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Abstract Esthetic restoration using resinous materials has
achieved great success in the past decade.A large part of this
success is attributed to the significant advances in adhesive
materials. Although refinement of existing adhesive materials
is still required to improve bonding reliability and reproduc-
ibility, the development of innovative adhesives with
bioprotective/biopromoting functions has been recognized as
an important direction for future research. Until now, signifi-
cant achievements have been made in the development of
adhesives that can protect the bonded interface from extrinsic
bacteria- or intrinsic enzyme-induced destruction, as well as
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those that can promote the natural remineralization or regen-
eration process of the tooth tissue. In this review, the author
will summarize the latest developments in these innovative
bioactive adhesive materials.
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Introduction

Dental caries remains a prevalent problem worldwide. Resin-
based materials are now the primary choice for cavity resto-
ration due to their superior esthetic properties and direct filling
abilities [1]. However, the longevity of resinous restorations is
limited and half of all restorations would fail within 10 years,
mainly due to secondary caries and fracture [2—4]. Since the
adhesive layer is the weak link in resinous restorations, refine-
ment of the adhesive materials is necessary to improve the
longevity of resinous restorations.

Adhesive materials with bioprotective functions are devel-
oped when attempts are made to protect the dentin—adhesive
interface from extrinsic- or intrinsic-factor-induced degrada-
tion, and thus improve the longevity of resinous restorations.
For instance, adhesives with antibacterial activities are expect-
ed to inhibit the destruction of the bonded interface caused by
extrinsic bacteria, while adhesives with matrix metalloprotein-
ase (MMP) inhibitory effects or collagen cross-linking prop-
erties attempt to protect against endogenous protease-induced
degradation.

Adhesives with biopromoting functions should be able to
promote the natural biofunctions of the tooth. With the pur-
pose of mimicking or promoting the biomineralization process
of dental hard tissue, plenty of research has been performed to
develop adhesives with remineralization properties. Since the
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importance of vital pulp has been recognized, pulp preserva-
tion has become a hot focus in both experimental and clinical
research. Accordingly, much time and effort has been devoted
to developing adhesives that can promote the regeneration of
the pulp.

In this article we will review the latest developments in
adhesives with bioprotective and biopromoting functions.

Adhesive Materials with Bioprotective Functions
Adhesives with Antibacterial Functions

Production of adhesive materials with antibacterial functions
could be beneficial in reducing the risk of secondary caries
and improving the longevity of current resinous restorations.
Basically, there are two approaches to provide antibacterial
activity to adhesives—the agent-releasing approach and the
non-agent-releasing approach. In the following sections, the
authors will summarize the latest developments in these two
approaches and discuss their advantages and disadvantages.

Agent-Releasing Antibacterial Adhesives

Various soluble antimicrobial agents, such as antibiotics, epi-
gallocatechin-3-gallate, chitosan, chlorhexidine (CHX), and
silver have been added to dental adhesives. The advantage of
an agent-releasing approach is that the antibacterial effect can
extend beyond the immediate region of the dental composite;
however, the drawbacks are that the release kinetics are diffi-
cult to control, the long-term effect is not predictable, and
mechanical properties of the carrier material can be
degraded[5].

During the early days, CHX has been added to various
dental materials to provide antibacterial activities [6, 7]. In
recent years, CHX has also been incorporated in adhesives.
However, the primary purpose is not to provide antibacterial
activities, but to inhibit MMP-induced degradation of dentin
collagen and thus improve the durability of the dentin—adhe-
sive bond. As reported, CHX is added to adhesives at concen-
trations ranging from 0.01 % to 2 % [8e, 9—13]. According to
the published results of Huang et al., the minimum inhibitory
concentration of CHX against various oral pathogenic bacteria
is around 5 pg/mL, which is approximately equal to 0.5 wt %
if we estimate the density of the adhesive as 1 g/mL [14].
Thus, we can predict that adhesives containing 0.5-2 % CHX
should exhibit some antibacterial activity when applied to
dentin. This prediction has recently been proved by Hiraishi
et al., who reported that the experimental self-etching primer
containing 1 % CHX has inhibiting effects against Strepto-
coccus mutans (S. mutans) [13].

