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Abstract Compactness is an important topological property as it enables us to apply
minimax theorems in economic theory. The theory of optimal choice sets is a solution
theory that has a long and well-established tradition in social choice and game theories.
A general solution concept of choice problems when the set of best alternatives does
not exist (this problem occurs when the preferences yielded by an economic process
are cyclic) is the Schwartz set. This set is one of the most popular solution concepts
since it insures rationality. The Schwartz set is equivalent to the admissible set that
appears in the game theory literature. The present note shows that the feasible set
is compact if and only if every generalized upper tc-semicontinuous preference has
non-empty Schwartz (admissible) set.
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1 Introduction

The concept of compactness is an extension of the benefits of finiteness1 to infi-
nite sets.2 Most properties of compact sets in economic theory are analogous to the

1 Any topology on a finite set is compact, but a finite set is usually considered to be a discrete topological
space. Here is why: (i) if a set D has a discrete topology, then D is compact if and only if D is finite;
(ii) a topology on a finite set D is Hausdorff if and only if it is the discrete topology; (iii) any function
from a space with the discrete topology is continuous.
2 We often call an infinite set itself a compact set when it is not important what topology is being used.
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properties of finite sets which are quite trivial. For example, the existence theorems of
maximal elements are useful and important tools to prove the existence of non-empty
choice sets or equilibrium existence theorems of mathematical economies and gen-
eralized games in different underline spaces.3 Therefore, we are often interested in
conditions under which we can be sure that a preference achieves a maximal element
on the feasible set.4 If the feasible set is finite, a sufficient condition for the existence
for such a maximal element is the preference to be acyclic. However, the same state-
ment remains true if finiteness is replaced by compactness and the preference is upper
semicontinuous.5

A classical result of Sloss (1971), Brown (1973) and others states that any upper
semicontinuous acyclic binary relation defined on a compact set has a maximal ele-
ment. A converse result of Sloss and Brown is that of Gutiérrez (2009, Theorem 2.1),
which says that: if the compactness from the feasible set is violated, then there exists a
preference (here preference means asymmetric and negative transitive binary relation)
such that for every feasible element there is one that is better according to this prefer-
ence. That is, the feasible set has no maximal element with respect to this preference.
Since asymmetry and negative transitivity imply acyclicity, the aforementioned results
of Sloss, Brown and Gutiérrez, provide a characterization of compactness as follows:
the feasible set is compact if and only if there is a maximal element for any upper semi-
continuous acyclic binary relation. This characterization requires the binary relation
to be acyclic. However, in collective choice problems (ranking of social preferences,
voting in committees, etc.), cyclicity is a plausible assumption as, for example, the
Condorcet Paradox shows. For this reason, a more general framework is needed to
characterize compactness.

The classical rationality conditions in choice theory formalize the thesis that to
choose rationally is to choose in such a way that no other choice would have been
better, or preferable. That is, each individual makes choices by selecting, from each
feasible set of alternatives, those which maximize his own preference relation. On
the other hand, one of the most common assumptions made in game theory is that
rationality implies that every player maximizes his own payoff. In a stricter sense, it
implies that every player always maximizes his utility, thus being able to perfectly
calculate the probabilistic result of every action. In any case, the choice set, from a
given potential set, is the set of maximal elements under a dominance relation. But,
the set of maximal elements is often empty. In this case, it is important to specify
criteria that will provide reasonable sets of alternatives as solutions. In the choice
and game theories, a number of theories, called general solution theories, have been
proposed to take over the role of maximality in the absence of maximal elements.
One of the most important general solution concepts is the Schwartz set. An equiv-
alent notion to the Schwartz set in game theory is that of the admissible set (see

3 See for instance, Araujo et al. (2004), de Castro et al. (2011), Sánchez et al. (2003), Prokopovych (2011)
and Yannelis and Prabhakar (1983).
4 The feasible set is the set of all alternatives (commodity bundles or payoff outcomes) that are possible
solutions.
5 Since a finite set is considered as a discrete topological space, the continuity assumptions posed for the
infinite case also hold in the finite case.
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Kalai and Schmeidler 1977). The admissible set concept can be applied to a host
of game-theoretic situations, ranging from non-cooperative games, where a coalition
consists of an individual player, to fully cooperative games, where any coalition can be
allowed.

On the other hand, to face the problem of characterization of the existence of
non-empty choice sets, the standard approach is to assume upper semicontinuous
preferences. A number of more general concepts of continuity have been introduced
in the literature in connection with the problem of the existence of maximal elements.
Alcantud (2002) defines the notion of upper tc-semicontinuity which is extended by
Andrikopoulos (2007) to the notion of generalized upper tc-semicontinuity.

In this study, we characterize the compactness of the feasible set in a general frame-
work, where “preference” means arbitrary binary relation. We prove that the feasible
set is compact if and only if every generalized upper tc-semicontinuous preference
has non-empty Schwartz (admissible) set.

