Skip to main content

Advertisement

Log in

Pharmacological Profile of FDA-Approved Orphan Drugs in the Year 2022

  • Review
  • Published:
Current Pharmacology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This manuscript aimed to provide a scientific report of recently FDA-approved orphan drugs for helping patients, researchers, clinicians, and academicians engaged in rare diseases.

Recent Findings

The development of an orphan drug is really challenging (due to the small number of potential patients and the poor business potential despite substantial financial investment and the use of other resources) but vital (as it creates new hope for patients and families affected by rare diseases) process. FDA approved about 54% (20 out of 37) novel orphan drug therapies for varying rare diseases such as refractory follicular lymphoma, acid sphingomyelinase deficiency, amyotrophic lateral sclerosis, and generalized pustular psoriasis. It has been reported that 50% of these orphan drugs (e.g., adagrasib, futibatinib, pacritinib, olutasidenib, and tebentafusp-tebn) are recommended for uncommon or care cancers such as KRAS G12C mutated form of non-small cell lung cancer, locally advanced or metastatic intrahepatic cholangiocarcinoma (cancer of the intrahepatic part of the bile duct), intermediate or high-risk primary or secondary myelofibrosis, relapsed or refractory acute myeloid leukemia with susceptible IDH1 mutation, unresectable or metastatic uveal melanoma. This manuscript, describing the pharmacological aspects such as therapeutic applications, mechanisms of action, pharmacokinetics, adverse effects, doses, and special cases particularly in pediatrics, geriatrics, pregnant women, and lactating mothers, summarized twenty orphan drugs approved by the FDA in the year 2022 and price (for determining the cost of therapy), shall serve as a helpful document for concerned patients and clinicians.

Summary

This manuscript, the pharmacological report of recently FDA-approved twenty orphan drugs depicting the pharmacological profile, serves as an essential handy document for health professionals as well as patients concerned with rare diseases.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Melnikova I. Rare diseases and orphan drugs. Nat Rev Drug Discov. 2012;11:267–8. https://doi.org/10.1038/nrd3654.

    Article  CAS  PubMed  Google Scholar 

  2. Puscas M, Martineau G, Bhella G, Bonnen PE, Carr P, Lim R, et al. Iaria G Rare diseases and space health: optimizing synergies from scientific questions to care. npj Microgravity. 2022;8:58. https://doi.org/10.1038/s41526-022-00224-5.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Aronson JK. Rare diseases and orphan drugs. Br J Clin Pharmacol. 2006;61:243–5. https://doi.org/10.1111/j.1365-2125.2006.02617.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lavandeira A. Orphan drugs: legal aspects, current situation. Haemophilia. 2002;8:194–8. https://doi.org/10.1046/j.1365-2516.2002.00643.x.

    Article  CAS  PubMed  Google Scholar 

  5. Chung CCY, Hong Kong Genome Project, Chu ATW, Chung BHY. Rare disease emerging as a global public health priority. Front Public Health. 2022;18:1028545. https://doi.org/10.3389/fpubh.2022.1028545.

    Article  Google Scholar 

  6. Hendrickx K, Dooms M. Orphan drugs, compounded medication and pharmaceutical commons. Front Pharmacol. 2021;12:738458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Saviano M, Barile S, Caputo F, Lettieri M, Zanda S. From rare to neglected diseases: a sustainable and inclusive healthcare perspective for reframing the orphan drugs issue. Sustainability. 2019;11:1289. https://doi.org/10.3390/su11051289.

    Article  Google Scholar 

  8. Seoane-Vazquez E, Rodriguez-Monguio R, Szeinbach SL, Visaria J. Incentives for orphan drug research and development in the United States. Orphanet J Rare Dis. 2008;3:33. https://doi.org/10.1186/1750-1172-3-33.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Maeda K, Kaneko M, Narukawa M, Arato T. Points to consider: efficacy and safety evaluations in the clinical development of ultra-orphan drugs. Orphanet J Rare Dis. 2017;12:1–15. https://doi.org/10.1186/s13023-017-0690-5.

    Article  Google Scholar 

  10. Abozaid GM, Kerr K, McKnight A, Al-Omar HA. Criteria to define rare diseases and orphan drugs: a systematic review protocol. Brit Med J. 2022;12:e062126. https://doi.org/10.1136/bmjopen-2022-062126.

    Article  Google Scholar 

  11. Tomanin R, Zanetti A, D’Avanzo F, Rampazzo A, Gasparotto N, Parini R, et al. Clinical efficacy of enzyme replacement therapy in paediatric Hunter patients, an independent study of 3.5 years. Orphanet J Rare Dis. 2014;9:1–16. https://doi.org/10.1186/s13023-014-0129-1.

