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Abstract Periodontitis is a chronic inflammatory disease
which leads to destruction of both the soft and hard tissues
of the periodontium. Tissue engineering is a therapeutic ap-
proach in regenerative medicine that aims to induce new func-
tional tissue regeneration via the synergistic combination of
cells, biomaterials, and/or growth factors. Advances in our
understanding of the biology of stem cells, including embry-
onic stem cells and mesenchymal stem cells, have provided
opportunities for periodontal tissue engineering. However,
there remain a number of limitations affecting their therapeu-
tic efficiency. Due to the considerable proliferation and differ-
entiation capacities, recently described induced pluripotent
stem cells (iPSCs) provide a new way for cell-based therapies
for periodontal regeneration. This review outlines the latest
status of periodontal tissue engineering and highlights the po-
tential use of iPSCs in periodontal tissue regeneration.

Keywords Induced pluripotent stem cells . Periodontal
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Introduction

Periodontitis comprises a set of chronic inflammatory diseases
affecting the periodontal supportive tissues (gingiva, alveolar
bone, periodontal ligament, and cementum) and, if left
untreatred, results in progressive loss of the alveolar bone
around the teeth, resulting in loosening and subsequent loss
of teeth. Conventional therapy of periodontitis concentrates on
reduction of the bacterial load by mechanical and antimicro-
bial treatment, including scaling and root planing (SRP) or
open flap debridement (OFD). These therapeutic procedures
can effectively control inflammation and stop disease progres-
sion. Moreover, the application of surgical procedures such as
guided tissue regeneration (GTR) and/or bioactive materials
or molecules has attained some success to regenerate lost peri-
odontal tissues [1••]. However, current regenerative proce-
dures still have limitations in attaining complete and function-
al tissue regeneration, especially in advanced periodontal de-
fects [2]. Tissue engineering, in which there are three major
constituents, (1) biomaterials, (2) stem cells, (3) tissue growth
factors, provides a new and better prospective for periodontal
tissue regeneration [3]. Embryonic stem cells (ESCs) andmes-
enchymal stem cells (MSCs), including periodontal ligament
stem cells (PDLSCs), bone marrow-derived MSCs (BMSCs),
and adipose-derived stem cells (ADSCs) [4], are the most
common cells used in periodontal tissue engineering. Howev-
er, recently developed induced pluripotent stem cells (iPSCs)
are increasingly attracting wide interest [5]. The present re-
view will outline the latest status of periodontal tissue engi-
neering and highlight iPSCs in terms of their properties and
applications as well as the challenges and future prospects.
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Biomaterials

Biomaterials as scaffolds play pivotal roles in periodontal tis-
sue engineering by serving as matrices for cell growth, prolif-
eration, differentiation, and new tissue formation in three di-
mensions, and as carriers to convey cells and various tissue-
inducing substances such as growth factors which are essential
for tissue development. Various conventional materials have
been investigated as scaffolds in periodontal tissue engineer-
ing. They fall into two broad classes: natural materials and
synthetic materials. The available natural materials include
collagen, gelatin, and modified polyscacchrides (e.g., chito-
san). The synthetic materials include calcium phosphate (e.g.,
hydroxyapatite, tricalcium phosphate), bioactive glass, and
some synthetic polymers [e.g., poly(glycolic acid)]. These
materials show the characteristics of biocompatibility, control-
lable degradation, and tunable mechanical properties, but fall
short in bioactivity. Recent developments indicate that the
application of nanobiomaterials in periodontal tissue engineer-
ing improve the mechanical properties and incorporate the
nanotopographic features that mimic the natural nanostructure
of bone, and show higher bioactivity.

The concept of nanotechnology, raised by the quantum
theorist and Nobel laureate Richard Feynman in 1959, is the
manipulation of materials at the nanometer scale to fabricate
Bnanomaterials,^ which have Binternal or surface structures in
one or more dimensions in the size range 1∼100 nm^ [6].
Materials at this scale are endowed with a higher surface to
volume ratio, and thereby have superior mechanical, magnet-
ic, optical, and chemical properties to those of the other ma-
terials [7]. Their higher surface-to-volume ratio assists in ef-
fective adsorbtion of proteins which are beneficial to cell ad-
hesion [8]. Moreover, the geometry of nano-scaffolds, the
crystallinity and orientation of the polymer, can affect the
affinities of proteins for such materials [9]. Surface roughness
is another key characteristic affecting cell response. Obvious-
ly, nano-scaffolds possess different scales of surface rough-
ness from conventional scaffolds. The studies demonstrated
that cells might be more sensitive to changes in the surface
roughness in the nanometer (<100 nm) compared with con-
ventional micro- or macro- (>100 nm) regimes [10]. All these
properties reflect superiority of nanostructured scaffolds in
bone/periodontal tissue engineering comparing with conven-
tional materials.

