Skip to main content

Advertisement

Log in

Prostate Cancer, Oxidative Stress, and Antioxidant Phytochemicals: A Brief Review

  • Published:
Current Pharmacology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This paper aimed to examine the biological mechanism of oxidative stress in prostate cancer (PCa) progression and review the potential of antioxidant phytochemicals as chemoprevention or chemotherapy for PCa.

Recent Findings

There is growing concern about the health benefits of eating fruits and vegetables, especially for preventing and treating chronic diseases, such as PCa. Epidemiological studies and clinical trials have shown that these health benefits are closely related to antioxidant phytochemicals. Experimental and clinical evidence showed that oxidative stress is one of the important factors in the pathogenesis of PCa. The balance between oxidative and antioxidant components and the regulatory mechanisms appear to play an important role in the development of malignant states of the prostate. Antioxidant phytochemicals have the potential for cancer chemoprevention and chemotherapy. Moreover, lower or higher concentrations of antioxidant phytochemicals have different effects, possibly due to different intracellular reactive oxygen species (ROS) leading to different cellular stress responses. At low concentrations, antioxidant phytochemicals appear to inhibit ROS formation, while at high concentrations, they selectively kill cells, possibly by promoting ROS production and mitochondrial dysfunction.

Summary

The antioxidant phytochemicals show strong potential for chemoprevention and chemotherapy in human PCa, possibly through the regulation of ROS. Targeting oxidative stress with antioxidant phytochemicals during the development of PCa will provide important approaches for designing single or combined cancer treatment strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Wang F, Wang C, Xia H, et al. Burden of Prostate Cancer in China, 1990–2019: Findings From the 2019 Global Burden of Disease Study. Front Endocrinol (Lausanne). 2022;13:853623. Published 2022 May 25. https://doi.org/10.3389/fendo.2022.853623.

  2. Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73(1):17–48. https://doi.org/10.3322/caac.21763.

    Article  PubMed  Google Scholar 

  3. Tsodikov A, Gulati R, Heijnsdijk EAM, et al. Reconciling the Effects of Screening on Prostate Cancer Mortality in the ERSPC and PLCO Trials. Ann Intern Med. 2017;167(7):449–55. https://doi.org/10.7326/M16-2586.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Cai M, Song XL, Li XA, et al. Current therapy and drug resistance in metastatic castration-resistant prostate cancer. Drug Resist Updat. 2023;68: 100962. https://doi.org/10.1016/j.drup.2023.100962.

    Article  PubMed  CAS  Google Scholar 

  5. Litwin MS, Tan HJ. The Diagnosis and Treatment of Prostate Cancer: A Review. JAMA. 2017;317(24):2532–42. https://doi.org/10.1001/jama.2017.7248.

    Article  PubMed  Google Scholar 

  6. Fujita K, Nonomura N. Role of Androgen Receptor in Prostate Cancer: A Review. World J Men’s Health. 2019;37(3):288–95.

    Article  Google Scholar 

  7. Pejčić T, Zeković M, Bumbaširević U, et al. The Role of Isoflavones in the Prevention of Breast Cancer and Prostate Cancer. Antioxidants (Basel). 2023;12(2):368. Published 2023 Feb 3. https://doi.org/10.3390/antiox12020368.

  8. Gupta N, Patel HD, Taylor J, Borin JF, Jacobsohn K, Kenfield SA, Eggener SE, Price C, Davuluri M, Byrne N, Bivalacqua TJ, Loeb S. Systematic review of the impact of a plant-based diet on prostate cancer incidence and outcomes. Prostate Cancer Prostatic Dis. 2022;25(3):444–52.

    Article  PubMed  Google Scholar 

  9. Loeb S, Fu BC, Bauer SR, et al. Association of plant-based diet index with prostate cancer risk. Am J Clin Nutr. 2022;115(3):662–70. https://doi.org/10.1093/ajcn/nqab365.

    Article  PubMed  Google Scholar 

  10. Mann J. Natural products in cancer chemotherapy: past, present and future. Nat Rev Cancer. 2002;2(2):143–8. https://doi.org/10.1038/nrc723.

    Article  PubMed  CAS  Google Scholar 

  11. Zhu Y, Ouyang Z, Du H, Wang M, Wang J, Sun H, Kong L, Xu Q, Ma H, Sun Y. New opportunities and challenges of natural products research: When target identification meets single-cell multiomics. Acta Pharm Sin B. 2022;12(11):4011–39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Newman DJ, Cragg GM. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J Nat Prod. 2020;83(3):770–803. https://doi.org/10.1021/acs.jnatprod.9b01285.

    Article  PubMed  CAS  Google Scholar 

  13. Leitzmann C. Characteristics and Health Benefits of Phytochemicals. Forsch Komplementmed. 2016;23(2):69–74. https://doi.org/10.1159/000444063.

    Article  PubMed  Google Scholar 

  14. Asma ST, Acaroz U, Imre K, et al. Natural Products/Bioactive Compounds as a Source of Anticancer Drugs. Cancers (Basel). 2022;14(24):6203. Published 2022 Dec 15. https://doi.org/10.3390/cancers14246203.

  15. Mottaghipisheh J, Doustimotlagh AH, Irajie C, Tanideh N, Barzegar A, Iraji A. The Promising Therapeutic and Preventive Properties of Anthocyanidins/Anthocyanins on Prostate Cancer. Cells. 2022;11(7):1070. Published 2022 Mar 22. https://doi.org/10.3390/cells11071070

  16. Singla RK, Sharma P, Dubey AK, et al. Natural Product-Based Studies for the Management of Castration-Resistant Prostate Cancer: Computational to Clinical Studies. Front Pharmacol. 2021;12:732266. Published 2021 Oct 19. https://doi.org/10.3389/fphar.2021.732266.

  17. Fontana F, Raimondi M, Marzagalli M, Di Domizio A, Limonta P. Natural Compounds in Prostate Cancer Prevention and Treatment: Mechanisms of Action and Molecular Targets. Cells. 2020;9(2):460. Published 2020 Feb 18. https://doi.org/10.3390/cells9020460.

  18. Noh S, Choi E, Hwang CH, Jung JH, Kim SH, Kim B. Dietary Compounds for Targeting Prostate Cancer. Nutrients. 2019;11(10):2401. Published 2019 Oct 8. https://doi.org/10.3390/nu11102401.

  19. Pathak SK, Sharma RA, Steward WP, Mellon JK, Griffiths TR, Gescher AJ. Oxidative stress and cyclooxygenase activity in prostate carcinogenesis: targets for chemopreventive strategies. Eur J Cancer. 2005;41(1):61–70. https://doi.org/10.1016/j.ejca.2004.09.028.

    Article  PubMed  CAS  Google Scholar 

  20. Khandrika L, Kumar B, Koul S, Maroni P, Koul HK. Oxidative stress in prostate cancer. Cancer Lett. 2009;282(2):125–36. https://doi.org/10.1016/j.canlet.2008.12.011.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Betteridge DJ. What is oxidative stress? Metabolism. 2000;49(2 Suppl 1):3–8. https://doi.org/10.1016/s0026-0495(00)80077-3.

    Article  PubMed  CAS  Google Scholar 

  22. Checa J, Aran JM. Reactive Oxygen Species: Drivers of Physiological and Pathological Processes. J Inflamm Res. 2020;13:1057–1073. Published 2020 Dec 2. doi:https://doi.org/10.2147/JIR.S275595.

  23. Tan BL, Norhaizan ME. Oxidative Stress, Diet and Prostate Cancer. World J Mens Health. 2021;39(2):195–207. https://doi.org/10.5534/wjmh.200014.

    Article  PubMed  Google Scholar 

  24. Kumar B, Koul S, Khandrika L, Meacham RB, Koul HK. Oxidative stress is inherent in prostate cancer cells and is required for aggressive phenotype. Cancer Res. 2008;68(6):1777–85. https://doi.org/10.1158/0008-5472.CAN-07-5259.

    Article  PubMed  CAS  Google Scholar 

  25. Ray PD, Huang BW, Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal. 2012;24(5):981–90. https://doi.org/10.1016/j.cellsig.2012.01.008.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Liu W, Wang B, Zhou M, et al. Redox Dysregulation in the Tumor Microenvironment Contributes to Cancer Metastasis [published online ahead of print, 2023 May 8]. Antioxid Redox Signal. 2023. https://doi.org/10.1089/ars.2023.0272.

  27. Shi Y, Han JJ, Tennakoon JB, Mehta FF, Merchant FA, Burns AR, Howe MK, McDonnell DP, Frigo DE. Androgens promote prostate cancer cell growth through induction of autophagy. Mol Endocrinol (Baltimore, Md.) 2013;27(2):280–95.

  28. Veeramani S, Chou YW, Lin FC, et al. Reactive oxygen species induced by p66Shc longevity protein mediate nongenomic androgen action via tyrosine phosphorylation signaling to enhance tumorigenicity of prostate cancer cells. Free Radic Biol Med. 2012;53(1):95–108. https://doi.org/10.1016/j.freeradbiomed.2012.03.024.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Miller DR, Ingersoll MA, Chou YW, Kosmacek EA, Oberley-Deegan RE, Lin MF. Dynamics of antioxidant heme oxygenase-1 and pro-oxidant p66Shc in promoting advanced prostate cancer progression. Free Radic Biol Med. 2022;193(Pt 1):274–91. https://doi.org/10.1016/j.freeradbiomed.2022.10.269.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Nelson VK, Pullaiah CP, Saleem Ts M, et al. Natural Products as the Modulators of Oxidative Stress: An Herbal Approach in the Management of Prostate Cancer. Adv Exp Med Biol. 2022;1391:161–79. https://doi.org/10.1007/978-3-031-12966-7_10.

    Article  PubMed  CAS  Google Scholar 

  31. Brawley OW, Barnes ST. Potential agents for prostate cancer chemoprevention. Epidemiol Rev. 2001;23(1):168–72. https://doi.org/10.1093/oxfordjournals.epirev.a000785.

    Article  PubMed  CAS  Google Scholar 

  32. Prieto JM, Hanafi MMM. Advances in Molecular Regulation of Prostate Cancer Cells by Top Natural Products of Malaysia. Curr Issues Mol Biol. 2023;45(2):1536–1567. Published 2023 Feb 9. https://doi.org/10.3390/cimb45020099.

  33. Kelloff GJ, Lieberman R, Steele VE, et al. Chemoprevention of prostate cancer: concepts and strategies. Eur Urol. 1999;35(5–6):342–50. https://doi.org/10.1159/000019906.

    Article  PubMed  CAS  Google Scholar 

  34. Sandhu GS, Nepple KG, Tanagho YS, Andriole GL. Prostate cancer chemoprevention. Semin Oncol. 2013;40(3):276–85. https://doi.org/10.1053/j.seminoncol.2013.04.003.

    Article  PubMed  CAS  Google Scholar 

  35. Lowe JF, Frazee LA. Update on prostate cancer chemoprevention. Pharmacotherapy. 2006;26(3):353–9. https://doi.org/10.1592/phco.26.3.353.

    Article  PubMed  CAS  Google Scholar 

  36. Zhang YJ, Gan RY, Li S, et al. Antioxidant Phytochemicals for the Prevention and Treatment of Chronic Diseases. Molecules. 2015;20(12):21138–21156. Published 2015 Nov 27. https://doi.org/10.3390/molecules201219753.

  37. Chang SK, Alasalvar C, Shahidi F. Superfruits: Phytochemicals, antioxidant efficacies, and health effects - A comprehensive review. Crit Rev Food Sci Nutr. 2019;59(10):1580–604.

    Article  PubMed  CAS  Google Scholar 

  38. Boyer J, Liu RH. Apple phytochemicals and their health benefits. Nutr J. 2004;3:5. Published 2004 May 12. https://doi.org/10.1186/1475-2891-3-5.

  39. Forni C, Facchiano F, Bartoli M, et al. Beneficial Role of Phytochemicals on Oxidative Stress and Age-Related Diseases. Biomed Res Int. 2019;2019:8748253. Published 2019 Apr 7. https://doi.org/10.1155/2019/8748253.

  40. Wang Y, Cui R, Xiao Y, Fang J, Xu Q. Effect of Carotene and Lycopene on the Risk of Prostate Cancer: A Systematic Review and Dose-Response Meta-Analysis of Observational Studies [published correction appears in PLoS One. 2015;10(10):e0140415]. PLoS One. 2015;10(9):e0137427. Published 2015 Sep 15. https://doi.org/10.1371/journal.pone.0137427.

  41. Liu S, Chen J, Wang Y, Xu Y. Effect of dietary antioxidants on the risk of prostate cancer. Systematic review and network meta-analysis [published online ahead of print, 2023 May 3]. Efectos de los antioxidantes dietéticos en el riesgo de cáncer de próstata - revisión sistemática y metaanálisis en línea [published online ahead of print, 2023 May 3]. Nutr Hosp. 2023. https://doi.org/10.20960/nh.04558.

  42. Ghanavati M, Clark CCT, Bahrami A, et al. Dietary intake of polyphenols and total antioxidant capacity and risk of prostate cancer: A case-control study in Iranian men. Eur J Cancer Care (Engl). 2021;30(2): e13364. https://doi.org/10.1111/ecc.13364.

    Article  PubMed  Google Scholar 

  43. Ge S, Zha L, Sobue T, et al. Dietary Consumption of Antioxidant Vitamins in Relation to Prostate Cancer Risk in Japanese Men: The Japan Public Health Center-Based Prospective Study [published online ahead of print, 2023 May 6]. J Epidemiol. 2023. https://doi.org/10.2188/jea.JE20220235.

  44. Loh WQ, Youn J, Seow WJ. Vitamin E Intake and Risk of Prostate Cancer: A Meta-Analysis. Nutrients. 2022;15(1):14. Published 2022 Dec 21. https://doi.org/10.3390/nu15010014.

  45. Choi YH, Han DH, Kim SW, et al. A randomized, double-blind, placebo-controlled trial to evaluate the role of curcumin in prostate cancer patients with intermittent androgen deprivation. Prostate. 2019;79(6):614–21. https://doi.org/10.1002/pros.23766.

    Article  PubMed  CAS  Google Scholar 

  46. Heinonen OP, Albanes D, Virtamo J, et al. Prostate cancer and supplementation with alpha-tocopherol and beta-carotene: incidence and mortality in a controlled trial. J Natl Cancer Inst. 1998;90(6):440–6. https://doi.org/10.1093/jnci/90.6.440.

    Article  PubMed  CAS  Google Scholar 

  47. Geybels MS, Verhage BA, Arts IC, van Schooten FJ, Goldbohm RA, van den Brandt PA. Dietary flavonoid intake, black tea consumption, and risk of overall and advanced stage prostate cancer. Am J Epidemiol. 2013;177(12):1388–98. https://doi.org/10.1093/aje/kws419.

    Article  PubMed  Google Scholar 

  48. Wu WS. The signaling mechanism of ROS in tumor progression. Cancer Metastasis Rev. 2006;25(4):695–705. https://doi.org/10.1007/s10555-006-9037-8.

    Article  PubMed  CAS  Google Scholar 

  49. Jiang H, Zuo J, Li B, et al. Drug-induced oxidative stress in cancer treatments: Angel or devil? Redox Biol. 2023;63: 102754. https://doi.org/10.1016/j.redox.2023.102754.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Pelicano H, Carney D, Huang P. ROS stress in cancer cells and therapeutic implications. Drug Resist Updat. 2004;7(2):97–110. https://doi.org/10.1016/j.drup.2004.01.004.

    Article  PubMed  CAS  Google Scholar 

  51. Xu Q, Fu Q, Li Z, et al. The flavonoid procyanidin C1 has senotherapeutic activity and increases lifespan in mice. Nat Metab. 2021;3(12):1706–26. https://doi.org/10.1038/s42255-021-00491-8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Tong R, Wu X, Liu Y, et al. Curcumin-Induced DNA Demethylation in Human Gastric Cancer Cells Is Mediated by the DNA-Damage Response Pathway. Oxid Med Cell Longev. 2020;2020:2543504. Published 2020 Jun 17. https://doi.org/10.1155/2020/2543504.

  53. Chung LY, Cheung TC, Kong SK, et al. Induction of apoptosis by green tea catechins in human prostate cancer DU145 cells. