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Abstract Head and neck squamous cell carcinoma
(HNSCC) is one of the leading cancers in the world,
although wide geographical variations do exist. HNSCC
can be subcategorized into conventional HNSCC and
HPV-associated HNSCC, exhibiting distinct clinical and
histopathologic features. Awareness of the risks of
smoking has fortunately contributed to the decreasing
incidence of conventional HNSCC in the USA. Howev-
er, the prevalence of HPV-associated HNSCC in the
USA has been significantly increasing. Much progress
has been made in the research of development and
progression of HNSCC. In this article, we review the
current concepts of the pathobiological mechanisms of
HNSCC.
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Introduction to Head and Neck Squamous Cell
Carcinoma

Cancer, a major cause of mortality, is a global health issue,
and squamous cell carcinoma (SCC) of the head and neck
constitutes 90 % of all cancer cases in the oral and oropha-
ryngeal regions [1]. There is a wide geographic variation.
Based on a study of cancer incidence in 2008, an estimated
263,900 new SCC cases only from the oral cavity and lips
were newly diagnosed worldwide (170,900 cases in males,
64.8 %; and 93,000 cases in females, 35.2 %), with 128,000
deaths [2]. Oral SCC is the 8" leading cancer in men in the
USA with an approximate annual incidence of 40,000 new
cases and 8,000 deaths [3—7]. However in countries such as
India and Pakistan, where there is a high prevalence of areca
nut use, oral SCC represents the most common cancer in men
[2, 8].

Multiple factors contribute to the initiation and progression
of head and neck squamous cell carcinoma (HNSCC). Usage
of areca nut, alcohol, and tobacco are well-recognized risk
factors for SCC, both for the oral cavity proper and the
oropharyngeal region [9]. Human papillomavirus (HPV) in-
fection on the other hand, stands out as a risk factor for
oropharyngeal SCC, with increasing incidence noted within
the last 15 years [2, 10]. HPV-positive HNSCC exhibits a
better prognosis than HPV-negative HNSCC for specific an-
atomic locations (e.g., tonsils), with a five-year survival rate of
89 % and 65 %, respectively [11]. Moreover, the median
survival period is significantly longer in HPV-positive oro-
pharyngeal SCC (91 months) compared to HPV-negative ones
(76 months) [11]. In addition to the aforementioned exoge-
nous risk factors, certain hereditary conditions, such as
Fanconi anemia and Li-Fraumeni Syndrome, are predisposed
to HNSCC [12]. The mainstay of treatment for HNSCC is
surgery with adjuvant radiotherapy or chemo-radiotherapy for
high stage disease with accompanying morbidity. The overall
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five-year survival rate of conventional HNSCC is approxi-
mately 60 % [3, 7].

Targeted therapies are now used increasingly to manage
cancers and improve survival rate. Such therapies specifically
target crucial proteins within key pathways in the develop-
ment of cancer. Although much progress has been made in the
study of the development and progression of HNSCC, many
specific mechanisms are still unclear. This article reviews the
current concepts underlying the pathobiology of HNSCC.

HNSCC Initiation
Cancer Stem Cells (Cancer Initiating Cells)

HNSCCs cause significant morbidity and mortality, and may
recur after surgical excision and adjuvant chemotherapy and
radiotherapy [13]. This clinical fact has led to the cancer stem
cell (CSC) model that hypothesizes the existence of a distinct
cell population within HNSCC tumors, which may be resis-
tant to the conventional therapy. HNSCC contains cellular
heterogeneity, within which a developmental hierarchy exists
[14]. CSCs or cancer initiating cells, consist of less than 10 %
of the cells in an HNSCC tumor, and are able to self-renew
and to aberrantly differentiate into heterogeneous cancer cell
populations [15]. Identification and characterization of these
CSCs will help us gain more insight in cancer biology, predict
the tumor behavior, and develop better treatments to efficient-
ly target this cell population.

Currently, flow cytometry, in vitro clonal trial, and serial
transplantations are some methodologies used to detect CSCs.
Several CSC-like markers (e.g., CD44; Bmil; aldehyde de-
hydrogenase, ALDH; and CD133) have been identified, and
the labeled cells demonstrated robust tumorigenic activity
after serial transplantations [15—17]. Furthermore, evidence
suggests that the existence of these labeled cells in oral SCC
is associated with a poorer prognosis [18]. CD44 is associated
with MMP9 activity [19], and the up-regulated expression of
CD44 can potentially be utilized to determine tumor invasive-
ness and aggressiveness [20]. Bmil (B-cell specific Moloney
murine leukemia virus insertion site 1) is a transcription
repressor for cell senescence, implicated in the self-renewal
of stem cells [21]. Bmil is highly expressed in the CD44 " cell
population sorted from oral SCC tumors, suggesting a poten-
tial role within CSCs [15]. ALDH labels a highly tumorigenic
cell subset within the CD44" population [16]. Compared to
the CD133" human oral SCC cells, the CD133 overexpressed
cell population demonstrates stemness, invasiveness, and tu-
morigenic activity [17]. CD133 coordinates with the Src sig-
naling pathway and contributes to epithelial-mesenchymal
transition [17]. While multiple markers have been identified,
and have shed light on the etiologic role of CSCs, the detailed
signaling mechanisms are not yet fully understood.

Field Cancerization

The development of cancer through the entire upper
aerodigestive tract is due to the accumulation of multiple
genetic abnormalities via a multi-step process whereby cells
in a particular tissue/organ are genetically altered but histo-
logically normal, predating the development of neoplasia or
coexisting with malignant cells [22—24]. As such, it is possible
that precancerous lesions that already carry mutations may not
even be visible clinically or abnormal histologically. This
concept of “field cancerization” was proposed by Slaughter
in 1953 to explain the high frequency of development of
synchronous or metachronous HNSCCs [25, 26].

Microscopically, HNSCCs often have wider horizontal
spread than infiltrative growth (“lateral cancerization”) [24,
25]. In excised HNSCC specimens with clinically “clear”
margins, hyperkeratotic, hyperplastic, or abnormally atrophic
epithelium is often seen adjacent to the cancerous lesions,
indicating that the lateral field is already “cancerized” [25,
26]. Within the “normal appearing” epithelium approximating
the cancer, chromosomal aberrations (e.g., loss of
heterzogosity, microsatellite alterations), and genetic/
epigenetic mutations have been detected [26, 27]. Loss of
heterzygosity (LOH) is the loss of one allele of a gene (e.g.,
tumor suppressor gene), such that if the remaining allele
containing the other copy of the same gene becomes
inactivated by a point mutation, this will result in the affected
individual being more susceptible to cancer. LOH at the
chromosomes 17p, 3p, 9p, 8p, 18q, and 11q has been associ-
ated with HNSCCs, and the order of occurrence as a progres-
sion model of HNSCCs has been proposed [26]. However,
due to the lack of proper control and longitudinal follow-up,
this model is not universally accepted. Nevertheless, it is
likely as with cancers elsewhere in the body, that as a result
of cumulative molecular events, CSCs transform to gain
clonality and a selective proliferation advantage. The detailed
pathologic mechanisms of HNSCCs will be discussed in the
following sections.

Pathobiologic Mechanisms of HNSCC

To initiate a cancer, accumulated genetic and epigenetic alter-
ations within an otherwise normal cell allows it to acquire the
capabilities of becoming neoplastic and malignant. Six hall-
marks of cancer were proposed by Weinberg and Hanahan in
2011 to conceptualize the initiation, progression, and dissem-
ination of malignancies [28, 29]. Gene mutations leading to the
up-regulation of oncogenes or down-regulation of tumor sup-
pressor genes are seen in many cancers, including HNSCC.
Epigenetic modifications are heritable changes that regulate
gene activity through adjusting the structure and function of
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chromatin, without affecting DNA code sequences, by process-
es such as DNA hypermethylation and post-translational his-
tone modifications [30]. DNA hypermethylation, interrupting
the binding of transcription factors at promoter regions and
silencing of tumor suppressor genes (e.g., p16), is commonly
detected in HNSCCs (50 %—73 %) [31, 32]. In addition, DNA
hypermethylation of CDH1, MGMT, and DAPK in HNSCCs
have been reported [31-33]. Interestingly, tissues adjacent to
cancerous lesions also exhibit hypermethylation of these genes,
suggesting methylation as an early molecular event in carcino-
genesis [31, 34]. However, there is no direct evidence indicating
that the level of DNA methylation correlates with recurrence or
infiltrative growth of HNSCCs.

