Skip to main content
Log in

Impact of heat and drought stress on phenological development and yield in bread wheat

  • Original Article
  • Published:
Plant Physiology Reports Aims and scope Submit manuscript

Abstract

The combination of high temperature and water deficit is common in dry and semi-dry regions worldwide and claims extensive yield losses. A total of 36 genotypes were evaluated for yield traits, phenological traits, plant architectural traits, physiological traits, and stress index under drought heat and combined stress environments. The yield loss assessment over the control experiment had shown more significant loss under combined stress (55.96%), followed by drought (41.11%) and least affected by heat alone (4.77%). PCA analysis indicated yield is positively associated with thousand-grain weight and grain filling duration. The negative association of yield with days to heading and days to maturity in all the stress environments trials indicates that drought escape mechanism by earliness and short duration has been recognized as a key criterion for breeding for drought and high-temperature tolerance. AMMI for yield indicated that E, G and G × E contributed to the tune of 71.66, 14.79, and 13.56%, respectively. In our study, three genotypes MACS 6729, HD 2932, and MACS 6733, found ideal based on yield and stability performance across the environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alvarado, G., López, M., Vargas, M., Pacheco, Á., Rodríguez, F., Burgueño, J., & Crossa, J., (2015). META-R (Multi Environment Trail Analysis with R for Windows) Version 6.04. https://hdl.handle.net/11529/10201, CIMMYT Research Data & Software Repository Network, V23.

  • Araus, J. L., Slafer, G. A., Royo, C., & Serret, M. D. (2008). Breeding for yield potential and stress adaptation in cereals. Critical Reviews in Plant Science, 27, 377–412.

    Article  Google Scholar 

  • Asseng, S., Ewert, F., Martre, P., Rötter, R. P., Lobell, D. B., Cammarano, D., Kimball, B. A., Ottman, M. J., Wall, G. W., White, J. W., & Reynolds, M. P. (2015). Rising temperatures reduce global wheat production. Nature Climate Change, 5, 143–147.

    Article  Google Scholar 

  • Barnabás, B., Jäger, K., & Fehér, A. (2008). The effect of drought and heat stress on reproductive processes in cereals. Plant, Cell & Environment, 31, 11–38.

    Google Scholar 

  • Bennett, D., Izanloo, A., Reynolds, M., Kuchel, H., Langridge, P., & Schnurbusch, T. (2012). Genetic dissection of grain yield and physical grain quality in bread wheat (Triticum aestivum) under water-limited environments. Theoretical and Applied Genetics, 125, 255–271.

    Article  Google Scholar 

  • Cammarano, D., Fitzgerald, G., Basso, B., O’Leary, G., Chen, D., Grace, P., & Fiorentino, C. (2011). Use of the canopy chlorophyll content index (CCCI) for remote estimation of wheat nitrogen content in rainfed environments. Agronomy Journal, 103, 1597–1603.

    Article  CAS  Google Scholar 

  • Crespo-Herrera, L. A., Crossa, J., Huerta-Espino, J., Autrique, E., Mondal, S., Velu, G., Vargas, M., Braun, H. J., & Singh, R. P. (2017). Genetic yield gains in CIMMYT’s International Elite Spring Wheat Yield Trials by modelling the genotype× environment interaction. Crop Science, 57, 789–801.

    Article  Google Scholar 

  • Dwivedi, S. K., Arora, A., Singh, V. P., & Singh, G. P. (2018). Induction of water deficit tolerance in wheat due to exogenous application of plant growth regulators: Membrane stability, water relations, and photosynthesis. Photosynthetica, 56, 478–486.

    Article  CAS  Google Scholar 

  • Egli, D. B. (2004). Seed-fill duration and yield of grain crops. In D. Sparks (Ed.), Advances in agronomy. Academic press, pp. 243.

  • Fernandez, G. C. (1993). Effective selection criteria for assessing plant stress tolerance. In Proceeding of the international symposium on adaptation of vegetables and other food crops in temperature and water stress, Aug. 13–16, Shanhua, Taiwan, 1992 (pp. 257–270).

  • Food and Agriculture Organization (FAO). (2017). FAOSTAT database. http://faostat.fao.org/beta/en/. Accessed 14 Jan 2017.

  • Gupta, P. K., Balyan, H. S., Sharma, S., & Kumar, R. (2020). Genetics of yield, abiotic stress tolerance, and bio fortification in wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 133, 1569–1602.

    Article  Google Scholar 

  • Harikrishna, Singh, G. P., Jain, N., Singh, P. K., Sai Prasad, S. V., Ambati, D., Das, T. R., Kumar, A., Bhat, J. A., Bellundagi, A., Priyanka, V., Sinha, N., Mishra, P. C., Misra, S. C., & Prabhu, K. V. (2016). Physiological characterization and grain yield stability analysis of RILs under different moisture stress conditions in wheat (Triticumaestivum). Indian Journal of Plant Physiology, 21, 576–582.