    Article  Google Scholar 

  12. Cheng H, Zhou D, Wang S, Ding J, Ma F. Orphan drugs in different countries and development of new drugs to treat biliary tract cancer. Intractable Rare Dis Res. 2021;10:146–7. https://doi.org/10.5582/irdr.2021.01038.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Mayrides M, Ruiz de Castilla EM, Szelepski S. A civil society view of rare disease public policy in six Latin American countries. Orphanet J Rare Dis. 2020;15:60. https://doi.org/10.1186/s13023-020-1314-z.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Goyal PK, Sharma S, Kumar R. Hatch Waxman Act and generic drugs: a review. J Pharm Biomed Sci. 2011;8:1–6.

    Google Scholar 

  15. Fields T, Patterson M, Brémovà-Ertl T, Belcher G, Billington I, Churchill GC, et al. A master protocol to investigate a novel therapy acetyl-L-leucine for three ultra-rare neurodegenerative diseases: Niemann-Pick type C, the GM2 gangliosidoses, and ataxia telangiectasia. Trials. 2021;22:1–15. https://doi.org/10.1186/s13063-020-05009-3.

    Article  Google Scholar 

  16. Johann P, Lenz D, Ries M. The drug development pipeline for glioblastoma-A cross-sectional assessment of the FDA orphan drug product designation database. PLoS ONE. 2021;16:e0252924. https://doi.org/10.1371/journal.pone.0252924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sangwan K, Sharma V, Goyal PK. Pharmacological profile of novel anti-cancer drugs approved by USFDA in 2022: a review. Curr Mol Med. 2023. https://doi.org/10.2174/1566524023666230622151034.

  18. Center for Drug Evaluation and Research Innovation Predictability. Advancing health through innovation: new drug therapy approvals. 2022. https://www.fda.gov/media/164429/download. Accessed 5 Mar 2023.

  19. Yaeger R, Weiss J, Pelster MS, Spira AI, Barve M, Ou SH, et al. Adagrasib with or without cetuximab in colorectal cancer with mutated KRAS G12C. N Engl J Med. 2023;388:44–54. https://doi.org/10.1056/NEJMoa2212419.

    Article  CAS  PubMed  Google Scholar 

  20. Shoham Y, Krieger Y, Rubin G, Koenigs I, Hartmann B, Sander F, et al. Rapid enzymatic burn debridement: a review of the paediatric clinical trial experience. Int Wound J. 2020;17:1337–45. https://doi.org/10.1111/iwj.13405.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Mattern MM, Fuchs PC, Schiefer JL. Role, development, and value of enzymatic debridement as integral component in initial treatment of burn injuries exemplified by NexoBrid®. Eur Burn J. 2022;3:340–54. https://doi.org/10.3390/ebj3020029.

    Article  Google Scholar 

  22. Syed YY. Futibatinib: first approval. Drugs. 2022;82:1737–43. https://doi.org/10.1007/s40265-022-01806-z.

    Article  CAS  PubMed  Google Scholar 

  23. Roskoski R. Futibatinib (Lytgobi) for cholangiocarcinoma. Trends Pharmacol Sci. 2023;44:190–1. https://doi.org/10.1016/j.tips.2022.12.007.

    Article  CAS  PubMed  Google Scholar 

  24. Lamb YN. Ganaxolone: first approval. Drugs. 2022;82:933–40. https://doi.org/10.1016/j.tips.2022.12.007.

    Article  CAS  PubMed  Google Scholar 

  25. Vossler DG. Ganaxolone: a new treatment for CDKL5 deficiency disorder. Epilepsy Curr. 2022;22:348–50. https://doi.org/10.1177/15357597221125238.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Benedetto Tiz D, Bagnoli L, Rosati O, Marini F, Santi C, Sancineto L. FDA-approved small molecules in 2022: clinical uses and their synthesis. Pharmaceutics. 2022;14:2538. https://doi.org/10.3390/pharmaceutics14112538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Keam SJ. Mavacamten: first approval. Drugs. 2022;82:1127–35. https://doi.org/10.1007/s40265-022-01739-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Elliott W, Chan J. Mavacamten capsules (Camzyos). Intern Med Alert. 2022;44:12. https://www.reliasmedia.com/articles/149542-mavacamten-capsules-camzyos.

  29. Langley PC. Concerns with patient-reported outcome measurement and value claims for therapy response: the case of Mavacamten and symptomatic hypertrophic cardiomyopathy (SHCM). Innov Pharm. 2022;13. https://doi.org/10.24926/iip.v13i2.4861.

