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Abstract
Purpose of Review Periodontitis, one of the most prevalent diseases in the world, is caused by the accumulation of dysbiotic 
microbial biofilm on the teeth leading to chronic inflammation of the tissues surrounding the teeth. Type 2 diabetes mellitus 
(T2DM), obesity, chronic stress, and smoking are some of the risk factors for the disease. A high-carbohydrate diet also 
increases the risk of periodontal inflammation. Modifying diet and nutrition could serve as a preventive and therapeutic tool 
to target multiple risk factors simultaneously.
Recent Findings Emerging evidence shows that the ketogenic diet induces hormetic stress and switches on various cell-
protective anti-inflammatory and antioxidant mechanisms. The ketogenic diet also improves mitochondrial function, DNA 
repair, and autophagy. The diet can effectively treat periodontitis risk factors such as T2DM and obesity. By restricting 
carbohydrates, the diet improves glycaemic control in T2DM patients and can effectively produce fat loss and reduce BMI 
(body-mass index) in obese patients. Poor long-term compliance and high cost are the drawbacks of the diet and the potential 
of the diet to increase cardiovascular disease risk needs further investigation.
Summary Taken together, ketogenic diets, through various mechanisms reduce inflammation, mitigate oxidative stress, 
improve metabolic health, and can be used as a therapeutic tool to treat periodontal inflammation. Since robust scientific 
evidence for the ketogenic diet is currently scarce, future research should study the diet's efficacy, effectiveness, and safety 
in managing periodontal inflammation.
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Introduction

“Let food be thy medicine and medicine be thy food.”
- Hippocrates

An optimal diet is the cornerstone of any healthy lifestyle 
as nutrition plays a major role in human health and disease. 

In modern times, several chronic non-communicable dis-
eases—termed ‘diseases of civilisation’—cardiovascular 
disease (CVD), neurodegenerative disease, type 2 Diabetes 
mellitus (T2DM), metabolic syndrome, and cancer are the 
leading causes of death and disability and form the crux 
of our healthcare burden. Many chronic non-communicable 
diseases have integral links to a sub-optimal diet, nutrition, 
and lifestyle [1, 2].

Periodontitis—the sixth most prevalent disease in the 
world [3–5]—is a chronic non-communicable disease that 
manifests as inflammation of the soft tissues surrounding the 
tooth. The dysbiosis of the oral microbial biofilm initiates 
a chain of inflammatory events that culminate in chronic 
inflammation of the periodontium. The development and 
progression of periodontal inflammation are influenced by 
a multitude of other prevalent chronic diseases and condi-
tions like T2DM, obesity, and chronic stress [6]. There is 
also abundant evidence that periodontitis is influenced by 
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diet and nutrition [7, 8]. The management of periodontitis 
mainly focuses on removing dysbiotic biofilm from the teeth 
and enforcing optimal oral hygiene in the patient. Since peri-
odontitis is affected by numerous factors, it is imperative to 
have a simple and effective strategy that can simultaneously 
target multiple risk factors for the disease. Modifying diet 
and nutrition could be one such strategy.

Macronutrients (carbohydrates, proteins, and fats); micro-
nutrients (vitamins and minerals); and dietary fibre are the 
major constituents of any diet. An optimal diet must ensure 
a proper balance between these constituents without creating 
excess or deficits, provide the required calorie intake and 
facilitate optimal health and function. Over the years, sev-
eral diets have emerged that attempt to prevent disease and 
optimize human health and well-being. The ketogenic diet 
is one such diet that originated in the 1920s, mainly to treat 
epilepsy. Russel Wilder coined the term ‘Ketogenic diet’ and 
proposed its use as therapy in epileptic patients. Although 
the diet was very effective in treating seizures, it lost popu-
larity when more potent drugs were introduced [9••].

Since the last two decades, ketogenic diets have regained 
popularity as a dietary measure to treat and prevent many 
chronic diseases and to enhance health and well-being. The 
ketogenic diet advocates for consuming a high percentage 
of fats and a very low percentage of carbohydrates and aims 
to shift the body to an alternative source of energy. When 
on non-ketogenic diets, carbohydrates serve as the primary 
energy source in the form of glucose. But on a ketogenic 
diet, since carbohydrates are severely restricted, the body 
shifts to using fat for energy in the form of ketone bodies. 
There are several types of ketogenic diets with varying pro-
portions of fat and carbohydrates (Fig. 1).