2 Notation and definitions

Let X be a (finite or infinite) non-empty set of alternatives, and let R ⊆ X × X be a
preference on X . We sometimes abbreviate (x, y) ∈ R as x Ry. The asymmetric part
P(R) of R is given by: (x, y) ∈ P(R) if and only if (x, y) ∈ R and (y, x) /∈ R.
The complement of R is denoted by Rc: For all x, y ∈ X, Rc = {(x, y)|(x, y) /∈ R}.
The relation R is asymmetric if and only if x Ry implies (y, x) /∈ R. We say that R
is transitive if for all x, y, z ∈ X , (x, z) ∈ R and (z, y) ∈ R imply that (x, y) ∈ R.
If in the definition of a transitive preference we replace R with Rc, we get the notion
of negative transitive preference. The transitive closure of R is denoted by R: For all
x, y ∈ X, (x, y) ∈ R, if there exist K ∈ N and x0, . . . , xK ∈ X such that x = x0 ,
(xk−1 , xk ) ∈ R for all k ∈ {1, . . . , K } and xK = y. A subset Y ⊆ X is an R-cycle if,
for all x, y ∈ Y , we have (x, y) ∈ R and (y, x) ∈ R. We say that R is acyclic if there
does not exist an R-cycle. M(X, R) denotes the elements of X that are R-maximal in
X , i.e., M(X, R) = {x ∈ X | for all y ∈ X, y Rx implies x Ry}. A subset A ⊆ X is
R-undominated if and only if for no x ∈ A there is a y ∈ X \ A such that y Rx . An
R-undominated set is minimal if none of its proper subsets has this property.

Let R be a preference defined on a topological space (X, τ ). The preference R
is upper semicontinuous (resp. upper tc-semicontinuous) if for each x ∈ X the set
{y ∈ X |x Ry} (resp. {y ∈ X |x Ry}) is open. R is generalized upper tc-semicontinuous
if for each x ∈ X the set {y ∈ X |x P(R)y} is open. The space (X, τ ) is compact if for
each collection of open sets which cover X there exists a finite subcollection that also
covers X .

3 The main result

The usual definition of compact spaces is based on open sets and unions. This defini-
tion, by applying de Morgan’s laws, can be written using closed sets and intersections.
Recall that a nest is a family of sets which is linearly ordered by inclusion.

123



108 A. Andrikopoulos

Nest characterization of compactness (Kelley 1955, Page 163). A topological space
(X, τ ) is compact if and only if each nest of closed non-empty sets has non-empty
intersection.

A choice function is a functional relationship, C : P(X) → P(X) such that, for
every A ∈ P(X), C(A) is a non-empty subset of A, which represents those alternatives
chosen by the individual or society. The traditional choice-theoretic approach takes
behavior as rational if there is a binary relation R such that for all non-empty subsets
of X , C(A) = M(A, R). To deal with the case where the set of maximal elements is
empty, Schwartz has proposed the following general solution concept:

Generalized Optimal-Choice Axiom (GOCHA) (Schwartz 1986, Page 142). For each
A ⊆ X , C(A) is equivalent to the union of all minimal R-undominated subsets of A.

The Schwartz set is the choice set from a given set specified by the GOCHA
condition. An equivalent notion of Schwartz set in game theory, called admissible set,
was introduced independently by Kalai and Schmeidler (1977) as follows: Given a set
of alternatives X and a binary relation R on X , the admissible set of the pair (X, R) is
defined to be the set of maximal elements with respect to the transitive closure of R.6

The authors show that existing solutions in game theory and mathematical economics
are special cases of the admissible set. More specifically, the admissible set coincides
with the core of an n-person cooperative game without side payments with the Nash
equilibria of a game in the normal form, and it contains the competitive equilibrium
prices in the case of an exchange economy with finitely many commodities and traders.

To simplify the notation, in what follows, S(X, R) denotes the Schwartz set with
respect to a preference relation R defined over a set of alternatives X .

Theorem The feasible set is compact if and only if any generalized upper tc-
semicontinuous preference has non-empty Schwartz (admissible) set.

Proof To prove sufficiency, suppose that X is a non-compact set. Then, we must
prove that there exists a generalized upper tc-semicontinuous preference R in X such
that S(X, R) = ∅. Since X is non-compact, according to the nest characterization of
compactness, there exists a well-ordered decreasing family {Fi |i ∈ I } of non-empty
closed subsets of X such that its intersection

⋂
i ∈I Fi = ∅.

Let R∗ be the binary relation which is defined in Gutiérrez (2009, Page 132), that
is:

y R∗x if there is k ∈ I such that y ∈ Fk and x /∈ Fk .