  30. Heo YA. Mirvetuximab Soravtansine: first approval. Drugs. 2023;83:265–73. https://doi.org/10.1007/s40265-023-01834-3.

    Article  CAS  PubMed  Google Scholar 

  31. Kaplon H, Chenoweth A, Crescioli S, Reichert JM. Antibodies to watch in 2022. MAbs. 2022;14:2014296. https://doi.org/10.1080/19420862.2021.2014296.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Moore KN, Oza AM, Colombo NA, Oaknin A, Scambia G, et al. Phase III, randomized trial of mirvetuximab soravtansine versus chemotherapy in patients with platinum-resistant ovarian cancer: primary analysis of forward I. Ann Oncol. 2021;32:757–65. https://doi.org/10.1016/j.annonc.2021.02.017.

    Article  CAS  PubMed  Google Scholar 

  33. Grace RF, Rose C, Layton DM, Galactéros F, Barcellini W, Morton DH, et al. Safety and efficacy of mitapivat in pyruvate kinase deficiency. N Engl J Med. 2019;381:933–44. https://doi.org/10.1056/NEJMoa1902678.

    Article  CAS  PubMed  Google Scholar 

  34. Harrison C. Pyrukynd ushers in new era for rare cellular metabolic disease. Nat Biotechnol. 2022;40:446–8. https://doi.org/10.1038/s41587-022-01286-2.

    Article  CAS  PubMed  Google Scholar 

  35. Kang C. Mosunetuzumab: first approval. Drugs. 2022;82:1229–34. https://doi.org/10.1007/s40265-022-01749-5.

    Article  CAS  PubMed  Google Scholar 

  36. Budde LE, Sehn LH, Matasar M, Schuster SJ, Assouline S, Giri P, et al. Safety and efficacy of mosunetuzumab, a bispecific antibody, in patients with relapsed or refractory follicular lymphoma: a single-arm, multicentre, phase 2 study. Lancet Oncol. 2022;23:1055–65. https://doi.org/10.1016/S1470-2045(22)00335-7.

    Article  CAS  PubMed  Google Scholar 

  37. Mann JE. Nivolumab & Relatlimab-Rmbw (Opdualag™). Oncol Times. 2022;44:16–8. https://doi.org/10.1097/01.COT.0000831944.05424.8d.

    Article  Google Scholar 

  38. Paik J. Nivolumab Plus Relatlimab: first approval. Drugs. 2022;82:925–31. https://doi.org/10.1007/s40265-022-01723-1.

    Article  CAS  PubMed  Google Scholar 

  39. Diaz GA, Giugliani R, Guffon N, Jones SA, Mengel E, Scarpa M, et al. Long-term safety and clinical outcomes of olipudase alfa enzyme replacement therapy in pediatric patients with acid sphingomyelinase deficiency: two-year results. Orphanet J Rare Dis. 2022;17:437. https://doi.org/10.1186/s13023-022-02587-0.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wasserstein M, Lachmann R, Hollak C, Arash-Kaps L, Barbato A, Gallagher RC, et al. A randomized, placebo-controlled clinical trial evaluating olipudase alfa enzyme replacement therapy for chronic acid sphingomyelinase deficiency (ASMD) in adults: one-year results. Genet Med. 2022;24:1425–36. https://doi.org/10.1186/s13023-022-02587-0.

    Article  CAS  PubMed  Google Scholar 

  41. De Botton S, Yee KW, Recher C, Wei A, Montesinos P, Taussig D, et al. Effect of Olutasidenib (FT-2102) on complete remissions in patients with relapsed/refractory (R/R) m IDH1 acute myeloid leukemia (AML): results from a planned interim analysis of a phase 2 clinical trial. J Clin Oncol. 2021;39. https://doi.org/10.1200/JCO.2021.39.15_suppl.7006.

  42. de Botton S, Fenaux P, Yee KW, Récher C, Wei AH, Montesinos P, et al. Olutasidenib (FT-2102) induces durable complete remissions in patients with relapsed or refractory IDH1-mutated AML. Blood Adv. 2023. https://doi.org/10.1182/bloodadvances.2022009411.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Cortes JE, Fenaux P, Yee K, Recher C, Wei AH, Montesinos P, et al. Olutasidenib (FT-2102) induces durable complete remissions in patients with relapsed/refractory mIDH1 acute myeloid leukemia. Results from a planned interim analysis of a phase 2 pivotal clinical trial. Blood. 2022;140:6193–6.