Tissue Growth and Chemotactic Factors

The rationale for the use of growth factors for periodontal
regeneration relies on the ability of these factors to enhance
the proliferation and differentiation of PDLSCs and the other
MSCs whether transplanted with tissue engineering construct
or derived from host body. Recombinant growth factors can

also enhance bone regeneration. For example, fibroblast
growth factors (FGF), platelet-derived growth factors
(PDGF), insulin-like growth factors (IGF), and bone morpho-
genetic proteins (BMP) have been used in clinical and pre-
clinical trials for the treatment of large periodontal or infra-
bony defects [11]. The topical application of enamel matrix
derivative (whichmay contain a mixture of growth factors and
other agents able to induce tissue repair and regeneration) with
or without use of GTR can partially promote the formation of
new periodontal tissues [12–14]. Considering the quick break
down and short half-life period of tissue growth factors, con-
trolled release and genetic approaches may overcome these
pitfalls [15].

The principle of using chemotactic factors in periodontal
regeneration relies on recruiting MSCs into periodontal de-
fects [16]. These MSCs are not only derived from periodonti-
tis involved local area but also from systemic circulation [17].
This technique, known as endogenous cell homing, would be
less costly and complex than approaches that require substan-
tial ex vivo cell manipulation and that use artificial vehicles
for cell delivery, thereby having greater potential to provide
new therapeutic options for in situ tissue regeneration [18].

The application of CXCL12 plays an important role in the
recruitment of MSCs [19]. In addition, BMPs, basic fibroblast
growth factor (bFGF), and PDGF-BB have been also demon-
strated to have chemotactic effect on MSCs, of which bFGF
possesses wider bioactivities than CXCL12. Schmidt et al.
found that the chemotactic effect of bFGF on MSCs was
stronger than CXCL12 [20]. Tasso et al. showed that the pres-
ence of bFGF in the culture medium during mouse MSCs
expansion in vitro is a key factor for the selection of subpop-
ulations inducing host regenerative responses [21]. Moreover,
bFGF is related to maintenance of stem cell Bstemness,^while
preserving its differentiation potential [22]. Additionally,
bFGF can exert strong proliferation enhancement on MSCs
and osteoblasts [23]. All these activities of bFGF suggest that
it may be an optimal choice for in situ periodontal tissue
regeneration.

Stem Cells

Stem cells are the foundation cells for every organ and tissue
in the body, including the periodontium [24]. Three categories
of stem cells, ESCs, MSCs, and the recently developed in-
duced pluripotent stem cells, have been experimentally ap-
plied in enhancing bone/periodontal regeneration.

Embryonic stem cells are pluripotent cells which were de-
rived from the inner cell mass of blastocyst-stage embryos.
Pluripotency is the potential of one type of cell to differentiate
into various kinds of cells, such as muscle cells, neural cells,
and even germ cells [25]. Based on this property, ESCs can
generate any type of cell to meet the requirements of different

258 Curr Oral Health Rep (2015) 2:257–265



applications. ESCs are also capable of self-renewal; they can
be semi-permanently cultured on feeder cells, which supply
the necessary growth factors for ESCs. The experiments have
shown that ESCs possess potential to differentiate towards
fibroblastic and osteoblastic lineages in vitro [25, 26] and
enhance the regeneration of periodontal furcation defects in
a porcine model [27]. However, the number of approved hu-
man embryonic stem cell lines for research is limited and this
has impacted on the development of these cells for treating
human diseases [28]. Indeed, the use of human embryos is
controversial, and the ethical considerations, risk of teratoma
formation, and immunologic rejection following transplanta-
tion in patients all remain significant concerns [29].