We will show that R∗ is a generalized upper tc-semicontinuous preference such that
S(X, R∗) = ∅, and proving this will complete the sufficiency part. Clearly, R∗ is
asymmetric and negative transitive. It follows that R∗ is acyclic. Since, for each x ∈ X
the set {y ∈ X |x R∗y} is open, P(R∗) = R∗ and for each t ∈ {y ∈ X |x R∗y} the
inclusion {y ∈ X |t R∗y} ⊆ {y ∈ X |x R∗y} always holds, we conclude that R∗ is
generalized upper tc-semicontinuous. Suppose that S(X, R∗) �= ∅. We will show that
this leads to a contradiction. Indeed, let x ∈ S(X, R∗). Then, there exists a minimal R-
undominated subset D of X such that x ∈ D. There are two cases to consider depending

6 The equivalence of the Schwartz and admissible sets emerges from Andrikopoulos (2012, Theorem 19).
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on whether D = {x} or not. In the case where D = {x}, we have (y, x) /∈ R∗ for
all y ∈ X . Choose a k ∈ I and a y ∈ Fk . It follows by (y, x) /∈ R∗ that for each
i ∈ I , either y /∈ Fi or x ∈ Fi . Hence, since y /∈ Fk is false, we conclude that x ∈ Fk .
Therefore, x ∈ Fi for all i ∈ I which contradicts

⋂
i ∈I Fi = ∅. The last contradiction

implies that S(X, R∗) = ∅. We now pass to the case where D �= {x}. It follows that
{x} ⊂ D. But then, we have for at least one y0 ∈ X that y0 R∗x . Therefore, y0 ∈ D,
otherwise: since x ∈ D, we cannot have y0 R∗x .

Put

Ax = {y ∈ D |(x, y) ∈ R∗}.

We show that y0 ∈ Ax which, together with (y0 , x) ∈ R∗, contradicts the acyclicity of
R∗. We first show that Ax �= ∅. Suppose to the contrary that Ax = ∅. Then, for each
y ∈ D, (x, y) /∈ R∗ ⊇ R∗. It follows that D \ {x} ⊂ D is an R∗-undominated subset
of X , a contradiction because of the minimal character of D. Let D(x) = D \ Ax .
We now show that D(x) = ∅. We proceed by contradiction, so let us assume that
D(x) �= ∅. Then, for each t ∈ Ax and each s ∈ D(x) we have (t, s) /∈ R∗ for suppose
otherwise, (t, s) ∈ R∗ implies that (x, s) ∈ R∗ contradicting s ∈ D(x). Therefore,
D(x) ⊂ D is an R∗-undominated subset of X , which is again a contradiction. Hence,
D(x) = ∅ which implies that Ax = D. Since y0 ∈ D, we conclude that (x, y0) ∈ R∗,
a contradiction with the assumption that R∗ is acyclic. This contradiction implies that
our assumption that S(X, R∗) �= ∅ was false. Thus, the sufficiency part of the theorem
is proved.

For the necessity part, assume that X is compact. Let GSC(X) denotes the fam-
ily of all generalized upper tc-semicontinuous preferences in X . Since X × X
belongs to GSC(X), this family is non-empty. Take an arbitrary generalized upper
tc-semicontinuous preference R in X . We prove that S(X, R) �= ∅. By virtue of Theo-
rem 19 in Andrikopoulos (2012), S(X, R) is equivalent to the set of maximal elements
of the transitive closure of R. Thus, we must prove that there exists x0 ∈ X such that
for each y ∈ X , we have (y, x0) /∈ P(R). Indeed, suppose to the contrary that for
every x ∈ X , there exists y ∈ X such that y P(R)x . Since the space is generalized
upper tc-semicontinuous, for each y ∈ X , the set {x ∈ X |y P(R)x} is an open set in
X . It follows that,

X =
⋃

y∈X

{x ∈ X |y P(R)x}.

Since the space is compact, there exist y1 , . . . , yn such that

X =
⋃

i∈{1,...,n}
{x ∈ X |yi P(R)x}.

Consider the finite set {y1 , . . . , yn }. Since y1 ∈ X , then there exists i ∈ {1, . . . , n} such
that yi P(R)y1 . If i = 1, then we have a contradiction. Otherwise, call this element
y2 . We have y2 P(R)y1 . Similarly, y3 P(R)y2 P(R)y1 . As {y1 , . . . , yn } is finite, by an
induction argument based on this logic, we obtain the existence of a cycle for P(R).
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This last conclusion contradicts the acyclicity of P(R). Hence, there exists x0 ∈ X
such that for each y ∈ X , (y, x0) /∈ P(R). If x0 is R-undominated, then x0 ∈ S(X, R).
Otherwise, there exists y ∈ X such that (y, x0) ∈ R ⊆ R. Since (y, x0) /∈ P(R), we
conclude that (x0 , y) ∈ R. Therefore, x0 belongs to an R-cycle. By the Lemma of
Zorn, the family of all R-cycles which contain x0 has a maximal element, let K(x0).
We prove that K(x0) is a minimal R-undominated set in X . Suppose to the contrary,
that (t, s) ∈ R for some t ∈ X \ K(x0) and s ∈ K(x0). It follows that (t, x0) ∈ R.
Since (t, x0) /∈ P(R), we conclude that (x0 , t) ∈ R. Hence, K(x0)∪{t} is an R-cycle,
a contradiction because of the maximal character of K(x0). Therefore, K(x0) is an
R-undominated subset of X . It is also minimal for this property as one may verify
directly. The last conclusion shows that S(X, R) �= ∅.
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