    Article  Google Scholar 

  44. de la Fuente MI, Colman H, Rosenthal M, Van Tine BA, Levacic D, Walbert T, et al. Olutasidenib (FT-2102) in patients with relapsed or refractory IDH1-mutant glioma: a multicenter, open-label, phase Ib/II trial. Neuro Oncol. 2023;25:146–56. https://doi.org/10.1093/neuonc/noac139.

    Article  CAS  PubMed  Google Scholar 

  45. Lamb YN. Pacritinib: first approval. Drugs. 2022;82:831–8. https://doi.org/10.1007/s40265-022-01718-y.

    Article  CAS  PubMed  Google Scholar 

  46. Paganoni S, Hendrix S, Dickson SP, Knowlton N, Berry JD, Elliott MA, et al. Effect of sodium phenylbutyrate/taurursodiol on tracheostomy/ventilation-free survival and hospitalisation in amyotrophic lateral sclerosis: long-term results from the CENTAUR trial. J Neurol Neurosurg Psychiatry. 2022;93:871–5. https://doi.org/10.1136/jnnp-2022-329024.

    Article  PubMed  Google Scholar 

  47. Elia AE, Lalli S, Monsurrò MR, Sagnelli A, Taiello AC, Reggiori B, et al. Tauroursodeoxycholic acid in the treatment of patients with amyotrophic lateral sclerosis. Eur J Neurol. 2016;23:45–52. https://doi.org/10.1111/ene.12664.

    Article  CAS  PubMed  Google Scholar 

  48. Blair HA. Spesolimab: first approval. Drugs. 2022;82:1681–6. https://doi.org/10.1007/s40265-022-01801-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Choon SE, Lebwohl MG, Marrakchi S, Burden AD, Tsai TF, Morita A, et al. Protocol: study protocol of the global Effisayil 1 Phase II, multicentre, randomised, double-blind, placebo-controlled trial of spesolimab in patients with generalized pustular psoriasis presenting with an acute flare. BMJ. 2021;11. https://doi.org/10.1136/bmjopen-2020-043666.

  50. Dhillon S. Sutimlimab: first approval. Drugs. 2022;82:817–23. https://doi.org/10.1007/s40265-022-01711-5.

    Article  CAS  PubMed  Google Scholar 

  51. Röth A, Broome CM, Barcellini W, Jilma B, Hill QA, Cella D, et al. Sutimlimab provides clinically meaningful improvements in patient-reported outcomes in patients with cold agglutinin disease: results from the randomised, placebo-controlled, Phase 3 CADENZA study. Eur J Haematol. 2023;110:280–8. https://doi.org/10.1111/ejh.13903.

    Article  CAS  PubMed  Google Scholar 

  52. Tahhan F, Huynh B, Xu P. Novel monoclonal antibody therapy in a patient with treatment-refractory warm autoimmune hemolytic anemia. Cureus. 2022;14:e26051. https://doi.org/10.7759/cureus.26051.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Dhillon S. Tebentafusp: first approval. Drugs. 2022;82:703–10. https://doi.org/10.1007/s40265-022-01704-4.

    Article  CAS  PubMed  Google Scholar 

  54. Romaniuk DS, Postovskaya AM, Khmelevskaya AA, Malko DB, Efimov GA. Rapid multiplex genotyping of 20 HLA-A* 02: 01 restricted minor histocompatibility antigens. Front Immunol. 2019;10:1226. https://doi.org/10.3389/fimmu.2019.01226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kang C. Teclistamab: first approval. Drugs. 2022;82:1613–9. https://doi.org/10.1007/s40265-022-01793-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Qi X, Bai Z, Zhu Q, Cheng G, Chen Y, Dang X, et al. Practice guidance for the use of terlipressin for liver cirrhosis–related complications. Therap Adv Gastroenterol. 2022;15:17562848221098252. https://doi.org/10.1177/17562848221098253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kulkarni AV, Ravikumar ST, Tevethia H, Premkumar M, Kumar K, Sharma M, et al. Safety and efficacy of terlipressin in acute-on-chronic liver failure with hepatorenal syndrome-acute kidney injury (HRS-AKI): a prospective cohort study. Sci Rep. 2022;12:5503. https://doi.org/10.1038/s41598-022-09505-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Keam SJ. Tremelimumab: first approval. Drugs. 2023;83:93–102. https://doi.org/10.1007/s40265-022-01827-8.

    Article  CAS  PubMed  Google Scholar 

  59. Abou-Alfa GK, Lau G, Kudo M, Chan SL, Kelley RK, Furuse J, et al. Tremelimumab plus durvalumab in unresectable hepatocellular carcinoma. N Engl J Med Evid. 2022;1. https://doi.org/10.1056/EVIDoa2100070.

