Skip to main content

Advertisement

Log in

Effects of Maternal Nutrition on Oral Health in Offspring

  • Published:
Current Oral Health Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

According to the Developmental Origins of Health and Disease (DOHaD) theory, nutritional status in utero can permanently change body structure, function, and metabolism and eventually regulate the susceptibilities toward various diseases in later life. This review aims to examine and summarize the findings of previous reports, revealing how maternal nutrition during pregnancy and lactation affects oral health in offspring.

Recent Findings

A limited number of studies have found an evident relationship between maternal nutrition and children’s oral health. Some evidence suggests that maternal nutrients such as sucrose, proteins, minerals, and vitamins are associated with oral and maxillofacial development, including bone and tooth size, and the risk of dental caries, periodontal disease, and oral cancer in offspring.

Summary

The lessons of DOHaD theory from the perspective of the oral health of offspring reveal how in utero nutrients affect not only oral health but also total health throughout life. Oral disease and dysfunction can be prevented in the next generation by improving maternal nutrition during pregnancy and lactation periods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Global oral health status report: towards universal health coverage for oral health by 2030 2022 [Available from: https://www.who.int/publications/i/item/9789240061484.] This report comprehensively reviews that (1) oral diseases are global public health problems, (2) the burden of the main oral diseases, (3) challenges and opportunities towards oral health for all, and (4) a road map towards universal health coverage for oral health.

  2. Keyes PH. Recent advances in dental caries research bacteriology. Bacteriological findings and biological imalications. Int Dent J. 1962;12:443–64.

    Google Scholar 

  3. Newbrun E. Cariology. 2nd ed. Baltimore. Williams & Wilkins. 1983.

  4. Barker DJ, Osmond C. Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. Lancet (London, England). 1986;1(8489):1077–81. https://doi.org/10.1016/s0140-6736(86)91340-1.

    Article  CAS  PubMed  Google Scholar 

  5. Hoffman DJ, Powell TL, Barrett ES, Hardy DB. Developmental origins of metabolic diseases. Physiol Rev. 2021;101(3):739–95. https://doi.org/10.1152/physrev.00002.2020. The review comprehensively describes DOHaD concept and demonstrates that the best conditions for optimal development and growth can make the best possible conditions for well-being throughout life.

    Article  CAS  PubMed  Google Scholar 

  6. Yuan Y, Chai Y. Regulatory mechanisms of jaw bone and tooth development. Curr Top Dev Biol. 2019;133:91–118. https://doi.org/10.1016/bs.ctdb.2018.12.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Holloway PJ, Shaw JH, Sweeney EA. Effects of various sucrose: casein ratios in purified diets on the teeth and supporting structures of rats. Arch Oral Biol. 1961;3:185–200. https://doi.org/10.1016/0003-9969(61)90136-4.

    Article  CAS  PubMed  Google Scholar 

  8. Bunyard MW. Effects of high sucrose cariogenic diets with varied protein-calorie levels on the bones and teeth of the rat. Calcif Tissue Res. 1972;8(3):217–27. https://doi.org/10.1007/bf02010140.

    Article  CAS  PubMed  Google Scholar 

  9. Caufield PW, Li Y, Bromage TG. Hypoplasia-associated severe early childhood caries–a proposed definition. J Dent Res. 2012;91(6):544–50. https://doi.org/10.1177/0022034512444929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Anil S, Anand PS. Early childhood caries: prevalence, risk factors, and prevention. Front Pediatr. 2017;5:157. https://doi.org/10.3389/fped.2017.00157.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chen X, Daliri EB, Kim N, Kim JR, Yoo D, Oh DH. Microbial etiology and prevention of dental caries: exploiting natural products to inhibit cariogenic biofilms. Pathogens (Basel, Switzerland). 2020;9(7):569. https://doi.org/10.3390/pathogens9070569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Un Lam C, Khin LW, Kalhan AC, Yee R, Lee YS, Chong MF, et al. Identification of caries risk determinants in toddlers: results of the GUSTO Birth Cohort Study. Caries Res. 2017;51(4):271–82. https://doi.org/10.1159/000471811.

    Article  CAS  PubMed  Google Scholar 

  13. Kalhan TA, Un Lam C, Karunakaran B, Chay PL, Chng CK, Nair R, et al. Caries risk prediction models in a medical health care setting. J Dent Res. 2020;99(7):787–96. https://doi.org/10.1177/0022034520913476.

