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Abstract The classical Shapley value is the average marginal contribution of a player,
taken over all possible ways to form the grand coalition N when one starts from the
empty coalition and adds players one by one. In a previous paper, the authors have
introduced an allocation scheme for a general coalition formation model where the
evolution of the coalition of active players is ruled by a Markov chain and need
not finish with the grand coalition. This note provides an axiomatization which is
only slightly weaker than the original one but allows a much more transparent proof.
Moreover, the logical independence of the axioms is exhibited.
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1 Introduction

The Shapley value (Shapley 1953) is among the most popular solution concepts in
cooperative game theory and has been applied numerously. Its basic idea: consider all
possible orders for the players to enter the game and compute each player’s average
marginal contribution over these orders. Therefore, the Shapley value can be seen as
assuming particular way of cooperative dynamics: start from the empty coalition and
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190 U. Faigle, M. Grabisch

add player after player until the grand coalition is reached. This simple view, however,
is quite restrictive from the point of view of coalition formation. So it is not surprising
that the Shapley value would give counterintuitive results in some situations (see, e.g.,
Roth 1980; Shafer 1980; Scafuri and Yannelis 1984).

A much more general framework for a value, suited to coalition formation, has been
developed by Faigle and Grabisch (2012). It takes into account that several players
may enter at any step of the coalition formation process and also that some may leave
the current coalition. Moreover, the process is not assumed to stop when the grand
coalition is formed but may continue to evolve. Indeed, the evolution may be governed
by a Markov chain or any kind of stochastic process. The authors have presented two
values, called Shapley I and Shapley II, which define allocation schemes for this
general situation. While both include the classical Shapley value as a particular case,
a closer study of their properties suggests, however, that Shapley II seems to be more
appropriate in practical settings. Faigle and Grabisch (2012) give an axiomatization of
Shapley II (see a corrected version in Faigle and Grabisch 2013), with a very complex
proof that is similar to the proof of Weber (1988) for the axiomatization of the classical
Shapley value.

The aim of this note is to provide a much more transparent proof exists for an only
slightly weaker axiomatization. In addition, the logical independence of the axioms can
be demonstrated. To achieve this, we replace the anonymity axiom (invariance of the
value under permutations of the players) by the weaker symmetry axiom (symmetric
players receive the same payoff) and base our present proof on the decomposition of
a game as a sum of unanimity games (as it is done in, e.g., Faigle and Kern 1992; van
den Brink 2001).

The paper is organized as follows. Section 2 describes coalition formation processes
and the allocation scheme (value) we suggest. Section 3 establishes the new axioma-
tization. Finally, we prove our axioms’ logical independence in Sect. 4.

Throughout the paper, N denotes a finite set of n players. We often omit braces
for singletons, writing, e.g., S ∪ i , S \ i j instead of S ∪ {i} and S \ {i, j}. Generally,
we restrict our exposition to a minimum and refer the readers to Faigle and Grabisch
(2012, 2013) for full details and more examples.

2 Values for coalition formation processes

A scenario (of a coalition formation process) is any sequence S = ∅, S1, S2, . . . of
coalitions Si ⊆ N that starts with the empty set ∅. A scenario need not be finite and
repetitions of coalitions may occur. Also, a scenario need not finish with the grand
coalition. To avoid intricacies, we consider here only finite scenarios ∅, S1, . . . Sq .

Example 1 Let N = {1, 2, 3, 4}where 12 stands for {1, 2}, etc., one possible scenario
is

S = ∅, 12, 24, 3, 123, 1234, 12 .

Here, players 1 and 2 enter together, then 1 leaves and 4 enters, then both leave and 3
enters, then 1 and 2 enter again, then 4 enters, and finally 3 and 4 leave.
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Shapley value for coalition processes 191

Example 2 A permutation σ on N induces the following scenario:

∅, {σ(1)}, {σ(1), σ (2)}, . . . , {σ(1), . . . , σ (n − 1)}, N .

The n! permutations of N yield the n! scenarios underlying the classical definition of
the Shapley value.