MSCs derived from multiple tissue sources have been
investigated in preclinical animal studies for periodontal
regeneration therapy. The potential of BMSCs, ADSCs,
dental pulp stem cells (DPSCs), stem cells from exfoliated
deciduous teeth (SCED), PDLSCs, stem cells from apical
papilla (SCAP), and progenitor cell populations from the
dental follicle and gingiva for periodontal regeneration in a
variety of animal models have been comprehensively
reviewed by Han et al. [1••]. Furthermore, the application
of MSCs in bone tissue engineering has moved to the
preclinical stage, and an ex vivo cell manufacturing pro-
cedure for obtaining high quality, bioactive MSCs from
human bone marrow has been approved by the US Food
and Drug Administration (FDA) [30]. Nevertheless, the
major obstacles that impede the use of MSCs in clinical
practice lie in the heterogeneity of the isolated cell popu-
lation and the inability to set up optimal growth and dif-
ferentiation conditions to obtain and maintain required
quality and quantity of cells. MSCs have a limited prolif-
eration capacity, reduced the differentiation potential, and
decreased protective factors during prolonged ex vivo
subculturing and passages [31, 32]. Passage of cells, donor
age, and aging-related disorders also significantly impair
the survival and differentiation potential of MSCs
[33–35]. One study has shown a significant age-related
decrease in the growth rate of human-BMSCs from donors
older than 50 years old as compared with younger donors
[36]. In addition, their ability of self-renewal, osteogenic
differentiation, and proliferation decreases due to diseases
like osteoporosis and arthritis [37, 38]. There also are
increasing concerns that exogenously infused MSCs can
home to tumor microenviroment and exert promotive ef-
fect on tumor growth [39–41]. Thus, better understanding
of the regulation mechanisms of self-renewal and
Bstemness^ retaining is needed in order to sufficiently reg-
ulate MSC growth in vitro to produce necessary cell num-
bers and quality. The interactions between stem cells and
the immune system or stem cells and osteoblast-osteoclast
balance as well as controlling strategy of MSC malignant
transformation in vivo should be further explored [1••].

iPSCs

Generation of iPSCs

Based on the hypothesis that the genes that have important
significance in maintaining ESC identity also exert key effects
in inducting pluripotency of somatic cells, Takahashi and
Yamanaka [42] introduced different combinations of selected
24 genes, which were important transcripts of ESCs and on-
cogenes, as candidate reprogramming factors into mouse em-
bryonic fibroblasts in order to screen proper reprogramming
factors via the Fbx15-Neo reporter system. They found that
after introduction of the retroviral mediated factors Oct3/4,
Sox2, Klf4, and c-Myc, mouse embryonic fibroblasts were
reprogrammed into ES cell-like cells called iPSCs. The gen-
eration of iPSCs from adult human dermal fibroblasts was also
demonstrated by transfection of the same four factors [43].
Human iPSCs share similar biological characteristics with hu-
man ESCs including morphology, proliferation, surface anti-
gens, gene expression, epigenetic status of pluripotent cell-
specific genes, and telomerase activity. Moreover, these cells
could differentiate to cell types of the three germ layers in vitro
and in teratomas [44].

Cell Sources for Deriving iPSCs and Approaches
for Reprogramming

iPSCs have been derived frommany different species, such as
humans, mice, pigs, rabbits, rats, marmosets, and rhesus mon-
keys. The successfully reprogrammed cell types contain fibro-
blasts, marrow mesenchymal cells, gastric/intestinal epithelial
cells, keratinocytes, hepatocytes, stomach cells, neural stem
cells, pancreatic cells, blood/liver/neural progenitor cells,
cord/peripheral blood cells, adipose stem cells, B and T lym-
phocytes, and so on [45–48], of which fibroblasts are the most
commonly used parental somatic cell type for the generation
of iPSCs. Between 2010 and 2012, the first reports were pub-
lished on the production of iPS cell lines from human gingival
fibroblasts and periodontal ligament fibroblasts by
reprogramming using a retroviral transduction cocktail of
OCT3/4, SOX2, KLF4, and c-MYC [49–51]. These induced
cell lines expressed the human-ES (hES) cell-associated cell-
surface antigens like SSEA3, SSEA4, GCTM-2, TG30
(CD9), and Tra-1-60, as well as the hESC marker genes
OCT4, NANOG, and GDF3 [52]. Interestingly, in 2012, an-
other research group established iPSCs from human periodon-
tal ligament fibroblasts by introducing the human-ESC
(hESC) markers OCT3/4, SOX2, NANOG, KLF4, and
Lin28 through retrovirus transduction, even without the onco-
gene c-MYC [51], which was found to be responsible for
tumors in iPSC chimeric mice [53]. In 2015, Umezaki et al.
[54] demonstrated that human gingival integration-free iPSCs
could be generated using episomal plasmid vectors without
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retroviral transduction. Compared with skin, gingival tissue is
obtained more easily and gingival wound after sampling heals
more quickly. Furthermore, reprogramming efficiency of
mouse gingival fibroblasts is higher than that of mouse dermal
fibroblasts [55]. These discoveries suggest that iPSCs derived
from GFs represent an optimal and more practical cell-based
tissue-regenerative treatment for periodontal diseases.