Due to their strong antifungal and antiviral actions, silver
ions have been considered for applications as an antibacterial
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additive in dental adhesives. Direct incorporation of silver
nanoparticles is a common and simple strategy. However,
nano-sized silver ions tend to aggregate, and polymers directly
filled with silver nanoparticles typically exhibit a ‘burst-type
release’ of the ion. In 2011, a new technique coupling photo-
initiated free radical polymerization of dimethacrylates with in
situ silver ion reduction was introduced [15¢]. Using this
technique, silver nanoparticles were added to the primer and
bonding agent of the Scotchbond Multi-Purpose bonding
system at a concentration of 0.05 % or 0.1 %. Biofilm forma-
tion was significantly inhibited on the surface of the experi-
mental material [16-21]. Furthermore, the total number of
bacteria in the culture medium away from the experimental
material was also reduced, indicating that nano-silver-
containing adhesive has long-distance killing capability [21].

Non-Agent-Releasing Antibacterial Adhesives

Ever since Imazato et al. introduced the concept of the
“immobilized bactericide” in 1994, non-agent-releasing anti-
bacterial adhesives has become a hot research topic [22, 23¢e].
Immobilized bactericids are antibacterial components that can
be chemically bonded to a carrier material. This technology is
advantageous in terms of longevity of antibacterial effects
and maintaining mechanical properties of the carrier
materials. The first ‘immobilized bactericide’,
methacryloyloxydodecylpyridinium bromide (MDPB), was
synthesized by combining a polymerizable methacrylate
group with an antibacterial quaternary ammonium group
[23<](Fig. 1). Later, other researchers reported similar mole-
cules with improved properties. Methacryloxyethyl cetyl di-
methyl ammonium chloride (DMAE-CB) synthesized by
Chen’s group exhibited significantly stronger bactericidal ef-
fect compared with MDPB [24] (Fig. 1). Recently, with the
attempts to increase the amount of antibacterial quaternary
ammonium monomers that can be incorporated in adhesives
and subsequently enhance the antibacterial activity of the
modified material without compromising biocompatibility,
new antibacterial monomers with two polymerizable
methacrylic moieties have been developed [14, 25, 26].

Antibacterial adhesives containing quaternary ammonium
monomers act as cavity disinfectant before curing. When the
primer containing MDPB was kept in direct contact with
planktonic bacteria, all bacteria were killed within 30 s [27].
Noticeably, these antibacterial adhesives are able to penetrate
500-pum-thick dentin block [28] and eradicate caries-related
species inside the dentin [18, 29]. In vivo studies using beagle
dogs also demonstrated that the MDPB-containing primer
could inactivate S. mutans in the cavity [30].

After curing, antibacterial adhesives containing quaternary
ammonium monomers can inhibit the growth of bacteria that
comes into contact with the material and thus reduce bacterial
microleakage at the dentin—adhesive interface. When
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S. mutans is incubated in contact with the cured primer/
adhesive surface containing various quaternary ammonium
monomers, the number of viable bacteria was significantly
reduced [31-33]. Similar results have also been found in
clinical studies [34]. Notably, the antibacterial activity of the
quaternary ammonium monomer-containing adhesives is
long-lasting and does not fade after at least 3 months [35].
However, these antibacterial adhesives only exhibited
bacteriostatic, rather than bactericidal, effects against the
contacting bacteria. Furthermore, the bacteristatic effects
can be diminished when the material is covered by saliva
pellicles [21, 36, 37].

In conclusion, both the agent-releasing and non-agent-
releasing antibacterial adhesives have their advantages and
disadvantages. The combination of these two techniques
could show complimentary behavior for inhibiting bacteria.
Indeed, several publications reported that adhesive containing
both quaternary ammonium monomer and silver nanoparticles
have enhanced antibacterial activities against both bacteria in
contact with the material and those suspended in the culture
medium away from the surface [17-20, 38, 39].