    Article  Google Scholar 

  • Hazratkulova, S., Sharma, R. C., Alikulov, S., Islomov, S., Yuldashev, T., Ziyaev, Z., Khalikulov, Z., Ziyadullaev, Z., & Turok, J. (2012). Analysis of genotypic variation for normalized difference vegetation index and its relationship with grain yield in winter wheat under terminal heat stress. Plant Breeding, 131, 716–721.

    Article  Google Scholar 

  • Król, A. (2013). The growth and water uptake by yellow seed and black seed rape depending on the state of soil compaction. Ph.D. thesis, Bohdan Dobrzañski Institute of Agrophysics PAS, Lublin, Poland.

  • Liu, C., Sukumaran, S., Claverie, E., Sansaloni, C., Dreisigacker, S., & Reynolds, M. (2019). Genetic dissection of heat and drought stress QTLs in phenology-controlled synthetic-derived recombinant inbred lines in spring wheat. Molecular Breeding, 39, 34.

    Article  CAS  Google Scholar 

  • Lobell, D. B., Sibley, A., & Ortiz-Monasterio, J. I. (2012). Extreme heat effects on wheat senescence in India. Nature Climate Change, 2, 186–189.

    Article  Google Scholar 

  • Lopes, M. S., & Reynolds, M. P. (2010). Partitioning of assimilates to deeper roots is associated with cooler canopies and increased yield under drought in wheat. Functional Plant Biology, 37, 147–156.

    Article  Google Scholar 

  • Lopes, M. S., & Reynolds, M. (2012). Stay-green in spring wheat can be determined by spectral reflectance measurements (normalized difference vegetation index) independently from phenology. Journal of Experimental Botany, 63, 3789–3798.

    Article  CAS  Google Scholar 

  • Mamrutha, H. M., Khobra, R., Sendhil, R., Munjal, R., Prasad, S. S., Biradar, S., Mavi, G. S., Dhar, T., Bahadur, R., Bhagwan, J. H., & Prakash, S. (2020). Developing stress intensity index and prioritizing hotspot locations for screening wheat genotypes under a climate change scenario. Ecological Indicators, 118, 106714.

    Article  Google Scholar 

  • Manu, B., Kumara, P. S., Biradar, S., Chauhan, D., Phuke, R., Ambati, D., Prasad, S. S., Mishra, P. C., Mishra, K. K., Harikrishna, N. J., & Singh, P. K. (2020). Genetic gain and morpho-physiological characterization of BILs (Backcross inbred lines) under different moisture regimes in wheat (Triticumaestivum L.). Indian Journal of Genetics and Plant Breeding, 80, 84–93.

    Google Scholar 

  • Marti, J., Bort, J., Slafer, G. A., & Araus, J. L. (2007). Can wheat yield be assessed by early measurements of the Normalized Difference Vegetation Index? Annals of Applied Biology, 150, 253–257.

    Article  Google Scholar 

  • Mishra, C. N., Tiwari, V., Satish, K. V., & G., Kumar A. & Sharma I. . (2015). Genetic diversity and genotype by trait analysis for agro-morphological and physiological traits of wheat (Triticum aestivum L.). SABRAO Journal of Breeding and Genetics, 47, 40–48.

    Google Scholar 

  • Mittler, R. (2006). Abiotic stress, the field environment, and stress combination. Trends in Plant Science, 11, 15–19.

    Article  CAS  Google Scholar 

  • Mondal, S., Singh, R. P., Crossa, J., Huerta-Espino, J., Sharma, I., Chatrath, R., Singh, G. P., Sohu, V. S., Mavi, G. S., Sukuru, V. S. P., & Kalappanavar, I. K. (2013). Earliness in wheat: A key to adaptation under terminal and continual high-temperature stress in South Asia. Field Crops Research, 151, 19–26.

    Article  Google Scholar 

  • Olivares-Villegas, J. J., Reynolds, M. P., & McDonald, G. K. (2007). Drought-adaptive attributes in the Seri/Babaxhexaploid wheat population. Functional Plant Biology, 34, 189–203.

    Article  Google Scholar 

  • Pacheco, Á., Vargas, M., Alvarado, G., Rodríguez, F., Crossa, J., & Burgueño, J. (2015). GEA-R (Genotype x Environment Analysis with R for Windows) Version 4.1. https://hdl.handle.net/11529/10203, CIMMYT Research Data & Software Repository Network, V16.

  • Pask, A. J. D., Pietragalla, J., Mullan, D. M., & Reynolds, M. P. (2012). Physiological breeding II: A field guide to wheat phenotyping. CIMMYT.

  • Pradhan, G. P., Prasad, P. V., Fritz, A. K., Kirkham, M. B., & Gill, B. S. (2012). Effects of drought and high-temperature stress on synthetic hexaploid wheat. Functional Plant Biology, 39, 190–198.