In addition to genetic and epigenetic changes, microRNAs
(miRNAs) are also involved in the initiation and progression
of HNSCCs. MiRNAs are short, single-stranded, 18-23
nucleotide-long, non-coding RNA molecules, which repress
the expression of its target genes post-transcriptionally [35].
The mechanisms of miRNA biogenesis and function were
described in detail previously [36]. Altered expression of
miRNAs may be caused by transcriptional dysregulation of
miRNAs, chromosomal aberration, epigenetic changes, single
nucleotide polymorphisms (SNPs), or defects in the miRNAs
processing machinery, and is closely associated with the ini-
tiation and progression of malignancies [37]. Approximately
fifty miRNAs have been linked with HNSCC. A full list of
HNSCC miRNAs can be found in the database HeNeCan
miRs, and is available at http://tarmir.rgcb.res.in/henecan/
[38]. Some HNSCC-related miRNAs, known as oncomirs,
possess oncogenic capacity by several mechanisms, such as
dysregulating key cell cycle checkpoints to promote
unchecked proliferation (e.g., miR-106b) [39, 40], interrupting
the crosstalk between tumor growth factor-beta (TGF-[3) and
Myc pathways (e.g., miR-106b-25/miR-17-92 cluster), which
leads to cell cycle dysregulation and resistance to apoptosis
[41], or interrupting apoptosis through the PI3K/PTEN/AKT
pathway (e.g., miR-21) [40].

HNSCC Initiates with Limitless Proliferation of Epithelial
Cells

A cancer cell exhibits uncontrolled proliferation, and invades
the surrounding tissue, suggesting that the underlying
pathobiological mechanisms involve dysregulation of prolif-
erative signaling pathways, inhibition of growth suppressors,
resistance to cell death, and maintenance of replicative im-
mortality [29].

Dysregulation of Proliferative Signaling Pathways
Growth factors stimulate cell proliferation via binding to the

surface receptors of target cells, activating kinases with trans-
duction into the nuclei to further activate the intracellular
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signaling cascade. Epidermal growth factor (EGF) is critical
for the initiation and progression of HNSCC. In addition to
growth factor ligand-dependent pathways, activation of down-
stream signaling pathways (e.g., phosphatidylinositol-3-
kinase, PI3K/AKT pathway) alone may also lead to the dys-
regulation of cell proliferation.

EGF receptor (EGFR), a member of the ErbB/Her family,
is a transmembrane receptor tyrosine kinase [42]. Once bound
with the ligand (e.g., EGF and TGF«x), EGFRs activate sev-
eral downstream signaling cascades, including Ras/Raf/mito-
gen-activated protein kinase (MAPK), PI3K/AKT, mammali-
an target of rapamycin (mTOR), Janus kinase (Jak)/signal
transducer and activator of transcription (STAT), and protein
kinase C (PKC) pathways [43]. The EGFR pathway regulates
cell proliferation and survival, and is associated with tumor
invasion, metastasis, and angiogenesis [44]. Aberrant activa-
tion of EGFR pathway is prevalent in HNSCC [45, 46], which
may present as amplification of EGFR, mutation of EGFR, or
overproduction of ligands [47]. EGFR variant Il (EGFRVIII),
a truncation mutated variant, leads to conformational activa-
tion of the EGFR without ligand binding or receptor overpro-
duction [48]. Cells with EGFRVIII demonstrated higher resis-
tance to chemotherapy [48].

A monoclonal antibody to EGFR, cetuximab, is the first
molecularly targeted therapy to receive US Food and Drug
Administration (FDA) approval for treating HNSCC [49].
Cetuximab improved overall survival when used to manage
locally or regionally advanced and recurrent/metastatic HNSCCs
[50, 51]. Based on the National Comprehensive Cancer
Network (NCCN) guidelines, cetuximab plus 5-fluorouracil
and platinum (cisplatin or carboplatin) is a category 1 treat-
ment option for patients with unresectable or recurrent/
metastatic non-nasopharyngeal HNSCC [52]. Other targeted
therapies include tyrosine kinase inhibitors (e.g., lapatinib,
dacomitinib, and afatinib) and mTOR inhibitors (e.g.,
temsirolimus and everolimus) which are currently being used
in clinical trials for HNSCC [49].