Emerging evidence in scientific literature highlights 
ketogenic diets' anti-inflammatory and antioxidant properties 

and their potential in managing chronic diseases. Recent 
studies suggest that ketogenic diets can also have a posi-
tive effect on periodontitis. In this review, we explore the 
scientific literature to discuss the effects of ketogenic diets, 
their underlying mechanisms, merits and demerits, and 
their potential in preventing and managing periodontal 
inflammation.

Ketogenic Diets Alter Energy Metabolism

Glycolysis (breakdown of glucose into pyruvate) and Lipoly-
sis (breakdown of triglycerides into free fatty acids) are two 
major biochemical processes of cellular respiration that sus-
tain life. In the presence of adequate carbohydrates, the body 
relies on glucose to be its primary source of fuel. Glycolysis 
in the cytoplasm, the citric acid cycle and oxidative phos-
phorylation in the mitochondria together produce energy 
from glucose in the form of Adenosine Triphosphate (ATP) 
[11]. However, when there is a deficiency of carbohydrates, 
the body adapts to using fatty acids for energy [12••].

A ketogenic diet is a high-fat diet that is low in carbo-
hydrates and induces a metabolic state of ketosis, in which 
the body adopts ketone bodies that are produced from free 
fatty acids as an alternative fuel source instead of glucose 
[9••] (Fig. 2). Since the diet reduces the intake of carbo-
hydrates, there is a smaller rise in blood glucose levels and 
less insulin is secreted. Insulin is a hormone that promotes 
glucose uptake and utilization by cells and inhibits lipolysis 
and ketogenesis (the synthesis of ketone bodies from acetyl-
CoA) [12, 13]. Therefore, the ketogenic diet, by restricting 
carbohydrates and decreasing insulin levels, reduces the reli-
ance on glucose as an energy source; and promotes lipolysis 
and ketogenesis to meet the energy requirements of the body.

Fig. 1  Types of Ketogenic 
Diets and their macronutri-
ent proportions compared to 
the USDA dietary guidelines. 
(KD- Ketogenic diet; MCT- 
Medium-chain Triglyceride; 
LGIT- Low glycaemic index 
treatment; USDA- United States 
Department of Agriculture). 
The USDA dietary guidelines 
[10]. (Original figure designed 
in BioRender software)
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Lipolysis occurs mainly in adipose tissue where hormone-
sensitive lipase and other enzymes convert triglycerides into 
glycerol and fatty acids. These free fatty acids are transported 
to various tissues by blood. They are oxidised (β-oxidation) 
in the mitochondria to produce acetyl-CoA, which can enter 
the citric acid cycle to generate ATP, NADH, and FADH2 
(electron carriers that go on to participate in oxidative 
phosphorylation). However, during prolonged carbohy-
drate restriction or starvation, citric acid cycle intermedi-
ates like oxaloacetate are exhausted in the liver due to the 
gluconeogenesis pathway and hence, the acetyl-CoA from 
fatty acid oxidation is unable to enter the citric acid cycle 
[12••]. Instead, the acetyl-CoA is converted to ketone bod-
ies. Ketogenesis occurs mainly in the liver mitochondria, 
where excess accumulating acetyl-CoA is converted into the 
ketone bodies: acetoacetate, β-hydroxybutyrate, and acetone. 
Most acetoacetate is reduced to β-hydroxybutyrate whereas 
acetone is spontaneously exhaled through the lungs. Hence, 
β-hydroxybutyrate becomes the major ketone body in the 
blood [12••].

Ketone bodies are transported to other extra-hepatic 
tissues by blood, where they can either be used up for the 
energy needs of the cells or fatty acid synthesis [14, 15]. In 
the mitochondria of extra-hepatic cells, β-hydroxybutyrate is 
converted back to acetoacetate and eventually to acetyl-CoA 

by a host of mitochondrial enzymes. This acetyl-CoA can 
enter the citric acid cycle to produce the intermediates 
required for the electron transport chain and oxidative phos-
phorylation for energy production. Thereby, ketone bodies 
substitute for glucose and serve as an alternate source of 
energy during ketogenic diets. Ketone bodies can be metab-
olized faster, can bypass glycolysis, and directly enter the 
Kreb’s cycle, and can be utilized by all extra-hepatic tis-
sues including the brain and the heart as a more efficient 
source of energy [12, 16–19]—Ketone bodies can cross the 
blood–brain barrier to supply energy to the brain when on a 
ketogenic diet [18, 20]. This adaptive shift of the body to use 
an ancillary source of energy is critical for survival and brain 
function during extended periods of starvation and scarcity 
of carbohydrates.