    Article  CAS  PubMed  Google Scholar 

  14. Wigen TI, Wang NJ. Maternal health and lifestyle, and caries experience in preschool children. A longitudinal study from pregnancy to age 5 yr. Eur J Oral Sci. 2011;119(6):463–8. https://doi.org/10.1111/j.1600-0722.2011.00862.x.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chen LW, Low YL, Fok D, Han WM, Chong YS, Gluckman P, et al. Dietary changes during pregnancy and the postpartum period in Singaporean Chinese, Malay and Indian women: the GUSTO birth cohort study. Public Health Nutr. 2014;17(9):1930–8. https://doi.org/10.1017/s1368980013001730.

    Article  PubMed  Google Scholar 

  16. Loy SL, Lek N, Yap F, Soh SE, Padmapriya N, Tan KH, et al. Association of maternal vitamin D status with glucose tolerance and caesarean section in a multi-ethnic Asian cohort: the Growing Up in Singapore Towards Healthy Outcomes Study. PloS one. 2015;10(11):e0142239. https://doi.org/10.1371/journal.pone.0142239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nikiforuk G, Fraser D. The etiology of enamel hypoplasia: a unifying concept. J Pediatr. 1981;98(6):888–93. https://doi.org/10.1016/s0022-3476(81)80580-x.

    Article  CAS  PubMed  Google Scholar 

  18. Singleton R, Day G, Thomas T, Schroth R, Klejka J, Lenaker D, et al. Association of maternal vitamin D deficiency with early childhood caries. J Dent Res. 2019;98(5):549–55. https://doi.org/10.1177/0022034519834518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Suárez-Calleja C, Aza-Morera J, Iglesias-Cabo T, Tardón A, Vitamin D. pregnancy and caries in children in the INMA-Asturias birth cohort. BMC Pediatr. 2021;21(1):380. https://doi.org/10.1186/s12887-021-02857-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tanaka K, Miyake Y, Sasaki S, Hirota Y. Dairy products and calcium intake during pregnancy and dental caries in children. Nutr J. 2012;11:33. https://doi.org/10.1186/1475-2891-11-33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bergel E, Gibbons L, Rasines MG, Luetich A, Belizán JM. Maternal calcium supplementation during pregnancy and dental caries of children at 12 years of age: follow-up of a randomized controlled trial. Acta Obstet Gynecol Scand. 2010;89(11):1396–402. https://doi.org/10.3109/00016349.2010.518228.

    Article  PubMed  Google Scholar 

  22. Nazir M, Al-Ansari A, Al-Khalifa K, Alhareky M, Gaffar B, Almas K. Global prevalence of periodontal disease and lack of its surveillance. TheScientificWorldJournal. 2020;2020:2146160. https://doi.org/10.1155/2020/2146160.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Reynolds I, Duane B. Periodontal disease has an impact on patients’ quality of life. Evid Based Dent. 2018;19(1):14–5. https://doi.org/10.1038/sj.ebd.6401287.

    Article  PubMed  Google Scholar 

  24. Suzuki S, Yamada S. Epigenetics in susceptibility, progression, and diagnosis of periodontitis. Jpn Dent Sci Rev. 2022;58:183–92. https://doi.org/10.1016/j.jdsr.2022.06.001.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Nannan M, Xiaoping L, Ying J. Periodontal disease in pregnancy and adverse pregnancy outcomes: progress in related mechanisms and management strategies. Front Med. 2022;9:963956. https://doi.org/10.3389/fmed.2022.963956.

    Article  Google Scholar 

  26. Skinner MK, Manikkam M, Guerrero-Bosagna C. Epigenetic transgenerational actions of environmental factors in disease etiology. Trends Endocrinol Metab. 2010;21(4):214–22. https://doi.org/10.1016/j.tem.2009.12.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang Y, Kutateladze TG. Diet and the epigenome. Nat Commun. 2018;9(1):3375. https://doi.org/10.1038/s41467-018-05778-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bianco-Miotto T, Craig JM, Gasser YP, van Dijk SJ, Ozanne SE. Epigenetics and DOHaD: from basics to birth and beyond. J Dev Orig Health Dis. 2017;8(5):513–9. https://doi.org/10.1017/s2040174417000733.