The idea behind our value is close to Shapley’s original view: compute the marginal
contribution of those players that are active during one transitional step St → St+1
(i.e., those who are entering or leaving the current coalition), and then add these
contributions for over all transitions in the scenario. This procedure yields a value for
a given scenario S , which we call a scenario value. We finally consider all possible
scenarios, assuming that the transitions between coalitions are governed by a (time
discrete) stochastic process, typically a Markov chain. Then the (overall) value is
derived as the expected value over all possible scenarios of the scenario-values. More
formally, if p(S ) is the probability for scenario S to occur in the process U, we obtain

φU(v) =
∑

S←U

p(S )φS (v)

where S ← U means “scenario S generated by U” and the scenario-value φS is
computed by

φS (v) =
q−1∑

t=0

φSt→St+1(v) (1)

with S = S1, . . . , Sq .1 Therefore, it remains to define the scenario-value for a given
transition St → St+1. In the case of the classical Shapley value, where in a transition
only one single player enters and no player leaves, the marginal contribution of the
entering player is naturally defined as

v(St+1)− v(St ).

The general situation with possibly several players entering and/or leaving is more
complicated. One first idea leads to what we call the Shapley I value and consists in
using the principle of insufficient reason: divide v(St+1) − v(St ) equally among the
active players and thus obtain

φ̃
St→St+1
i (v) =

{
1

|St�St+1| (v(St+1)− v(St )), if i ∈ St�St+1

0, otherwise,
(2)

where St�St+1 = (St \ St+1)∪ (St+1 \ St ) is the set of active players. A more refined
idea turned out to be more fruitful, however, namely the decomposition of a transition
St → St+1 into all possible elementary transitions, i.e., transitions where only one
player can enter or leave at a time. The Shapley II value is the resulting value.

1 We omit here the case of infinite scenarios for brevity. See full details in Faigle and Grabisch (2012).
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Example 3 The transition 24 → 3 of the scenario given in Example 1 decomposes
into six different ways, depending on the order of the active players 2, 4 and 3:

24→ 4→ ∅→ 3

24→ 4→ 34→ 3

24→ 2→ ∅→ 3

24→ 2→ 23→ 3

24→ 234→ 34→ 3

24→ 234→ 23→ 3

Since each transition is elementary, the marginal contribution is credited to the enter-
ing/leaving player. Formally:

φ
St→St+1
i (v) =

⎧
⎪⎨

⎪⎩

1

|St�St+1|!
∑

P from St to St+1

(v(S′P )− v(SP )), if i ∈ St�St+1

0, otherwise,

(3)

where “P from St to St+1” is any path from St to St+1 in 2N (as in Example 3)
and SP → S′P is the unique transition in P such that either {i} = SP \ S′P or
{i} = S′P \ SP .

Example 4 (Example 3 continued) Computing φ24→3(v), we find

φ24→3
1 (v) = 0

φ24→3
2 (v) = 1

6

(
2(v(4)− v(24))+(0− v(2))+2(v(3)− v(23))+(v(34)− v(234)

)

φ24→3
3 (v) = 1

6

(
2(v(3)− 0)+(v(34)− v(4))+(v(23)− v(2))+2(v(234)− v(24)

)

φ24→3
4 (v) = 1

6

(
(0− v(4))+2(v(3)− v(34))+2(v(2)− v(24))+(v(23)− v(234)

)
.

Example 5 (Example 2 continued) The application of the Shapley II principle to the
n! scenarios induced by permutations produces exactly the classical Shapley value, as
is easy to check.

3 Axiomatization of the Shapley II value

We briefly recapitulate the six axioms used in Faigle and Grabisch (2013) to charac-
terize the Shapley II value. We denote by ψ : G → R

n×S a scenario-value, where
G is the set of games on N , and S is the set of finite sequences of coalitions (not
necessarily starting with ∅).

Two sequences S = S1, . . . , Sq and S ′ = S′1, . . . , S′r are said to be concatenable
if Sq = S′1, in which case their concatenation is the sequence

S ⊕S ′ := S1, . . . , Sq , S′2, . . . , S′r .
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Shapley value for coalition processes 193

The concatenation axiom (C) below allows us to restrict our attention to transitions.

Concatenation (C): Let S ,S ′ be two concatenable sequences. Then

ψS⊕S ′ = ψS + ψS ′ .

Indeed, (C) implies for every sequence S = S1, S2, . . . , Sq ,

ψS =
q−1∑

t=1

ψ St→St+1 .