The Complexity of Periodontal Inflammation

Due to the inherent nature of a tooth (non-shedding hard tis-
sue that is moist and exposed to the external environment), 
it is prone to microbial biofilm formation on its surface. The 
oral microbiota deposit as biofilm communities on the teeth. 
Dysbiosis of the microbial biofilm community elicits an 
altered immune response from the body leading to prolonged 

Fig. 2  Ketogenesis during starvation or ketogenic diets: Low levels 
of insulin during starvation or ketogenic diets cause the breakdown 
of triglycerides into free fatty acids (FFA). In the liver cell, FFA is 
β-oxidised to acetyl-CoA. However, acetyl CoA is unable to enter 
the Krebs cycle as oxaloacetate is depleted because of gluconeogen-
esis. Hence the acetyl-CoA is converted to ketone bodies (mainly 

β-hydroxybutyrate) and is transported to extra-hepatic cells where 
they can be converted back to acetyl-CoA. Since there is no gluco-
neogenesis happening in extra-hepatic cells, acetyl-CoA can enter the 
Krebs cycle to produce adenosine triphosphate (ATP). (Original fig-
ure designed in BioRender software)
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inflammation of the supporting tissues of the teeth [21]. 
This inflammation of the periodontium (supporting tissues 
around the teeth) is termed periodontitis. The consequence 
of unresolved periodontal inflammation is gradual loss of 
tooth-supporting tissues and tooth loss. Several factors 
contribute towards the dysbiosis of microbial biofilm and 
periodontal inflammation: poor oral hygiene, diet, smoking, 
systemic conditions like obesity, stress, diabetes, and other 
pro-inflammatory diseases [6]. Increase in pro-inflammatory 
cytokines like interleukin-1 (IL-1), interleukin-6 (IL-6) or 
tumour necrosis factor-α (TNF- α); activation of signalling 
pathways such as nuclear factor-κB (NF-κB) and NOD-like 
receptor protein 3 (NLRP3) inflammasome are characteristic 
of periodontitis and together function to activate and aug-
ment the immune response of the host [22–26].

The host immune-inflammatory response against the 
dysbiotic biofilm causes large numbers of polymorphonu-
clear neutrophils (PMNs) to migrate towards the gingival 
sulcus. PMNs are capable of phagocytosis and constitute the 
immune system’s first line of defence. Excessive oxidative 
killing of bacteria by the PMNs after phagocytosis results in 
increased production and accumulation of ROS in the peri-
odontal tissues leading to oxidative stress [27]. Oxidative 
stress plays a major role in the pathogenesis of periodontal 
inflammation [27]. Oxidative stress causes damage to vari-
ous cellular organelles including mitochondria and DNA and 
leads progression of periodontal inflammation [27]. Patients 
with periodontitis have two times greater 8-hydroxy-2'-de-
oxyguanosine (a marker of oxidative stress) in saliva when 
compared to healthy subjects [28]. A 2023 meta-analysis 
revealed that periodontitis patients have significantly higher 
oxidative stress along with a lower antioxidant capacity than 
healthy subjects and that oxidative stress is an important 
feature in progressive periodontitis [29].

Obesity increases the risk for periodontitis. Obesity 
results in systemic hyper-inflammation and oxidative stress 
and exhibits a bi-directional relationship with periodontitis 
[30]. Elevated serum C-reactive protein (CRP) is a common 
factor in obesity and severe periodontitis [31, 32]. A 2017 
systematic review revealed that obese individuals were more 
prone to periodontitis possibly due to the low-grade systemic 
inflammation and oxidative stress that is seen in obesity [33]. 
A more recent meta-analysis concluded that periodontitis 
and obesity are positively associated irrespective of age [34].

The chronic inflammatory state that stems from obesity 
leads to insulin resistance [35]. The adipose tissue produces 
several pro-inflammatory cytokines and adipokines that dis-
rupt various insulin signalling pathways leading to insulin 
resistance in adipocytes and peripheral tissues [36]. Insulin 
resistance leads to oxidative stress in the pancreatic β-cells 
resulting in impaired insulin secretion [36]. Insulin resist-
ance is an important feature of Type-2 Diabetes mellitus 
(T2DM) which is a well-known and well-established risk 

factor for periodontitis with a bi-directional relationship 
[37–41].