    Article  CAS  PubMed  Google Scholar 

  29. Kim BJ, Kim SH. Prediction of inherited genomic susceptibility to 20 common cancer types by a supervised machine-learning method. Proc Natl Acad Sci USA. 2018;115(6):1322–7. https://doi.org/10.1073/pnas.1717960115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lyon P, Strippoli V, Fang B, Cimmino L. B vitamins and one-carbon metabolism: implications in human health and disease. Nutrients. 2020;12(9):2867. https://doi.org/10.3390/nu12092867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Grandison RC, Piper MD, Partridge L. Amino-acid imbalance explains extension of lifespan by dietary restriction in Drosophila. Nature. 2009;462(7276):1061–4. https://doi.org/10.1038/nature08619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yun J, Johnson JL, Hanigan CL, Locasale JW. Interactions between epigenetics and metabolism in cancers. Front Oncol. 2012;2:163. https://doi.org/10.3389/fonc.2012.00163.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kraus D, Yang Q, Kong D, Banks AS, Zhang L, Rodgers JT, et al. Nicotinamide N-methyltransferase knockdown protects against diet-induced obesity. Nature. 2014;508(7495):258–62. https://doi.org/10.1038/nature13198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cabreiro F, Au C, Leung KY, Vergara-Irigaray N, Cochemé HM, Noori T, et al. Metformin retards aging in C. elegans by altering microbial folate and methionine metabolism. Cell. 2013;153(1):228–39. https://doi.org/10.1016/j.cell.2013.02.035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ordovás JM, Smith CE. Epigenetics and cardiovascular disease. Nat Rev Cardiol. 2010;7(9):510–9. https://doi.org/10.1038/nrcardio.2010.104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Benayoun BA, Pollina EA, Brunet A. Epigenetic regulation of ageing: linking environmental inputs to genomic stability. Nat Rev Mol Cell Biol. 2015;16(10):593–610. https://doi.org/10.1038/nrm4048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kawakubo-Yasukochi T, Kondo A, Mizokami A, Hayashi Y, Chishaki S, Nakamura S, et al. Maternal oral administration of osteocalcin protects offspring from metabolic impairment in adulthood. Obesity (Silver Spring, Md). 2016;24(4):895–907. https://doi.org/10.1002/oby.21447.

    Article  CAS  PubMed  Google Scholar 

  38. Kawakubo-Yasukochi T, Yano E, Kimura S, Nishinakagawa T, Mizokami A, Hayashi Y, et al. Hepatic glycogenolysis is determined by maternal high-calorie diet via methylation of Pygl and it is modified by oteocalcin administration in mice. Mol Metab. 2021;54:101360. https://doi.org/10.1016/j.molmet.2021.101360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dai Z, Ramesh V, Locasale JW. The evolving metabolic landscape of chromatin biology and epigenetics. Nat Rev Genet. 2020;21(12):737–53. https://doi.org/10.1038/s41576-020-0270-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Franzago M, Santurbano D, Vitacolonna E, Stuppia L. Genes and diet in the prevention of chronic diseases in future generations. International journal of molecular sciences. 2020;21(7):2633. https://doi.org/10.3390/ijms21072633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Smith AD, Kim YI, Refsum H. Is folic acid good for everyone? Am J Clin Nutr. 2008;87(3):517–33. https://doi.org/10.1093/ajcn/87.3.517.

    Article  CAS  PubMed  Google Scholar 

  42. Irvine N, England-Mason G, Field CJ, Dewey D, Aghajafari F. Prenatal folate and choline levels and brain and cognitive development in children: a critical narrative review. Nutrients. 2022;14(2):364. https://doi.org/10.3390/nu14020364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pan Y, Liu Y, Guo H, Jabir MS, Liu X, Cui W, et al. Associations between folate and vitamin B12 levels and inflammatory bowel disease: a meta-analysis. Nutrients. 2017;9(4):382. https://doi.org/10.3390/nu9040382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chen H, Liu S, Ji L, Wu T, Ji Y, Zhou Y, et al. Folic acid supplementation mitigates Alzheimer’s disease by reducing inflammation: a randomized controlled trial. Mediat Inflamm. 2016;2016:5912146. https://doi.org/10.1155/2016/5912146.

    Article  CAS  Google Scholar 

  45. Tripathi M, Singh BK, Zhou J, Tikno K, Widjaja A, Sandireddy R, et al. Vitamin B(12) and folate decrease inflammation and fibrosis in NASH by preventing syntaxin 17 homocysteinylation. J Hepatol. 2022;77(5):1246–55. https://doi.org/10.1016/j.jhep.2022.06.033.

    Article  CAS  PubMed  Google Scholar 

  46. Yu YH, Kuo HK, Lai YL. The association between serum folate levels and periodontal disease in older adults: data from the National Health and Nutrition Examination Survey 2001/02. J Am Geriatr Soc. 2007;55(1):108–13. https://doi.org/10.1111/j.1532-5415.2006.01020.x.

    Article  PubMed  Google Scholar 

  47. Vollset SE, Clarke R, Lewington S, Ebbing M, Halsey J, Lonn E, et al. Effects of folic acid supplementation on overall and site-specific cancer incidence during the randomised trials: meta-analyses of data on 50,000 individuals. Lancet (London, England). 2013;381(9871):1029–36. https://doi.org/10.1016/s0140-6736(12)62001-7.