Inactive players in transitions (IP): If player i ∈ N is inactive in S → T (i.e., if
i 
∈ S�T ), then ψ S→T

i (v) = 0 holds for the game v.

Efficiency for transitions (E): For any transition S→ T and game v, we have

∑

i∈N

ψ S→T
i (v) = v(T )− v(S).

Linearity for transitions (L): v �→ ψ S→T (v) is a linear map (in v) for any transition
S→ T .
Symmetry for transitions (S’): For any i ∈ N , any transition S → T and any
permutation σ on N , one has

ψ S→T
i (v) = ψσ(S)→σ(T )σ (i) (v ◦ σ−1).

Recall that i ∈ N is a null player for v if v(S ∪ i) = v(S) for all S ⊆ N \ i .

Null players in transitions (N): If i ∈ N is a null player for v,ψ S→T
i (v) = 0 holds

relative to every transition S → T . Two players i, j are said to be antisymmetric if
v(K ∪ {i, j}) = v(K ) is true for every coalition K ⊆ N \ {i, j}.
Antisymmetry for entering/leaving players (ASEL): If the players i ∈ S \ T and
j ∈ T \ S are antisymmetric for v, then ψ S→T

i (v) = ψ S→T
j (v).

Antisymmetric players have, in some sense, a counterbalancing effect: they annihi-
late each other when entering together a coalition, which can be interpreted by saying
that they bring the same contribution but of opposite sign. Therefore, if one is leaving
and the other entering, their contribution in the scenario becomes equal and of same
sign.

Now, we replace (S’) (symmetry by permutation, a.k.a. anonymity) by the weaker
classical symmetry property as follows. We say that i, j ∈ N are symmetric for v if
v(S ∪ i) = v(S ∪ j) holds for all S ⊆ N \ i j .

Symmetry axiom (S): For any transition S → T , any i, j both in S \ T or in T \ S,
one has ψ S→T

i (v) = ψ j (v)
S→T whenever i, j are symmetric for v.

As pointed out in the Sect. 1, our proof for the axiomatization relies on the decom-
position of games into unanimity games. Recall that for each nonempty coalition
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K ⊆ N , the unanimity game centered at K is defined by

uK (S) =
{

1, if S ⊇ K

0, otherwise.

It is well known that any game v on N can be written as

v =
∑

∅
=K⊆N

mv(K )uK

where the coefficients mv(K ) (i.e., the coefficients of v in the basis of unanimity
games) yield Möbius transform of v (Rota 1964). (The coefficients mv(K ) are also
known as Harsanyi dividends of v, Harsanyi 1963.) It follows from the above that

v(S) =
∑

T⊆S

mv(T ) (S ⊆ N ). (4)

The following lemma characterizes games with antisymmetric players in terms of
the Möbius transform.

Lemma 1 Distinct players i, j are antisymmetric for the game v if and only if

mv(K ∪ i j) = −mv(K ∪ i)− mv(K ∪ j), ∀K ⊆ N \ i j,

where mv is the Möbius transform of v.

Proof If i, j are antisymmetric for v and mv is the Möbius transform of v, one deduces
from (4):

0 = v(L ∪ i j)− v(L) =
∑

K⊆L∪i j

mv(K )−
∑

K⊆L

mv(K )

=
∑

K⊆L

(
mv(K ∪ i)+ mv(K ∪ j)+ mv(K ∪ i j)

)

for any L ⊆ N \ i j . The choice L = ∅ establishes mv(i) + mv( j) + mv(i j) = 0.
Now, for L = {k}, we deduce mv(ik)+ mv( jk)+ mv(i jk) = 0, etc. until we finally
arrive at

mv(K ∪ i)+ mv(K ∪ j)+ mv(K ∪ i j) = 0.

Theorem 1 A scenario-value satisfies the axioms (C), (L), (IP), (E), (S), (N) and
(ASEL) if and only if it is the Shapley II scenario-value.