    Article  Google Scholar 

  • Prasad, P. V. V., Pisipati, S. R., Momčilović, I., & Ristic, Z. (2011). Independent and combined effects of high temperature and drought stress during grain filling on plant yield and chloroplast EF-Tu expression in spring wheat. Journal of Agronomy and Crop Science, 197, 430–441.

    Article  CAS  Google Scholar 

  • Punia, S. S., Shah, A. M., & Ranwha, B. R. (2011). Genetic analysis for high-temperature tolerance in bread wheat. African Crop Science Journal, 19, 149–163.

    Google Scholar 

  • R Core Team. (2018). R: A language and environment for statistical computing. . R Foundation for Statistical Computing.

    Google Scholar 

  • Reynolds, M. P., Saint Pierre, C., Saad, A. S. I., Vargas, M., & Condon, A. G. (2007). Evaluating potential genetic gains in wheat associated with stress-adaptive trait expression in elite genetic resources under drought and heat stress. Crop Science, 47, S-172-S-189.

    Article  Google Scholar 

  • Rizhsky, L., Liang, H., & Mittler, R. (2002). The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiology, 130, 1143–1151.

    Article  CAS  Google Scholar 

  • Rizhsky, L., Liang, H., Shuman, J., Shulaev, V., Davletova, S., & Mittler, R. (2004). When defence pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiology, 134, 1683–1696.

    Article  CAS  Google Scholar 

  • Sharma, R. C., Tiwary, A. K., & Ortiz-Ferrara, G. (2008). Reduction in kernel weight as a potential indirect selection criterion for wheat grain yield under terminal heat stress. Plant Breeding, 127, 241–248.

    Article  Google Scholar 

  • Sinha, N., Priyanka, V., Ramya, K. T., Leena, T., Bhat, J. A., Harikrishna, J., & N., Singh, P.K., Singh, G.P. & Prabhu, K.V., . (2018). Assessment of marker-trait associations for drought and heat tolerance in bread wheat. Cereal Research Communications, 46, 639–649.

    Article  CAS  Google Scholar 

  • Sukumaran, S., Reynolds, M. P., & Sansaloni, C. (2018). Genome-wide association analyses identify QTL hotspots for yield and component traits in durum wheat grown under yield potential, drought, and heat stress environments. Frontiers in Plant Science, 9, 81.

    Article  Google Scholar 

  • Tahmasebi, S., Heidari, B., Pakniyat, H., & Jalal Kamali, M. R. (2014). Independent and combined effects of heat and drought stress in the Seri M82× Babax bread wheat population. Plant Breeding, 133, 702–711.

    Article  Google Scholar 

  • Talukder, A. S. M. H. M., McDonald, G. K., & Gill, G. S. (2014). Effect of short-term heat stress prior to flowering and early grain set on the grain yield of wheat. Field Crops Research., 160, 54–63.

    Article  Google Scholar 

  • Trethowan, R. M., & Mujeeb-Kazi, A. (2008). Novel germplasm resources for improving environmental stress tolerance of hexaploid wheat. Crop Science, 48, 1255–1265.

    Article  Google Scholar 

  • Yan, W. (2001). GGE biplot—A Windows application for graphical analysis of multi-environment trial data and other types of two-way data. Agronomy Journal, 93, 1111–1118.

    Article  Google Scholar 

  • Yan, W., & Kang, M. S. (2002). GGE biplot analysis: A graphical tool for breeders, geneticists, and agronomists. CRC Press, pp. 288.

  • Zadoks, J. C., Chang, T. T., & Konzak, C. F. (1974). A decimal code for the growth stages of cereals. Weed Research, 14, 415–421.

    Article  Google Scholar 

  • Zandalinas, S. I., Mittler, R., Balfagón, D., Arbona, V., & Gómez‐Cadenas, A. (2018). Plant adaptations to the combination of drought and high temperatures. Physiologia Plantarum, 162, 2–12.

Download references

Acknowledgements

Authors acknowledge Agharkar Research Institute, Pune, for primary infrastructure facility. ICAR- IIWBR, Karnal for experimental material, and necessary funding for experiments.

Author information

Authors and Affiliations

Authors

Contributions

YKJ, VSB, SAD and GPS Conceptualization of research; RMP and YKJ Designing of the experiments; GPS, MHM, GR, SKS and CNM Contribution of experimental materials; YKJ, VSB, JHB, DNB and VDG Execution of field/lab experiments and data collection; YKJ, SN and GR Analysis of data and interpretation; YKJ and SN Preparation of the manuscript.

Corresponding author

Correspondence to K. J. Yashavanthakumar.

Ethics declarations

Conflict of interest

Authors declare they do not have any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 986 kb)

Supplementary file2 (DOCX 34 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yashavanthakumar, K.J., Baviskar, V.S., Navathe, S. et al. Impact of heat and drought stress on phenological development and yield in bread wheat. Plant Physiol. Rep. 26, 357–367 (2021). https://doi.org/10.1007/s40502-021-00586-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-021-00586-0

Keywords

Navigation