  60. Hwang M, Chia YL, Zheng Y, Chen CC, He J, Song X, et al. Population pharmacokinetic modelling of tremelimumab in patients with advanced solid tumours and the impact of disease status on time-varying clearance. Br J Clin Pharmacol. 2023;89:1601–16. https://doi.org/10.1111/bcp.15622.

    Article  CAS  PubMed  Google Scholar 

  61. Keam SJ. Vutrisiran: first approval. Drugs. 2022;82:1419–25. https://doi.org/10.1007/s40265-022-01765-5.

    Article  CAS  PubMed  Google Scholar 

  62. Luigetti M, Romano A, Di Paolantonio A, Bisogni G, Sabatelli M. Diagnosis and treatment of hereditary transthyretin amyloidosis (hATTR) polyneuropathy: current perspectives on improving patient care. Ther Clin Risk Manag. 2020;16:109–23. https://doi.org/10.2147/TCRM.S219979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ou SH, Jänne PA, Leal TA, Rybkin II, Sabari JK, Barve MA, et al. First-in-human phase I/IB dose-finding study of adagrasib (MRTX849) in patients with advanced KRASG12C solid tumors (KRYSTAL-1). J Clin Oncol. 2022;40:2530–8. https://doi.org/10.1200/JCO.21.02752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Meric-Bernstam F, Bahleda R, Hierro C, Sanson M, Bridgewater J, Arkenau HT, et al. Futibatinib, an irreversible FGFR1–4 inhibitor, in patients with advanced solid tumors harboring FGF/FGFR aberrations: a phase I dose-expansion study. Cancer Discov. 2022;12:402–15. https://doi.org/10.1158/2159-8290.CD-21-0697.

    Article  CAS  PubMed  Google Scholar 

  65. Serracanta J, Baena J, Martinez-Mendez JR, Sanchez-Sanchez M, Lopez-Suso E, Galeiras R, et al. Bromelain-based enzymatic burn debridement: Spanish multidisciplinary consensus. Eur J Plast Surg. 2023;46:271–9. https://doi.org/10.1007/s00238-022-01999-2.

    Article  PubMed  Google Scholar 

  66. Joo HS, Choi JH. Experiences of Bromelain-based enzymatic debridement (NexoBrid) in burn patients: a clinical report. J Wound Manag Res. 2021;17:207–12. https://doi.org/10.22467/jwmr.2021.01767.

    Article  Google Scholar 

  67. Palao R, Aguilera-Sáez J, Serracanta J, Collado JM, Dos Santos BP, Barret JP. Use of a selective enzymatic debridement agent (NexoBrid®) for wound management: learning curve. World J Dermatol. 2017;32–41. https://doi.org/10.5314/wjd.v6.i2.32.

  68. Dong T, Nissen S, Ospina S, Desai MY. An evaluation of mavacamten for the treatment of symptomatic obstructive hypertrophic cardiomyopathy in adults. Expert Rev Cardiovasc Ther. 2023;21:5–13. https://doi.org/10.1080/14779072.2023.2159811.

    Article  CAS  PubMed  Google Scholar 

  69. Sukaina M, Waheed M, Ali N, Rasool R. Efficacy and safety of mavacamten: a new era in the treatment of hypertrophic cardiomyopathy. Eur J Intern Med. 2022;106:144–6. https://doi.org/10.1016/j.ejim.2022.08.023.

    Article  CAS  PubMed  Google Scholar 

  70. Daaboul Y, Rowin E, Maron M, Kimmelstiel C. TCT-355 Lifetime costs of septal reduction therapies are substantially lower compared to mavacamten in patients with obstructive hypertrophic cardiomyopathy. J Am Coll Cardiol. 2022;80:B144–B144. https://doi.org/10.1016/j.jacc.2022.08.416.

    Article  Google Scholar 

  71. Moore KN, Martin LP, O’Malley DM, Matulonis UA, Konner JA, Vergote I, et al. A review of mirvetuximab soravtansine in the treatment of platinum-resistant ovarian cancer. Future Oncol. 2018;14:123–36. https://doi.org/10.2217/fon-2017-0379.