Proof The “if part” has already been shown in Faigle and Grabisch (2012, 2013). For
the “only if part”, we use the representation of games by unanimity games. By (L)
and (C), it therefore suffices to prove that for any unanimity game uK , any transition
S→ T , the quantities ψ S→T

i (uK ) i ∈ N , are uniquely determined.
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Shapley value for coalition processes 195

1. Assuming S ⊆ T , consider the unanimity game uK for some K ⊆ N . Observe
that any i ∈ K is a non-null player while any player j ∈ N \ K is null. Hence (E),
(N) and (IP), imply

uK (T )− uK (S) =
∑

i∈(T \S)∩K

ψ S→T
i (uK ).

Assuming |(T \ S)∩ K | > 1, any two players in this set are symmetric for uK . By
(S), we therefore have

ψ S→T
i (uK ) = uK (T )− uK (S)

|(T \ S) ∩ K | , i ∈ (T \ S) ∩ K ,

and ψ S
i → T (uK ) = 0 for any other i by (N) and (IP). Finally, we observe

uK (T )− uK (S) =
{

1, if K ⊆ T and K 
⊆ S

0, otherwise.

In summary, we find

ψ S→T
i (uK ) =

{
1
|K\S| , if K ⊆ T and i ∈ K \ S

0, otherwise.

2. The case T ⊆ S is analyzed similarly. We find

ψ S→T
i (uK ) =

{
1
|K\T | , if K ⊆ S and i ∈ K \ T

0, otherwise.

3. We consider the case where S \ T 
= ∅ and T \ S 
= ∅ hold. From (N), (IP) and
(E), we deduce

uK (T )− uK (S) =
∑

i∈(S�T )∩K

ψ S→T
i (uK ). (5)

Observe that

uK (T )− uK (S) =

⎧
⎪⎨

⎪⎩

1, if K ⊆ T and K 
⊆ S ∩ T

−1, if K ⊆ S and K 
⊆ S ∩ T

0, otherwise.

Clearly, if K∩(S�T ) = ∅, ψ S→T
i (uK ) = 0 for all i ∈ N by (IP). We assume here-

after that K ∩ (S�T ) 
= ∅, which excludes K ⊆ S ∩ T . The above considerations
give us three cases to distinguish.
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3.1 Suppose that K ⊆ T . Then Eq. (5) becomes

∑

i∈K\S
ψ S→T

i (uK ) = 1,

and, by (S), (N) and (IP) yields

ψ S→T
i (uK ) =

{
1
|K\S| , if i ∈ K \ S

0, otherwise.
(6)

3.2 The case K ⊆ S proceeds similarly and establishes

ψ S→T
i (uK ) =

{
− 1
|K\T | , if i ∈ K \ T

0, otherwise.
(7)

3.3 Suppose K 
⊆ T and K 
⊆ S. Then equation (5) becomes

∑

i∈(S�T )∩K

ψ S→T
i (uK ) =

∑

i∈(S\T )∩K

ψ S→T
i (uK )+

∑

i∈(T \S)∩K

ψ S→T
i (uK ) = 0.

All players in (S \ T )∩ K being symmetric, and similarly for (T \ S)∩ K , axiom
(S) guarantees the equality

|(S \ T ) ∩ K |ψ S→T
i (uK )+ |(T \ S) ∩ K |ψ S→T

j (uK ) = 0, (8)

for arbitrary players i ∈ S \ T and j ∈ T \ S, provided they exist. If (S \ T )∩ K = ∅,
we obtain from (8) for k ∈ K ∩ T and from (N ), (IP) otherwise

ψ S→T
k (uK ) = 0, ∀k ∈ N . (9)

Similarly, (9) is valid also if (T \ S) ∩ K = ∅. It remains to deal with the case

K1 := (S \ T ) ∩ K 
= ∅ and K2 := (T \ S) ∩ K 
= ∅.

We argue recursively on |K2|, and start from the singleton K2 = { j}.
Consider the game v := uK − uK\ j . From Lemma 1, we see that all i ∈ K1

are antisymmetric with j . Applying (ASEL) we find ψ S→T
i (v) = ψ S→T

j (v) for any
i ∈ K1, which yields by (L):

ψ S→T
i (uK )− ψ S→T

i (uK\ j ) = ψ S→T
j (uK )− ψ S→T

j (uK\ j )︸ ︷︷ ︸
=0 by (N)

. (10)
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Observe that K ′ = K \ j is such that (T \ S) ∩ K ′ = ∅. Therefore, either (7) or (9)
applies, and we find

ψ S→T
i (uK\ j ) =

{
− 1
|K\T | , if K \ j ⊆ S

0, otherwise.