Since the first establishment of iPS cell line by Yamanaka
in 2006, many scientists have made efforts to improve the
efficiency and safety of the reprogramming process. General-
ly, the approaches for factor reprogramming include transgene
and chemical reprogramming while methods for transgene
reprogramming can be classified into three groups: RNA-
based, DNA-based, and protein transduction (direct cell trans-
duction). RNA-based reprogramming can be achieved by
transfection of synthetic RNA, modified RNA, and micro
RNA [56••]. DNA-based ways are most widely used, which
include the use of viruses and plasmids. The very first way for
cell reprogramming was by retroviral delivery of four tran-
scription factors (Oct4, Sox2, Klf4, and Myc). In 2009, some
researchers found direct protein transduction can improve in-
ducing efficiency, but it is easily affected by the quality of
recombinant proteins [57–59]. As for chemical cell
reprogramming, the use of small-molecule compounds has
been developed [51], and several reviews on small molecule
drugs used for improving the generation of iPSCs are avail-
able [60, 61]. A variety of reprogramming methods to derive
iPSCs and their advantages and disadvantages are shown in
Table 1. Among available reprogramming methods, the easi-
est and most efficient method by now is the integration of
reprogramming factors into the genome by retroviral or
lentiviral transduction [43, 75].

Advantages of iPSCs Over Other Stem Cells

The serious ethical concerns associated with ESC application,
and limited proliferation and differentiation potential of
MSCs, has prompted efforts to genetically reprogram somatic
cells to generate iPSCs. On the first hand, these cells have
similar biological features to ESCs without any ethical con-
cerns associated with ESCs [43, 76–78]. Although ESCs and
iPSCs both carry tumorigenic properties, raising a significant
safety challenge in the use of these cells for regenerative ther-
apies, the most important advantage of iPSCs compared to
ESCs is the possibility to use mature somatic cells from pa-
tients who suffer from defined diseases genetically [79–81]. In
addition, human-iPSCs can differentiate into all cell types of
three germ layers in vitro and in vivo [43]. Overall, iPSCs
overcome major ethical concerns about hESCs such as the
destruction of human embryos and oocytes. In particular, the
clinical use of iPSCs is expected to solve the problems of
immune rejection. On the other hand, iPSCs have a greater
proliferation capacity than traditional MSCs so that they can

expand into large numbers before in vitro differentiation and
transplantation while remaining similar or superior
multipotent differentiation potential to their parental MSCs
[82, 83].

iPSCs Used in Periodontal Regeneration

iPSCs now provide a novel approach to the field of tissue
engineering. Recently, some studies have shown that iPSCs
are a promising source of stem cells to be used for periodontal
tissue regeneration therapy. In general, the rationale of apply-
ing iPSCs in periodontal regeneration includes the following
aspects: (1) iPSCs can be induced from dental derived cells,
such as gingival fibroblasts and periodontal ligament fibro-
blasts; (2) iPSCs can differentiate to osteogenic cells after
stimulated by certain factors; (3) combining with or without
the scaffolds, iPSCs can facilitate the healing of man-made
periodontal bone defect and form new periodontal tissues like
alveolar bone, cementum, and periodontal ligament. The de-
velopment of iPSCs in the field of periodontal regeneration
was summarized in Fig. 1.

iPSC Differentiation Toward Osteoblasts

In 2012, it was reported the murine iPSC-derived cells can
differentiate to osteoblasts with the help of TGF-beta family,
bFGF or BMP-2 [84]. Recent studies have reported that func-
tional MSCs which were derived from human iPSCs could
express characteristic MSC markers, differentiate into osteo-
blasts, adipocytes, and chondrocytes, and promote vascular
and muscle regeneration [32]. Our group previously found
that when iPSCs were stimulated with enamel matrix-
derived (EMD) gel, the mRNA expression level of Runt-
related transcription factor 2 (Runx2), a key transcription fac-
tor expressed during osteogenic differentiation, greatly in-
creased in EMD-stimulated media; thus, EMD gel can pro-
mote the differentiation of iPSCs to osteogenic cells [85•].
Similarly, another study showed that iPSC-MSCs had good
ability for attachment, proliferation, and osteogenic differen-
tiation when attached on calcium phosphate cement (CPC)
scaffold, showing high gene expressions of osteogenic
markers including osteocalcin, alkaline phosphatase (ALP),
collagen type I, and Runx2; hence, the iPSC-MSC-CPC con-
struct is predicted promising to promote bone regeneration in
periodontal or craniofacial repairs [86]. Overall, iPSCs have
the potential to differentiate into osteogenic cells.