Diet plays an integral role in the pathogenesis of peri-
odontal inflammation and more specifically, a diet that is 
high in carbohydrates is linked with chronic inflammation 
[42•]. A recent observational study on humans found that 
the total dietary carbohydrate intake is positively associated 
with inflammation [43]. In mice, greater inflammation was 
seen on a high carbohydrate than on a high-fat diet [44]. 
Excessive consumption of refined carbohydrates induces 
neuroinflammation in mice [45]. Excessive dietary carbo-
hydrates increase the risk of periodontitis as glycaemia leads 
to oxidative stress and the accumulation of advanced glyca-
tion end products that result in a hyper-inflammatory state 
[46–48]. Dietary carbohydrates can also impact the sub-
gingival microbiota and lead to poor oral health outcomes; 
higher carbohydrate consumption was associated with 
reduced diversity of subgingival microflora in postmeno-
pausal women [49]. A high-carbohydrate diet is associated 
with a higher prevalence of Fusobacteria species (which 
plays an important role in dental plaque biofilm maturation) 
[50]. A 2022 systematic review concluded that a sugar-rich 
diet decreased oral microbial diversity [51].

Overall, periodontitis is complex; associated with many 
modifiable and non-modifiable risk factors; manifests 
as prolonged local inflammation around the teeth; and is 
accompanied by oxidative stress and elevated levels of pro-
inflammatory cytokines (Fig. 3). Hence, an optimal strat-
egy for preventing and managing periodontitis—along with 
removal of dysbiotic biofilm and enforcement of adequate 
oral hygiene—would include the use of anti-inflammatory 
and antioxidant therapies that can simultaneously target mul-
tiple risk factors of the disease.

Ketogenic Diets are Antioxidant 
and Anti‑Inflammatory

Apart from being a supplementary energy source for the 
body, ketone bodies induce numerous other alterations in 
systemic physiology. Initially, the response to ketone-fuelled 
functioning is an increase in reactive oxygen species (ROS) 
in the mitochondria, an increase in  NAD+/NADH ratio, a 
reduction in AMP/ATP ratio and oxidative stress [12, 19, 
52–56]. There is also an increase in pro-inflammatory 
cytokines such as IL-1, IL-6 and TNF- α [12, 54]. This 
acute oxidative stress and inflammation leads to hormesis 
that activates protective cellular responses [12••]. Hormesis 
is a phenomenon where a low-strength/low-dose stress factor 
induces an adaptive defence response in the body [57]. The 
hormetic stress of the ketogenic diet activates antioxidant 
and anti-inflammatory mechanisms [12, 14, 58–60].
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Nuclear factor E2-related factor 2 (Nrf2) transcription 
factor is responsive to oxidative stress and switches on 
cell-protective genes responsible for producing antioxidant 
enzymes through the Nrf2/ARE (Antioxidant Response 
Element) pathway [61, 62]. Rats fed with a KD showed an 
initial increase in hydrogen peroxide levels followed by a 
reduction below control levels after 3 weeks. There was 
also an increased nuclear accumulation of Nrf2 in the liver 
and hippocampus after 3 weeks suggesting that a ketogenic 
diet activates the antioxidant and cytoprotective Nrf2 path-
way after an acute phase of mild oxidative stress [63]. In 
rats with spinal cord injury, KD activated the Nrf2 path-
way, suppressed the pro-inflammatory nuclear factor-κB 
(NF-κB) signalling pathway, and reduced the expression 
of pro-inflammatory cytokines TNF-α, IL-1β, and IFN-γ 
(Interferon-γ) [64]. Overall, the KD has been shown to 
have a prolonged antioxidant and anti-inflammatory effect 
due to the activation of the Nrf2 pathway [63–65].

Sirtuins (SIRTs) 1 and 3 are  NAD+-dependent histone 
deacetylases involved in ageing, apoptosis, and autophagy 
(the process of lysosomal degradation of defective cel-
lular components and promote cell homeostasis, dif-
ferentiation, and survival [66]). The increase in  NAD+/
NADH ratio during KD activates the Sirtuin1 (SIRT1) 
enzyme that induces increased expression of antioxidant 
and anti-inflammatory genes and supports DNA repair and 
autophagy [67]. Rats on a KD showed increased levels of 
SIRT1 enzymes in serum and white adipose tissue [68]. 
Mice injected with exogenous ketone bodies (acetoacetate 
and β-hydroxybutyrate) showed increased expression of 
SIRT3 leading to reduced oxidative stress and improved 
mitochondrial function [69].