Adhesives with Anti-Matrix Metalloproteinase Functions

Although modern adhesives can achieve satisfying immediate
bonding to dentin, they demonstrate a loss of bond strength
over time. Enzymatic degradation of the collagen matrix by
host-derived MMPs and cysteine cathepsins plays a major role
in the destruction of the bonded interface [40]. One strategy to
improve the durability of resin—dentin bonds is to use inhib-
itors that inactivate MMPs at the bonded interface.

The vast majority of the experiments aimed at improving
the durability of dentin bonds using enzyme inhibition have
been performed with CHX. The use of 2 % CHX for 60 s as a
preliminary dentin treatment after acid-etching has reduced
interfacial aging over time [41, 42]. However, this procedure
adds an additional step to the bonding protocol, despite the
clinician’s need for simplification. Moreover, although large
amounts of CHX remain bound to partially and completely
demineralized dentin for at least 8 weeks, it may be exhausted
over longer periods of time [43]. To provide a CHX reservoir
that can release the agent in a relatively controlled manner,
researchers have tried to incorporate CHX in adhesives. It has
been demonstrated that the addition of CHX in concentrations
up to 0.2 % to commercial etch-and-rinse adhesives provides
controlled release of CHX in sufficient concentration to inhibit
MMP activity without jeopardizing the materials’ ultimate
tensile strength, water sorption, and solubility [8¢]. For etch-
and-rinse adhesives, most studies demonstrated that the incor-
poration of CHX at concentrations ranging from 0.01 % to
1 % could reduce the degradation of the bonded interface [9,
10]. For self-etching adhesive, CHX incorporation has been
shown to be effective in reducing the collagenolytic activity of

dentin powder [11]. However, when it comes to bond strength,
the results are controversial. Zhou et al. demonstrated that
when incorporated in the primer of Clearfil SE Bond, CHX
preserved dentin bond as long as the concentration of CHX is
higher than or equal to 0.1 % [44]. On the contrary, De Munck
et al. found that the addition of 0.05 % CHX to the primer of
Clearfil Protect Bond, adhesives of G-bond and Scotchbond 1
XT is not effective in protecting the bonded interface from
degradation [10, 12]. The controversial findings may be at-
tributed to the different chemical compositions of the adhe-
sives to which CHX was included.

Very recently, quaternary ammonium antibacterial mono-
mers have been reported to have potent inhibitory effects on
MMPs. Tezvergil-Mutluay et al. [45] found that quaternary
ammonium monomers, including MDPB, exhibited MMP in-
hibition behavior that was comparable with that of CHX [44].
Noticeably, MDPB at 5 %, which is the concentration utilized
for the primer of commercial adhesive Clearfil Protect Bond,
achieved 89 % inhibition of soluble thMMP-9 and approxi-
mately 90 % inhibition of matrix-bound MMPs [45¢]. Similar-
ly, Liu et al. also reported the MMP-inhibitory effects of
DMAE-CB [46]. Compared with CHX, which leaches out
from bonded interfaces, quaternary ammonium monomers are
advantageous in that they can co-polymerize with adhesive
monomers and thereafter be retained in the hybrid layer for a
long time. Indeed, several studies, including in vivo studies,
revealed that Clearfil Protect Bond can achieve more durable
bonding than conventional adhesives [47].