Inhibition of Growth Suppressors and Resistance of Cell
Death

Cancer cells gain limitless replicative potential through alter-
ing the cell cycle, within which Retinoblastoma (RB) and
TP53, as tumor suppressor genes, play important roles (as will
be noted in HPV-related lesions below) [53]. There are two
critical check points of the cell cycle in the G1 and G2 phases
that are regulated by complexes of cyclins and cyclin-
dependent kinases (CDKs). RB protein, a tumor suppressor
and a critical regulator in G,/S cell cycle progression, typically
binds to and inactivates transcription factor E2F and the
ensuing signaling cascade. When RB is phosphorylated, E2F
is released to activate the transcription of c-Myc, cyclin A, and
p21/WAF-1, so that cell cycle proceeds [54]. Loss of function
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or expression of RB results in uncontrolled cell proliferation.
TP53 is a tumor suppressor gene, playing a critical role in cell
cycle progression, cell differentiation and apoptosis. TP53
mutation commonly occurs at a hot spot region at codon 245
and codon 248 [55]. Somatic mutations of TP53 were found in
50 %~80 % of HNSCC cases [56—58], and disruptive muta-
tion of TP53 is strongly associated with decreased overall
survival rate [58].

Microenvironment Enhances the Progression and Invasion
of HNSCC

In addition to the genetic/epigenetic dysregulation within
cancer cells, recent studies suggest that the connective tissue
may significantly contribute to the progression and invasion
of HNSCC [59]. The natural boundary of an epithelium is
maintained by normal interactions with the underlying con-
nective tissue and basement membrane [60]. When neoplastic
processes begin, the microenvironment demonstrates in-
creased microvasculature, modified extracellular matrix
(ECM) deposited by cancer-associated fibroblasts (CAFs),
and infiltration of inflammatory cells. The key findings of
HNSCC microenvironment are summarized below.

Induction of Angiogenesis

The rapid growth of solid tumors, such as HNSCC, results in
hypoxia of the tissue, and induces angiogenesis [61]. Hypoxia
activates the secretion of vascular endothelial growth factors
(VEGFs), mediated by hypoxia-inducible transcription factor
lo (HIF-1) and 2 (HIF-2x) within tumor cells [62, 63]. In
addition to hypoxia, growth factors (e.g., EGF) or their recep-
tors (e.g., EGFR), cytokines (e.g., IL-6), and protein products
of activated oncogenes or mutated tumor suppressor genes,
may also regulate the expression level of VEGF [63, 64].
VEGF-A, one of the VEGF family members, is a 45-kDa
homodimeric glycoprotein with different isoforms and diverse
range of angiogenic activities [65]. VEGF-A is particularly
critical in tumor angiogenesis, and has been found
overexpressed in both HNSCC cell lines and specimens
[66-68]. The overexpression of VEGF-A is correlated with
poor prognosis and lymph node metastasis in HNSCC
[68-70]. Cancer cells as well as surrounding stromal cells,
such as fibroblasts, produce VEGF and encourage
neovasculaturization through the VEGF/VEGF receptor
(VEGFR) axis, especially VEGFR2, which triggers multiple
downstream signaling pathways, leading to the survival, mi-
gration, and differentiation of endothelial cells [63].
VEGFR2-mediated survival, proliferation, and migration of
endothelial cells are further enhanced by activating pathways
of PI3K, MAPK, and focal adhesion kinase, respectively [71,
72]. In addition, VEGF also enhances microvasculature per-
meability [73]. Therefore, it may provide a path for metastatic

dissemination of malignant cells. The calcium-dependent
pathway, Akt signaling pathway and Erk1/2 pathway increase
the level of nitric acid, cGMP and prostaglandins, also sug-
gesting they play a role in increasing vessel permeability [74,
75]. However, the detailed regulatory mechanisms need fur-
ther elucidation.