    Article  CAS  PubMed  Google Scholar 

  72. Matulonis UA, Lorusso D, Oaknin A, Pignata S, Dean A, Denys H, et al. Efficacy and safety of mirvetuximab soravtansine in patients with platinum-resistant ovarian cancer with high folate receptor alpha expression: results from the SORAYA study. J Clin Oncol. 2023;41:2436–45. https://doi.org/10.1200/JCO.22.01900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Al-Samkari H, Galactéros F, Glenthøj A, Rothman JA, Andres O, Grace RF, et al. Mitapivat versus placebo for pyruvate kinase deficiency. N Engl J Med. 2022;386:1432–42. https://doi.org/10.1056/NEJMoa2116634.

    Article  CAS  PubMed  Google Scholar 

  74. Al-Samkari H, van Beers EJ. Mitapivat, a novel pyruvate kinase activator, for the treatment of hereditary hemolytic anemias. Ther Adv Hematol. 2021;12. https://doi.org/10.1177/20406207211066070.

  75. Tawbi HA, Schadendorf D, Lipson EJ, Ascierto PA, Matamala L, Castillo Gutiérrez E, et al. Relatlimab and nivolumab versus nivolumab in untreated advanced melanoma. N Engl J Med. 2022;386:24–34. https://doi.org/10.1056/NEJMoa2109970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wasserstein MP, Diaz GA, Lachmann RH, Jouvin MH, Nandy I, Ji AJ, et al. Olipudase alfa for treatment of acid sphingomyelinase deficiency (ASMD): safety and efficacy in adults treated for 30 months. J Inherit Metab Dis. 2018;41:829–38. https://doi.org/10.1007/s10545-017-0123-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Watts JM, Baer MR, Yang J, Prebet T, Lee S, Schiller GJ, et al. Olutasidenib alone or with azacitidine in IDH1-mutated acute myeloid leukaemia and myelodysplastic syndrome: phase 1 results of a phase 1/2 trial. Lancet Haematol. 2023;10:e46–58. https://doi.org/10.1016/S2352-3026(22)00292-7.

    Article  CAS  PubMed  Google Scholar 

  78. Mascarenhas J. Pacritinib for the treatment of patients with myelofibrosis and thrombocytopenia. Expert Rev Hematol. 2022;15:671–84. https://doi.org/10.1080/17474086.2022.2112565.

    Article  CAS  PubMed  Google Scholar 

  79. Sun Y, Li X, Bedlack R. An evaluation of the combination of sodium phenylbutyrate and taurursodiol for the treatment of amyotrophic lateral sclerosis. Expert Rev Neurother. 2023;23:1–7. https://doi.org/10.1080/14737175.2023.2174018.

    Article  CAS  PubMed  Google Scholar 

  80. Morita A, Tsai TF, Yee EY, Okubo Y, Imafuku S, Zheng M, et al. Efficacy and safety of spesolimab in asian patients with a generalized pustular psoriasis flare: results from the randomized, double-blind, placebo-controlled Effisayil™ 1 study. J Dermatol. 2023;50:183–94. https://doi.org/10.1111/1346-8138.16609.

    Article  CAS  PubMed  Google Scholar 

  81. Safarzadeh Kozani P, Safarzadeh Kozani P, Sheikhi A. Tebentafusp: the first FDA-approved monoclonal antibody for cancer treatment in 2022. Trends in Med Sci. 2022;1:e123546. https://doi.org/10.5812/tms.123546.

    Article  Google Scholar 

  82. Usmani SZ, Garfall AL, van de Donk NW, Nahi H, San-Miguel JF, Oriol A, et al. Teclistamab, a B-cell maturation antigen× CD3 bispecific antibody, in patients with relapsed or refractory multiple myeloma (MajesTEC-1): a multicentre, open-label, single-arm, phase 1 study. Lancet. 2021;398:665–74. https://doi.org/10.1016/S0140-6736(21)01338-6.

    Article  CAS  PubMed  Google Scholar 

  83. Belcher JM, Parada XV, Simonetto DA, Juncos LA, Karakala N, Wadei HM, et al. Terlipressin and the treatment of hepatorenal syndrome: how the CONFIRM trial moves the story forward. Am J Kidney Dis. 2022;79:737–45. https://doi.org/10.1053/j.ajkd.2021.08.016.

    Article  CAS  PubMed  Google Scholar 

  84. Abou-Alfa GK, Lau G, Kudo M, Chan SL, Kelley RK, Furuse J, et al. Tremelimumab plus durvalumab in unresectable hepatocellular carcinoma. N Engl J Med Evid. 2022;1:8. https://doi.org/10.1056/EVIDoa2100070.

    Article  Google Scholar 

  85. Gonzalez-Duarte A, Adams D, Tournev I, Taylor M, Coelho T, Plante-Bordeneuve V, et al. HELIOS-A: results from the phase 3 study of vutrisiran in patients with hereditary transthyretin-mediated amyloidosis with polyneuropathy. J Am Coll Cardiol. 2022;79:302–302. https://doi.org/10.1016/S0735-1097(22)01293-1.