The increase in the AMP/ATP ratio during a KD upregu-
lates AMP-activated kinases (AMPK) that increase cytopro-
tective antioxidant and anti-inflammatory functions, DNA 
repair, and autophagy [12, 70]. Intracellular oxidative stress 
leads to the endoplasmic reticulum (ER) stress that induces 
NOD-like receptor protein 3 (NLRP-3) inflammasome 
which activates the pro-inflammatory cytokine IL-1β. Rats 
injected with β-hydroxybutyrate in a fasted state showed 
lower ER stress, lower NLRP-3 inflammasome forma-
tion, and increased expression of antioxidants manganese 
superoxide dismutase and catalase through the activation of 
AMPK [71]. In epileptic mice, β-hydroxybutyrate reduced 
neuronal damage through the activation of AMPK and other 
anti-oxidative mechanisms [72].

Taken together, ketogenic diets act as a hormetic stress 
factor that upregulates adaptive antioxidant and anti-inflam-
matory cellular responses by activating the Nrf2/ARE path-
way, SIRT1 and SIRT3, and AMPK. KD also contributes 
to improved mitochondrial function, DNA repair, and 
autophagy.

Ketogenic Diets Improve Metabolic Health

Insulin is an anabolic hormone that promotes cellular glu-
cose utilization, inhibits lipolysis, and is a master hormone 
that regulates metabolic health [73]. Ketogenic diets restrict 
dietary carbohydrates resulting in low circulating insulin lev-
els. Low insulin levels promote lipolysis, ketogenesis and 
fat loss. Low-calorie ketogenic diets result in a significantly 
greater reduction in body fat and weight compared to low-
calorie non-ketogenic diets [74]. A 2020 systematic review 

Fig. 3  The complexity of periodontal inflammation and its risk fac-
tors: Excessive neutrophil infiltration of gingival tissues causes con-
nective tissue destruction resulting in deepening of the periodontal 
pocket. Phagocytosis and oxidative killing by these neutrophils cause 
oxidative stress. The deepened periodontal pocket facilitates the down 

growth of the biofilm. Eventually, alveolar bone is resorbed to pre-
vent the inflammatory response from reaching the bone. If the inflam-
mation is unresolved, the bone loss continues and leads to loss of 
tooth support, culminating in tooth loss. (Original figure designed in 
BioRender software)
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and meta-analysis concluded that very low-calorie ketogenic 
diets were able to produce weight loss that was stable for up 
to 2 years of follow-up, with reductions in waist circumfer-
ence, body mass index (BMI), and triglyceride levels [75]. 
Hence, ketogenic diets can be used as a therapeutic tool to 
manage obesity [76].

Lower post-prandial insulin levels during ketogenic diets 
can prevent hyperinsulinemia, reduce insulin resistance, and 
increase insulin sensitivity of peripheral tissues [12, 77]. 
A 2020 systematic review and meta-analysis revealed that 
ketogenic diets produced greater improvements in glycae-
mic control in terms of glycated haemoglobin (HbA1C) lev-
els when compared to low-fat diets in obese patients with 
T2DM. The study concluded that ketogenic diets more effec-
tively improved metabolic health than low-fat diets. Several 
clinical trials show greater reduction in fasting blood glucose 
levels with ketogenic diets when compared to non-ketogenic 
diets [12••]. Hence ketogenic diets hold the potential to 
combat insulin resistance and thereby can prevent and man-
age T2DM.

Clinical Relevance and Drawbacks

Periodontal inflammation is closely associated with diet and 
nutrition. The roles of various macro and micronutrients in 
periodontitis have been described extensively in the scien-
tific literature [42, 48, 78]. Subjects who scored high on the 
Healthy Eating Index (HEI) had less risk for periodontal 
disease [79]. A recent pilot study compared a high-carbohy-
drate diet to an oral health-optimized low-carbohydrate diet 
(also rich in omega-3 fatty acids, vitamin C, and vitamin 
D) and found that the latter reduced the load of periodontal 
pathogens in supragingival plaque [80].

Ketogenic diets target multiple risk factors for peri-
odontitis—the diet restricts carbohydrates; reduces insulin 
resistance and enhances insulin sensitivity; improves gly-
caemic control and mitigates T2DM; reduces body fat, body 
mass index (BMI), and ameliorates obesity; downregulates 
pro-inflammatory markers and upregulates anti-inflamma-
tory and antioxidant defence mechanisms of cells. Hence, 
ketogenic diets hold preventive and therapeutic potential 
against periodontal inflammation.