VEGF overexpression has been shown as a critical com-
ponent regulating angiogenesis in HPV16-positive cervical
SCC [76]. E6 viral oncoprotein binds to the promoter region
of VEGF and activates the expression level of VEGF [77].
Moreover, in HPV16-positive tumor cells, VEGF can enhance
cell proliferative activity through up-regulating EGFR, while
in the HPV16-negative cervical cancer, up-regulation of mu-
tated EGFR plays a major role of driving cell proliferation
[78]. However, the relationship between HPV 16 infection and
VEGF expression remains controversial in oropharyngeal
SCC [79, 80]. In conventional HNSCC, up-regulation of
VEGEF is correlated with poor clinical outcome, but this cor-
relation becomes weaker in HPV16-positive HNSCC [80].
Further research on angiogenesis of HPV16-positive and neg-
ative HNSCC is required to elucidate the underlying
mechanisms.

Interplay Between Cancer Cells and Stromal Cells

In addition to the genetic/epigenetic dysregulation within
cancer cells, stromal cells, also known as CAFs (cancer-
associated fibroblasts), may be critical in the progression and
invasion of HNSCC. CAFs demonstrate myofibroblastic fea-
tures with cytoplasmic accumulation of o-smooth muscle
actin (x-SMA), and have a role in synthesizing ECM, such
as type I collagen [81]. In HNSCC, CAFs are frequently
associated with dense collagen deposition and stromal
desmoplasia [82]. Stromal x-SMA positivity was observed
in 100 % of the conventional SCC, but not in the non-
neoplastic or adjacent uninvolved stroma. Together with loss
of CD34, gain of stromal x-SMA positivity links
myofibroblasts and tumor microenvironment with tumor in-
vasion [83]. Up-regulation of x-SMA and integrin-«6 in
CAFs is shown to be correlated with invasiveness and poor
prognosis of oral SCC [84]. Integrin-u6 is critical for cell-cell
adhesion and cell-ECM interaction as well as downstream
signaling cascades that regulate cell cycle.

CAFs also produce variable cytokines, such as
CXCL12 and matrix metalloproteinases (MMPs), which
promote cell motility and invasiveness of HNSCC. The
CXCL12/CXCR4 axis, first discovered in the trafficking
of hematopoietic stem cells to the bone marrow, plays a
key role in modulating tumor microenvironment, as well
as up-regulating expression of MMP9 and HIF-l1«x [85,
86]. CXCL12, also called SDF-1 (stromal cell-derived
factor-1), is one of the chemokines that binds to a trans-
membrane G-protein coupled receptor, CXCR4 [85].
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CAFs-derived CXCL12 induces invasion and dispersing
of CXCR4-overexpressed oral SCC cells, and is strongly
associated with regional lymph node metastasis of oral
SCC [87-89]. MMPs (e.g., MMP-2 and MMP-9), a
group of proteolytic enzymes that degrade and remodel
ECM components, are regulated by multiple signaling
pathways (such as EGFR), which are commonly
overexpressed in HNSCC [90]. Up-regulation of MMPs
in HNSCC is associated with increased metastatic rate
and poor prognosis [91, 92]; therefore, the underlying
mechanisms are worthy of further investigation.

Epithelial-Mesenchymal Transition Contributes
to the Invasion and Metastasis of HNSCC

Epithelial-mesenchymal transition (EMT) is a fundamental
biological process in embryonic morphogenesis that plays a
critical role in cancer development and progression, and is
considered a crucial event linked to tumor invasion and me-
tastasis. The classical EMT features in cancer cells include
loss of cell polarity and E-cadherin, as well as acquisition of
mesenchymal features, namely spindle morphology, motile
phenotype, and expression of mesenchymal markers (e.g.,
vimentin and SMA) [93].

TGF- 3 pathway is a major player triggering EMT in
HNSCC [94]. In TGF-3 signal transduction, dimerized
ligands bind to type I and type II receptor heterodimers
to phosphorylate and activate the transcription factor
Smad. Smad proteins consist of three functional classes,
namely the receptor-regulated Smad (R-Smad), the co-
mediator Smad (Co-Smad), and the inhibitory Smad (I-
Smad) [95]. R-Smad (Smadl, Smad2, Smad3, Smad5
and Smad8) is directly phosphorylated by type I receptor
kinases. TGF-f3 signaling pathway selectively activates
Smad2/3 [95]. The dimerized phosphorylated R-Smads
then form a regulatory complex with the Co-Smad
(Smad4), and translocate to the nucleus to activate the
expression of downstream genes. On the other hand, the
[-Smads (Smad6 and Smad7) compete with R-Smads for
interaction with the Co-Smad and type I receptor [95].