    Article  Google Scholar 

  86. Adams D, Tournev IL, Taylor MS, Coelho T, Planté-Bordeneuve V, Berk JL, et al. Efficacy and safety of vutrisiran for patients with hereditary transthyretin-mediated amyloidosis with polyneuropathy: a randomized clinical trial. Amyloid. 2023;30:1–9. https://doi.org/10.1080/13506129.2022.2091985.

    Article  CAS  PubMed  Google Scholar 

  87. Grünherz L, Michienzi R, Schaller C, Rittirsch D, Uyulmaz S, Kim BS, et al. Enzymatic debridement for circumferential deep burns: the role of surgical escharotomy. Burns. 2023;49:304–9. https://doi.org/10.1016/j.burns.2022.12.003.

    Article  PubMed  Google Scholar 

  88. Alekseev AA, Malyutina NB, Bobrovnikov AE, Shoham Y. Enzymatic debridement of deep thermal burns in the Russian federation: first experience. Life. 2023;13:488. https://doi.org/10.3390/life13020488.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Colletti A, Li S, Marengo M, Adinolfi S, Cravotto G. Recent advances and insights into bromelain processing, pharmacokinetics and therapeutic uses. Appl Sci. 2021;11:8428. https://doi.org/10.3390/app11188428.

    Article  CAS  Google Scholar 

  90. Yamamiya I, Hunt A, Yamashita F, Sonnichsen D, He Y, Benhadji KA. Evaluation of potential food effects and drug interactions with lansoprazole in healthy adult volunteers receiving futibatinib. Clin Pharmacol Drug Dev. 2023;12:294–303. https://doi.org/10.1002/cpdd.1196.

    Article  CAS  PubMed  Google Scholar 

  91. Knight EM, Amin S, Bahi-Buisson N, Benke TA, Cross JH, Demarest ST, et al. Safety and efficacy of ganaxolone in patients with CDKL5 deficiency disorder: results from the double-blind phase of a randomised, placebo-controlled, phase 3 trial. Lancet Neurol. 2022;21:417–27. https://doi.org/10.1016/S1474-4422(22)00077-1.

    Article  CAS  PubMed  Google Scholar 

  92. Ursula Matulonis U, Coleman R. A study of mirvetuximab soravtansine in platinum-resistant, advanced high-grade epithelial ovarian, primary peritoneal, or fallopian tube cancers with high folate receptor-alpha Expression SORAYA).https://clinicaltrials.gov/ct2/show/NCT04296890?cond=NCT04296890&draw=2&rank=1. Accessed 10 Mar 2023.

  93. Song AB, Al-Samkari H. An evaluation of mitapivat for the treatment of hemolytic anemia in adults with pyruvate kinase deficiency. Expert Rev Hematol. 2022;15:875–85. https://doi.org/10.1080/17474086.2022.2125865.

    Article  CAS  PubMed  Google Scholar 

  94. Roche La-H A Safety, efficacy and pharmacokinetic study of BTCT4465A (mosunetuzumab) as a single agent and combined with atezolizumab in non-Hodgkin's lymphoma (NHL) and chronic lymphocytic leukemia (CLL). https://clinicaltrials.gov/ct2/show/NCT02500407?cond=NCT02500407&draw=2&rank=1. Accessed 15 Mar 2023.

  95. Clinical Sciences & Operations, Sanofi; efficacy, safety, pharmacodynamic, and pharmacokinetics study of olipudase alfa in patients with acid phingomyelinase deficiency (ASCEND). https://clinicaltrials.gov/ct2/show/NCT02004691?cond=NCT02004691&draw=2&rank=1. Accessed 25 Mar 2023.

  96. Jayaraman R, Pasha MK, Williams A, Cee Goh K, Ethirajulu K. Metabolism and disposition of pacritinib (SB1518), an orally active Janus kinase 2 inhibitor in preclinical species and humans. Drug Metab Lett. 2015;9:28–47.

    Article  CAS  PubMed  Google Scholar 

  97. Yeramian P, Paganoni S. AMX0035 in patients with amyotrophic lateral sclerosis (ALS) (Centaur). https://clinicaltrials.gov/ct2/results?cond=&term=NCT03127514&cntry=&state=&city=&dist=. Accessed 10 Apr 2023.

  98. Bachelez H, Choon SE, Marrakchi S, Burden AD, Tsai TF, Morita A, et al. Trial of spesolimab for generalized pustular psoriasis. N Engl J Med. 2021;385:2431–40. https://doi.org/10.1056/NEJMoa2111563.