However, the scientific literature currently shows very few 
studies evaluating ketogenic or similar diets against periodon-
tal inflammation. In a recent study, a high-fat, low-carbohy-
drate diet reduced IL-6 and CRP levels in T2DM patients 
compared to a high-carbohydrate diet [81]. Low-carbohydrate, 
high-fibre diet was associated with a decreased risk for peri-
odontitis [82]. A 2017 pilot study demonstrated that a diet 
low in carbohydrates and high in omega-3 fatty acids can 
significantly reduce gingival and periodontal inflammation 
[83]. Another recent pilot study evaluated a ketogenic diet 

and found that the diet did not significantly improve the peri-
odontal clinical parameters [84]. In contrast, a 2024 scoping 
review concluded that ketogenic diets might have beneficial 
anti-inflammatory and antioxidant effects on periodontal 
inflammation [85].

There is also scientific evidence that a high-fat diet 
increases the risk of periodontitis. High-fat diets are tied to 
chronic low-grade systemic inflammation and various diseases 
[86]. High-fat diets induce periodontal inflammation in mice 
while increasing the prevalence of periodontal pathogens, gin-
gival inflammation, and alveolar bone loss [87, 88]. A high-
fat diet also caused the progression of apical periodontitis 
lesions when compared to a control diet [89]. A 2023 system-
atic review concluded that a high-fat diet (and other types of 
unbalanced diets like high-carbohydrate diets) could increase 
the risk for periodontitis [8]. However, these studies evalu-
ating high-fat diets do not standardise carbohydrate intake. 
Ketogenic diets are not merely high-fat diets but also very low 
in dietary carbohydrates. The lack of sufficient carbohydrates 
in ketogenic diets leads to metabolic flexibility where the body 
is forced to use fat for fuel (ketone bodies produced from fatty 
acids). This creates a hormetic stress response that triggers 
anti-inflammatory and antioxidant defences of the body. Hence 
ketogenic diets are distinct, and the lack of robust clinical evi-
dence dictates the need for well-designed studies to evaluate 
its potential in the future.

There could be several limitations and drawbacks to the 
ketogenic diet. First, ketogenic diets are severely restrictive 
in the choice of food items and therefore could be difficult to 
comply with in the long term. Also, complying with such a diet 
might not be economically feasible for most people. Second, 
although dietary cholesterol does not affect serum cholesterol 
or cardiovascular disease risk [90–93], several studies and 
case reports show that a ketogenic diet leads to an increase 
in low-density lipoprotein (LDL) levels in the blood [94–96]. 
Although controversial, elevated serum LDL cholesterol levels 
are associated with an increased risk for atherosclerotic car-
diovascular disease (ASCVD) [97–99]. However, ketogenic 
diets are known to increase large-buoyant LDL particles that 
are cardioprotective as opposed to the small-dense LDL parti-
cles that are associated with cardiovascular disease [12, 100]. 
Hence, the potential of ketogenic diets to increase cardiovas-
cular disease needs further investigation.

Concluding Remarks and Future Directions

Despite the drawbacks, ketogenic diets seem to have several 
advantages and can potentially mitigate periodontal inflam-
mation (Fig. 4). Ketogenic diets alter energy metabolism 
by restricting carbohydrates and inducing a state of keto-
sis where ketone bodies are used as the energy source for 
the body. This hormetic stress leads to the activation and 
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upregulation of anti-inflammatory and antioxidant mecha-
nisms that are protective against periodontal inflamma-
tion—The mere restriction of carbohydrates by itself can 
promote periodontal health since a high-carbohydrate diet 
increases the risk of periodontitis—The ketogenic diet also 
targets other risk factors of periodontitis such as T2DM (by 
improving glycaemic control) and obesity (by reducing body 
fat and BMI). Overall, ketogenic diets decrease systemic 
inflammation and oxidative stress which could be beneficial 
in reducing periodontal inflammation and promoting peri-
odontal health.

However, the potential of the ketogenic diet is still not 
well established in scientific literature as molecular mecha-
nisms are poorly understood. More specifically, research 
regarding the diet’s usefulness in mitigating periodontal 
inflammation is still in its infancy. This opens a new and 
exciting research direction in the field of periodontal therapy. 
Since scientific evidence is scarce regarding the therapeutic 
potential of the ketogenic diet against periodontitis, future 
studies need to evaluate the effectiveness and safety of the 
diet in preventing and treating periodontitis.
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