iPSCs Promote Periodontal Regeneration

The development of new cementumwith periodontal ligament
fibers connected to alveolar bone is the main goal of periodon-
tal regeneration [86, 87]. Ideally, regenerated periodontal lig-
ament fibers are inserted into the newly formed cementum to
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connect the root surface and alveolar bone. Since iPSCs can
be used as seed cells in tissue engineering, some researchers
have revealed that mouse iPSCs combined with scaffolds such
as EMD gel can promote the formation of alveolar bone, ce-
mentum, and periodontal ligament, thus enhancing the repair
and healing of mouse periodontal defects [85•]. Another study
has demonstrated that iPSCs can be induced to differentiate
into MSC-like cells [88•]. These cells fulfill the International
Society of Cellular Therapy’s minimal criteria for defining
multipotent MSCs: they had plastic adherent properties,
expressed key MSC-associated markers, and had the capacity
to undergo tri-lineage differentiation. Furthermore, the gener-
ated human iPSC-MSC-like cells had the capacity to facilitate
periodontal regeneration in a rat periodontal defect model,
including newly formed fibrous tissue, newly formed miner-
alized tissue, and newly formed PDL-like tissues [88•]. Sim-
ilarly, Yang et al. demonstrated that rat iPSCs could be in-
duced to differentiate to MSCs, and intravenous and topical
administration of these cells that had been transfected with
tumor necrosis factor alpha-stimulated gene-6 (TSG-6), which
has strong anti-inflammatory effect, was capable to decrease
inflammation and inhibit alveolar bone resorption in rat ex-
perimental periodontitis [89].

The Challenges and Future Perspectives Regarding iPSCs

At present, many limitations still affect the possible applica-
tions of iPSCs in clinical medicine. The main hindrances are
related to the reprogramming efficiency, biological safety, and
large-scale expansion and directed differentiations.

No matter what the reprogramming methods are, one of the
main obstacles in reprogramming iPSCs is the inherent low
efficiency of complete reprogramming [90]. Generally speak-
ing, there are gene expression differences between human-
iPSCs (hiPSCs) and hESCs or among different iPSC lines.
One report has shown that gene expression of the donor cell
type significantly contributes to the differences among hiPSCs
and hESCs. Specifically, further analysis reveals that gene
expression of fetal fibroblast-derived hiPSCs is closer to that
of hESCs, followed by adipose, neonatal fibroblast, and
keratinocyte-derived hiPSCs [91]. Therefore, the optimal

choice of original cell type for iPSC reprogramming and the
ideal protocols for high efficient complete reprogramming are
the prerequisites for future clinical transformational study.

Biological safety is another main concern in relation to the
application of iPSCs in tissue regeneration, including peri-
odontal regeneration. First, the integration of reprogramming
factors into the genome by retroviral or lentiviral transduction
is the easiest and most efficient method by now for
reprogramming iPSCs. However, the use of cells containing
viruses brings up the possibility that viruses integrate into host
chromosomes and lead to replication-induced DNA mutation
[92] and potentially malignant transformations [93]. Addition-
ally, the existence of viruses may stimulate immunological
reaction [94]. Second, the principles of iPSCs in regenerative
medicine rely on their ability to self-renew and to differentiate
to cells of the three germ layers. However, it is these properties
that predispose iPS to be tumorigenic and therefore hinder the
clinical applications of these cells [95]. These issues highlight
the need for generating virus-free iPSCs that are functionally
identical to true ESCs [96].

Another handicap for using iPSCs in regenerativemedicine
is the deficiency of large-scale expansion and directed differ-
entiation approaches. Obtaining sufficient iPSCs and directing
them to differentiate into osteoblasts, cementoblasts, and peri-
odontal fibroblasts are prerequisites for successful periodontal
regeneration, and although there have been some evidences
showing the strong potentials of iPSCs in cell-based periodon-
tal regenerative therapy [85•, 88•], the ability of iPSC differ-
entiation to cementoblasts, most key cells for periodontal re-
generation, remains to be explored.

Finally, whether or not iPSCs possess immunoregulatory
properties, which is regarded as an important aspect of mech-
anisms of MSCs, has not been explored and challenge also
remains to identify the best combination of iPSCs, biomate-
rials, and growth factors for various clinical situations.

Conclusion

The significant ethical concerns accompanied with the clinical
use ESC in humans and limited proliferation and

Fig. 1 History of development
for iPSCs in the field of
periodontal regeneration
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differentiation abilities of MSCs suggest that iPSCs may be a
good alternative cell source for use in regenerative medicine.
Although studies on the use of iPSCs for periodontal regener-
ation are in their early stages, iPSCs-based therapy strategies
will have solid background and good prospectives for clinical
periodontal regenerative treatment. The main endeavors
should be to strengthen the reprogramming efficiency, assure
biological safety, and optimize the strategies of large-scale
expansion and directed differentiations.
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