    Article  CAS  PubMed  Google Scholar 

  99. Dose Escalation Study of Teclistamab, a humanized BCMA*CD3 bispecific antibody, in participants with relapsed or refractory multiple myeloma. (MajesTEC-1). https://clinicaltrials.gov/ct2/show/NCT03145181?cond=NCT03145181&draw=2&rank=1. Accessed 17 Apr 2023.

  100. Wong F, Pappas SC, Reddy KR, Vargas H, Curry MP, Sanyal A, et al. Terlipressin use and respiratory failure in patients with hepatorenal syndrome type 1 and severe acute-on-chronic liver failure. Aliment Pharmacol Ther. 2022;56:1284–93. https://doi.org/10.1111/apt.17195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Even C, Goldberg SB, Siu LL, Planchard D, Hwang M, Chen CK, et al. 162P Population pharmacokinetic modeling of tremelimumab in patients (pts) with advanced solid tumors. Ann Oncol. 2021;32:S1451–2. https://doi.org/10.1016/j.annonc.2021.10.181.

    Article  Google Scholar 

  102. Habtemariam BA, Karsten V, Attarwala H, Goel V, Melch M, Clausen VA, et al. Single-dose pharmacokinetics and pharmacodynamics of transthyretin targeting N-acetylgalactosamine–small interfering ribonucleic acid conjugate, vutrisiran, in healthy subjects. Clin Pharmacol Ther. 2021;109:372–82. https://doi.org/10.1002/cpt.1974.

    Article  CAS  PubMed  Google Scholar 

  103. Sabari JK, Velcheti V, Shimizu K, Strickland MR, Heist RS, Singh M, et al. Activity of adagrasib (MRTX849) in brain metastases: preclinical models and clinical data from patients with KRASG12C-mutant non–small cell lung cancer. Clin Cancer Res. 2022;28:3318–28. https://doi.org/10.1158/1078-0432.CCR-22-0383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Benhadji K. A study of TAS-120 in patients with advanced solid. https://clinicaltrials.gov/ct2/results?cond=NCT02052778&term=&cntry=&state=&city=&dist=. Accessed 5 May 2023.

  105. Xu JZ, Conrey A, Frey I, Gwaabe E, Menapace LA, Tumburu L, et al. A phase 1 dose escalation study of the pyruvate kinase activator mitapivat (AG-348) in sickle cell disease. Blood. 2022;140:2053–62. https://doi.org/10.1182/blood.2022015403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Berentsen S, Barcellini W, D’Sa S, Jilma B. Sutimlimab for treatment of cold agglutinin disease: why, how and for whom? Immunotherapy. 2022;14:1191–204. https://doi.org/10.2217/imt-2022-0085.

    Article  CAS  PubMed  Google Scholar 

  107. Chen LN, Carvajal RD. Tebentafusp for the treatment of HLA-A 02: 01–positive adult patients with unresectable or metastatic uveal melanoma. Expert Rev Anticancer Ther. 2022;22:1017–27. https://doi.org/10.1080/14737140.2022.2124971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Janssen Research & Development; A study of teclistamab in participants with relapsed or refractory multiple myeloma (MajesTEC-1). https://clinicaltrials.gov/ct2/show/NCT04557098?cond=NCT04557098&draw=2&rank=1. Accessed 10 June 2023.

  109. Sanyal AJ, Boyer TD, Frederick RT, Wong F, Rossaro L, Araya V, Escalante S, et al. Reversal of hepatorenal syndrome type 1 with terlipressin plus albumin vs. placebo plus albumin in a pooled analysis of the OT-0401 and REVERSE randomised clinical studies. Aliment Pharmacol Ther. 2017;45:1390–402. https://doi.org/10.1111/apt.14052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Panipat Institute of Engineering and Technology, Panipat, India, for providing technical support.

Author information

Authors and Affiliations

Authors

Contributions

Dr. PKG and Dr. KS equally contributed to the manuscript’s preparation and review.

Corresponding author

Correspondence to Parveen Kumar Goyal.

Ethics declarations

Conflict of Interest

Parveen Kumar Goyal and Kavita Sangwan declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Data Availability

Not applicable.

Code Availability

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goyal, P.K., Sangwan, K. Pharmacological Profile of FDA-Approved Orphan Drugs in the Year 2022. Curr. Pharmacol. Rep. 10, 96–120 (2024). https://doi.org/10.1007/s40495-024-00351-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40495-024-00351-5

Keywords

Navigation