This yields

ψ S→T
i (uK )− ψ S→T

j (uK ) =
{
− 1
|K\T | , if K \ j ⊆ S

0, otherwise.
(11)

Observe that the equations (8) and (11) together yield a unique solution forψ S→T
i (uK )

and ψ S→T
j (uK ).

Assume now that ψ S→T
i (uK ) is known whenever |K2| = � < |T \ S|. We claim

that we can then determine ψ S→T
i (uK ), ψ

S→T
j (uK ) for |K2| = �+ 1.

Choose some j ∈ K2 and consider the game v := uK − uK\ j . Since i and j are
antisymmetric for all i ∈ K1, the same reasoning as above applies, and establishes the
validity of (10). Now,ψ S→T

i (uK\ j ) is determined by induction hypothesis. Therefore,
ψ S→T

i (uK ), ψ
S→T
j (uK ) are uniquely determined, as claimed.

4 Independence of the axioms

We prove that the seven axioms above are logically independent.
Consider axiom (C). All six remaining axioms determine φS→T (v) for a given

transition S→ T . Hence the value ψS for a scenario S = S1, . . . , Sq defined by

ψS (v) = f (φS1→S2(v), φS2→S3(v), . . . , φSq−1→Sq (v)),

where f is an operator different from the sum, satisfies all axioms but (C).
The situation of axiom (L) is similar: our proof of axiomatization of φS→T (v) is

based on the unique determination of φS→T (uK ) for any unanimity game uK , using
the five remaining axioms (IP), (E), (S), (N) and (ASEL). Hence the value ψS (v)

defined by

ψS (v) =
q−1∑

t=1

(
⊕K⊆N mv(K )φSt→St+1(uK )

)

with v =∑
K⊆N mv(K )uK , and⊕ is an operator different from the sum, satisfies all

axioms but (L).
It remains to show that (IP), (E), (S), (N) and (ASEL) are independent for the

axiomatization of φS→T (uk), for any transition S→ T and any unanimity game uK .

(i) Axiom (E): removing the normalization constant 1
|S�T | in (3) gives a value sat-

isfying (IP), (S), (N), (ASEL) but not (E).
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(ii) Axiom (IP): consider the value defined by ψ S→T = φS→T if 1 ∈ S�T , and
otherwise

ψ S→T
i (v) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1− δ(v(S, T ))

|S�T |!
∑

P from S to T

(v(S′P )− v(SP )) if i ∈ S�T

δ(v(S, T ))(v(T )− v(S)) if i = 1

0 otherwise,

where δ(v(S, T )) = v((S�T )∪1)−v(S�T ). Clearly, axiom (IP) is not satisfied,
but it can be checked that all other axioms are.

(iii) Axiom (N): consider the value defined by

ψ S→T
i (v) =

⎧
⎨

⎩

v(T )− v(S)
|S�T | if i ∈ S�T

0 otherwise.

Then ψ S→T satisfies all axioms but (N).
(iv) Axiom (S): define ψ S→T (v) as follows: If S ⊆ T , then ψ S→T (v) is a weighted

Shapley value instead of a classical Shapley value,2 i.e., weights are assigned to
players. Otherwise, ψ S→T coincides with φS→T .
Then, unless all weights are equal, this value is not symmetric, although it will sat-
isfy all other axioms. In particular, (ASEL) is satisfied because (ASEL) involves
only transitions S→ T where S 
⊆ T and T 
⊆ S.

(v) Axiom (ASEL): let us come back to the proof of Theorem 1. Axiom (ASEL) is
used only in case 3.3 where (S \ T ) ∩ K 
= ∅ and (T \ S) ∩ K 
= ∅. It yields
equation (11), which together with (8) determines the value uniquely. It suffices
then to take any solution of (8) not satisfying (11). For example:

ψ S→T
i (uK ) = −|(T \ S) ∩ K |

|(S \ T ) ∩ K | , ψ S→T
j (uK ) = 1

for every i ∈ S \ T, j ∈ T \ S, and S, T, K satisfy the above condition.
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