− j ) = ek , where k �= j . This implies that 1vk 	 f 1v j +ε 
 f 1v j = y. But
e0 ∈ W f (v j , v− j ) implies that x 	 f 1vk . Hence, x 	 f 1v j +ε 
 f y. Since the set
of rational numbers is dense, we can find z ∈ Z arbitrarily close to 1v j +ε such that
x 	 f z 
 f y.

This shows that 	 f is separable. Hence, 	 f has a utility representation. Let U :
D → R be a utility function representing 	 f . Without loss of generality, we can
assume U (1v0) = 0. Now, for every i ∈ N ∪ {0}, define Ui : Vi → R as follows:
Ui (vi ) = U (1vi ) for all vi ∈ Vi . Note that by the definition of 	 f , each Ui is well
defined and increasing.

Since U represents 	 f and f is a rationalizable allocation rule with 	 f being
the corresponding ordering, we get that for all valuation profiles v, f (v) ∈
arg maxi∈N∪{0} Ui (vi ). Hence, f is an SUM allocation rule.

By Theorem 1, f is a strongly rationalizable allocation rule. Let 
 be the strict
linear ordering that strongly rationalizes f . By definition, for all x ∈ D f and for all
y /∈ D f , x 
 y. Further, for all v ∈ V if f (v) = e j , then 1v j 
 1vi for all i �= j .
In that case, 1v j 
 1vk for all k �= j and k ∈ arg maxi∈N∪{0} Ui (vi ). Hence, f is an
SUM allocation rule with order-based tie-breaking.
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