Adhesives Containing Collagen Protective/Cross-Linking
Agents

Type I collagen accounts for 90 % of the organic matrix of
dentin, and degradation of the unprotected collagen by endog-
enous proteases is the primary reason for the destruction of the
adhesive—dentin bond. Besides the inactivation of endogenous
proteases, another strategy to preserve the stability of dentin
bond is to stabilize dentin collagen using cross-linking agents.
Synthetic agents (glutaraldehyde and carbodiimide hydro-
chloride) and nature-derived agents (proanthocyanidins
[PAs]) have been shown to effectively interact with type I
collagen [48e¢]. Compared with synthetic agents, natural PAs
have two attractive characteristics—very low toxicity and
renewable/sustainable resources [49]. Using PA or PA-rich
extracts as pre-conditioners before application of adhesives
is effective in enhancing the mechanical properties of dentin
and preserving bonding stability [50, 51]. However, this strat-
egy adds an extra step to the bonding procedure and cannot
achieve sustained release of PAs. Furthermore, according to
the majority of published data, the application time of PA-
containing pre-conditioner varied from 10 min to 1 h, which is
not feasible in a clinical setting [52]. To solve these problems,
PA has recently been incorporated directly into dental
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adhesives. However, the presence of PA during light-curing
might interfere with polymerization of adhesive monomers.
After all, PAs are known as radical scavengers that may exert
detrimental effects to the light-curing process [53]. In addi-
tion, the release of PA could lead to resin breakdown and
reduce integrity of the bonding interface. Not surprisingly,
when Green et al. examined the hybrid layer formed with
experimental adhesive containing 5 % PA, they found that it
presented more porous morphology compared with its PA-free
counterpart, presumably due to a lower degree of conversion
of adhesive resins [52]. In addition, Hechler et al. found that
when PA was directly mixed with the adhesive, the
microtensile bond strength (immediately, or after 1 year of
collagenase digestion) was lower than when PA was used as a
pre-conditioner [54]. Similar results have also been reported
by Epasinghe et al. [55]. In addition, due to its brownish color,
the incorporation of PA into adhesives can hamper the esthetic
performance of resinous restorations. Thus, the direct appli-
cation of PA in dental adhesives merits further investigation.

Adhesive Materials with Biopromoting Functions
Adhesives with Remineralization Functions

Resin-dentin bonding is a unique form of tissue engineering in
which a demineralized dentin collagen matrix is used as the
scaffold for resin infiltration to produce a hybrid layer that
couples adhesive/resin composites to the underlying mineral-
ized dentin. However, the resin—dentin bonds created by in-
filtration of hydrophilic resin monomers into the
demineralized dentin matrix are imperfect, resulting in the
presence of mineral-depleted, resin-sparse, water-rich colla-
gen fibrils along the bonded interface [41]. Thus, how to
imitate the biomineralization process of dentin, reproduce its
natural hierarchical structure of mineralized tissues, protect
them from external challenges against degradation, and re-
store their mechanical strengths to normal level is thought to
be a prime strategy to improve the dentin bonding stability
[55, 56]. Based on this concept, different modifications have
been made on adhesives to provide them with the dentin
remineralization function.

Fluoride-Containing Adhesives

Fluoride-releasing restorative materials have been widely used
for caries prevention [57]. Dental adhesive systems containing
fluoride in composition have been suggested in order to inhibit
the action of secondary caries arising from enamel cracks or
microleakage in the tooth/restoration interface [58]. Some
researchers have extensively demonstrated the significant
cariostatic and antibacterial effect of fluoride-releasing

@ Springer

restorative materials [59, 60]. One such material is Clearfil
Protect Bond, a two-step, self-etching primer adhesive system
that contains an antibacterial monomer (MDPB) in the primer
and sodium fluoride in the adhesive [5, 23¢¢]. Apart from the
functions mentioned above, fluoride ions penetrating into the
dentin have been shown to enhance mineralization of the
dentin [61-63]. This applies especially to the improved dis-
solution resistance initiated by epitaxial deposition of
fluorapatite over remnant apatite crystallites in the hybrid
layer [64]. In this conventional remineralization strategy, fluo-
ride requires the presence of some apatite crystals in the
partially demineralized dentin to initiate deposition of new
mineral [65]. The deposition of minerals in this way is known
as interfibrillar mineralization, which cannot reproduce the
hierarchical structure and mechanical strength of the natural
dentin. In addition, with this traditional strategy,
remineralization does not occur in locations where seed crys-
tallites are absent [65]. Thus, the classical ion-based crystalli-
zation concept may not be applicable for remineralizing
completely demineralized dentin within hybrid layers created
by etch-and-rinse adhesive systems or the superficial part of a
caries-affected dentin lesion left behind after minimally inva-
sive caries removal, due to the unavailability of seed crystal-
lites in those regions for accomplishing homogeneous nucle-
ation of apatite crystallites [66].