TGF-f3 pathway also contributes to EMT through
STAT3-mediated activation of Twist, Snail, and Slug
[96, 97]. Twist induces Bmi-1, and the two act cooper-
atively to down-regulate E-cadherin but up-regulate N-
cadherin in HNSCC, which is referred to as a “cadherin
switching” phenomenon [98]. Slug also contributes to
cadherin switching in response of hypoxia-related HIF-
I expression, and is correlated with poor prognosis in
HNSCC [99]. Emerging evidence suggests that EMT is
a process of gaining “stemness” or becoming CSCs,
which may contribute to the resistance to conventional
therapies [17, 100].
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Emerging Technologies in HNSCC Research

Massively parallel sequencing, also known as the next-
generation sequencing, is a high-throughput sequencing tech-
nique to analyze the genomes of HNSCC thoroughly and
efficiently. Two groups published their results back-to-back
in Science in 2011, performing exome sequencing for both
tumor DNA and the corresponding normal DNA from the
same patient [101, 102]. In addition to previously described
mutations in HNSCC (e.g., TP53, CDKN2A and PIK3CA), a
novel mutation, NOTCH, is identified [103].

There are four members in the mammalian NOTCH recep-
tor family, NOTCH 1-4. When the NOTCH ligand binds to
the NOTCH receptor, the intracellular domain translocates
into the nucleus and activates downstream genes, such as
NOTCH receptors, NOTCH ligands, cyclin D1 (CCNDI),
and MYC, which are critical for the cell cycle regulation
[103]. In addition to TP53, NOTCH mutation is the second
most common mutation in HNSCC, occurring in 10 %—15 %
of the HNSCC cases [104]. In HNSCC, approximately 40 %
of the mutations in NOTCHI1 were truncated gene products,
suggesting that NOTCH1 may act as a tumor suppressor gene
in HNSCC [101]. This novel approach provides us a compre-
hensive overview of the gene profiles of HNSCC, and con-
tributes significantly to our understanding in cancer biology.

HPV-Associated HNSCC

HPV-associated HNSCC has been recognized as a clinically
and biologically distinctive variant of SCC which occurs
predominantly in the oropharynx of younger male patients
(median age 56.9 years) [105]. HPV is an epitheliotropic,
double-stranded DNA virus, with approximately 150 subtypes
identified, of which 120 have been fully sequenced [106,
107]. High risk HPVs, mainly HPV 16, are associated with
25.9 % of the HNSCC cases, with the highest prevalence in
oropharyngeal SCC (35 %40 %) followed by laryngeal SCC
(24 %) and oral SCC (23.5 %) [108, 109]. Moreover, the
prevalence of high risk HPV in oropharyngeal SCC has sig-
nificantly increased from 35 %—40 % before 2000 to 72.2 % in
2005-2009 [110].

High risk HPVs induce carcinogenesis via two important
viral oncoproteins, E6 and E7, which cause dysregulation of
the cell cycle and apoptosis [106]. Viral protein E7 binds to
RB, and causes reduced expression of RB and overexpression
of pl6INK4a (a gene product of CDKN2A), leading to pro-
liferation and cell cycle progression [107]. Viral protein E6
inhibits wild type TP53, a major factor for the G2 check point,
through binding to and triggering of the ubiquitin-mediated
degradation of TP53. This results in a compromised ability of
the infected cells to engage cell cycle checkpoints and apo-
ptotic responses. In HPV-associated HNSCC, mutated p53 is
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not expected in the tumor cells as compared with conventional
HNSCC [111]. The molecular consequences of expressing E6
and E7 include interruption of p53-mediated apoptosis and
unlimited proliferation. It may be due to the absence of p53
mutation that HPV-associated HNSCC demonstrates better
prognosis compared to the HPV-negative HNSCC [112].

Conclusion

HNSCC is one of the leading cancers in the world associated
with a high mortality rate. Multiple risk factors have been
identified, including tobacco, alcohol, and areca nut consump-
tion, as well as high risk HPV infection. Currently, surgical
removal with adjuvant chemotherapy and radiotherapy is still
the mainstay of treatment. Emerging technologies contribute
to an understanding of the underlying pathobiological mech-
anisms and help in the development of personalized targeted
therapy.
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