    Article  CAS  PubMed  Google Scholar 

  48. Sanjoaquin MA, Allen N, Couto E, Roddam AW, Key TJ. Folate intake and colorectal cancer risk: a meta-analytical approach. Int J Cancer. 2005;113(5):825–8. https://doi.org/10.1002/ijc.20648.

    Article  CAS  PubMed  Google Scholar 

  49. Kim YI. Folate and cancer: a tale of Dr. Jekyll and Mr. Hyde? Am J Clin Nutr. 2018;107(2):139–42. https://doi.org/10.1093/ajcn/nqx076.

    Article  PubMed  Google Scholar 

  50. Pelucchi C, Talamini R, Negri E, Levi F, Conti E, Franceschi S, et al. Folate intake and risk of oral and pharyngeal cancer. Ann Oncol : Off J Eur Soc Med Oncol. 2003;14(11):1677–81. https://doi.org/10.1093/annonc/mdg448.

    Article  CAS  Google Scholar 

  51. Moody M, Le O, Rickert M, Manuele J, Chang S, Robinson G, et al. Folic acid supplementation increases survival and modulates high risk HPV-induced phenotypes in oral squamous cell carcinoma cells and correlates with p53 mRNA transcriptional down-regulation. Cancer Cell Int. 2012;12:10. https://doi.org/10.1186/1475-2867-12-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wien TN, Pike E, Wisløff T, Staff A, Smeland S, Klemp M. Cancer risk with folic acid supplements: a systematic review and meta-analysis. BMJ Open. 2012;2(1):e000653. https://doi.org/10.1136/bmjopen-2011-000653.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kawakubo-Yasukochi T, Morioka M, Ohe K, Yasukochi A, Ozaki Y, Hazekawa M, et al. Maternal folic acid depletion during early pregnancy increases sensitivity to squamous tumor formation in the offspring in mice. J Dev Orig Health Dis. 2019;10(6):683–91. https://doi.org/10.1017/s2040174419000217.

    Article  CAS  PubMed  Google Scholar 

  54. Sheiham A, Watt RG. The common risk factor approach: a rational basis for promoting oral health. Commun Dent Oral Epidemiol. 2000;28(6):399–406. https://doi.org/10.1034/j.1600-0528.2000.028006399.x.

    Article  CAS  Google Scholar 

  55. Petersen PE, Baez RJ, Ogawa H. Global application of oral disease prevention and health promotion as measured 10 years after the 2007 World Health Assembly statement on oral health. Commun Dent Oral Epidemiol. 2020;48(4):338–48. https://doi.org/10.1111/cdoe.12538.

    Article  Google Scholar 

  56. Riggs E, Kilpatrick N, Slack-Smith L, Chadwick B, Yelland J, Muthu MS, et al. Interventions with pregnant women, new mothers and other primary caregivers for preventing early childhood caries. The Cochrane database of systematic reviews. 2019;2019(11):CD012155. https://doi.org/10.1002/14651858.CD012155.pub2.

  57. Donkor HM, Grundt JH, Júlíusson PB, Eide GE, Hurum J, Bjerknes R, et al. Social and somatic determinants of underweight, overweight and obesity at 5 years of age: a Norwegian regional cohort study. BMJ Open. 2017;7(8):e014548. https://doi.org/10.1136/bmjopen-2016-014548.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Fitzsimons D, Dwyer JT, Palmer C, Boyd LD. Nutrition and oral health guidelines for pregnant women, infants, and children. J Am Diet Assoc. 1998;98(2):182–6. https://doi.org/10.1016/s0002-8223(98)00044-3.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Helen Jeays, BDSc AE, from Edanz (https://jp.edanz.com/ac) for editing a draft of this manuscript.

Funding

The work was supported by Japan Society for the Promotion of Science (KAKENHI grants JP22K09914 to T.K-Y. and JP20H03854 to M.H.

Author information

Authors and Affiliations

Authors

Contributions

T.K-Y conceived and designed the review, searched literature, and wrote the manuscript. Y.H coordinated the review of papers, data extraction, and obtaining additional information. M.H. critically revised the work.

Corresponding author

Correspondence to Tomoyo Kawakubo-Yasukochi.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This review article does not contain any studies with human and animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawakubo-Yasukochi, T., Hayashi, Y. & Hirata, M. Effects of Maternal Nutrition on Oral Health in Offspring. Curr Oral Health Rep 10, 69–74 (2023). https://doi.org/10.1007/s40496-023-00338-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40496-023-00338-z

Keywords

Navigation