Fluoride-Free Adhesives

Different from conventional remineralization, biomimetic
remineralization represents a different approach to improve
bonding stability by attempting to backfill the demineralized
dentin collagen with liquid-like amorphous calcium phos-
phate (ACP) nanoprecursor particles that are stabilized by
biomimetic analogs of non-collagenous proteins [67—69].
This strategy reproduced both intrafibrillar and interfibrillar
minerals and recapitulated the dimension and order of the
apatite crystallites that are found in natural dentin [70-73].
Using this biomimetic remineralization strategy, both hybrid
layers created by etch-and-rinse adhesives [68, 74, 75] and
moderately aggressive self-etch adhesives [65, 74, 76], as well
as 250- to 300-um-thick completely demineralized dentin
lesions, can be remineralized [77-79]. This bottom-up
remineralization strategy does not rely on seed crystallites,
and may be considered as a potentially useful mechanism
in extending the longevity of resin—dentin bonds [80] via
restoring the dynamic mechanical properties of the denud-
ed collagen within the hybrid layer to approximate those
of mineralized dentin [81].

Although the biomimetic remineralization strategy is con-
sidered to be the most promising way to remineralize the
denuded collagen in the hybrid layer lacking of seed crystal-
lites, this system is still in the in vitro experimental level. To
date, studies published by various research groups utilized
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sectioned dentin slabs of the resin—dentin interface or
artificially-created carious lesion, and not the whole tooth,
for remineralization [69—71]. These slabs were immersed in
a metastable remineralization solution containing supersatu-
rated calcium and phosphate ions, as well as the biomimetic
analogs responsible for generating fluidic ACP
nanoprecursors. Whereas poly(anionic acid)-stabilized ACP
nanoprecursors can readily infiltrate sideways into the inter-
facial defect in a sectioned slab, this is not possible clinically
because the area occupied by the bonded dentin or carious
dentin is segregated from the oral environment by a restorative
material and only a very small part of the interface is exposed
along the cavosurface margin. It is unrealistic for biomimetic
remineralization to be accomplished through the use of a
mouth rinse or a topically applied delivery system such as a
remineralization paste or gel, wherein the polymer-stabilized-
ACP nanoprecursors have to diffuse thousands of microme-
ters into the adhesive or caries-affected dentin within a resto-
ration. For effective remineralization, the critical components
of the biomimetic scheme (i.e. calcium and phosphate source
and biomimetic analog/analogs) have to be incorporated into a
dentine adhesive or restorative material [82¢¢]. These critical
components should be able to be released from polymerized
resins. This necessitates incorporation of hydrophilic resin
monomers in the adhesive or resin composite to facilitate
water, ion, and nanoparticulate diffusion. To increase the
durability of the restorations, there should also be sustained
release of these critical components to remineralize tooth-
restoration interfaces that have been subjected to secondary
caries. These requirements impose considerable challenges to
the translation of a scientifically-sound concept into a

Fig. 1 Chemical structures of ,CHs
quaternary ammonium CHf= C\
monomers. MDPB and DMAE-
CB are conventional antibacterial
monomers with one
methyacrylate group. The new
antibacterial monomers—MAE-
DB and MAE-HB—have two
methyacrylate groups to enhance CH,
polymerization

cH,
cuzc/ CH,

_CH,

CH;C\

CH; Br
I
COO-CH,CH, - I‘IJ*— CH,CH5-00C”

clinically-applicable approach, without adding extra steps into
current bonding/restorative protocols.

The idea of incorporating calcium phosphate particles into
resins to develop composites with remineralizing capabilities
has been explored by different researchers [8§3—-86]. However,
the use of ACP nanoparticle-containing dentin adhesive is
innovative. These experimental adhesives are very likely to
be able to remineralize partially-demineralized dentin by ep-
itaxial deposition of calcium and phosphate phases over rem-
nant apatite seed crystallites. However, the use of solid-state
ACP nanoparticles is not compliant with the non-classical
theory of particle-based crystallization. To date, intrafibrillar
remineralization of dentin collagen has not been reported with
the use of experimental adhesives containing solid ACP nano-
particles. A potential delivery strategy is to produce
poly(anionic) acid-stabilized ACP pre-nucleation clusters and
store them as ‘cargos’ in mesoporous silica nanofillers. These
mesoporous silica nanofillers may be incorporated in dentin
adhesives as controlled release devices for the delivery of the
ACP pre-nucleation clusters, or coalesced ACP fluidic polymer-
induced liquid-precursors (PILP) phases, into faulty hybrid
layers or caries-affected dentin [82¢¢]. Research in the develop-
ment of these novel nanotechnologies for clinical translation of
the concept of biomimetic remineralization of dentin is in order.

Adhesive Materials with Pulp Regeneration Functions

In the case of accidental pulp exposure, the direct pulp-
capping procedure may be the most important factor for
successfully preserving dental pulp. Calcium hydroxide
[Ca(OH),] is the most eligible candidate for direct pulp

C0O0-CH,CH,CH,CH,CH,CH,CH,CH,CH,CH,CH,CH;~ N{ > Br

Methacryloyloxydodecylpyridium bromide (MDPB)
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Methacryloxylethyl cetyl dimethyl ammonium chloride (DMAE-CB)
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2-methacryloxylethyl hexadecyl methyl ammonium bromide (MAE-HB)
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capping because of its superior ability to form a dentine bridge
[87, 88]. However, Ca(OH),-based materials have no adhe-
sive properties toward either dentin or overlaid resins, and
they provide poor sealing of the exposed site. In addition, they
are prone to dissolution by acid-etching and demonstrate low
durability due to their low physical properties [89, 90]. As an
alternative to Ca(OH),-based materials, the use of resinous
adhesives for vital pulp therapy has been proposed [91].
Resinous adhesive systems have the advantage of providing
excellent sealing of the pulp exposure site and surrounding
dentin, which contributes to the prevention of bacterial leak-
age and subsequent pulpal inflammation in the case of direct
pulp capping [91, 92]. Dr. Katoh’s laboratory has been study-
ing adhesive resin systems for direct pulp capping [93, 94].
They found that adhesive resin systems applied to exposed
pulp demonstrated no irritation to the pulp, but the dentin
bridge formation with the adhesive resin systems was signif-
icantly slower than that using Ca(OH),-based materials. This
delayed dentin bridge formation may provide a critical situa-
tion in which pulp is exposed to bacteria through the resin—
dentin interface. To solve this problem, they further developed
an experimental adhesive resin system containing 10 wt %
calcium chloride (CaCl,), 10 wt % hydroxyapatite, and a
10 wt % compound of ESQES peptide and QESQSEQDS
peptide which mimic the sequence of dentin matrix protein 1,
for direct pulp capping in cooperation with Kuraray Medical
Inc. It was reported that the new experimental adhesive resin
system was fairly effective in promoting dentin bridge forma-
tion. Nevertheless, the fact that there are contradictory exper-
imental data and a lack of well-controlled clinical data sug-
gests that the consideration of dentine adhesives as capping
materials needs to be investigated further, in both experimen-
tal and clinical studies.

Conclusions

Tremendous efforts have been devoted to the development
of novel adhesive materials with various bioprotective/
biopromoting functions, and great progress has already
been made in this field. However, there are still limits in
almost all the present experimental biofunctional adhe-
sives. Continuous research work is needed in the future
to further improve the present experimental adhesives and
extend their application from bench-top to actual clinical
situations.
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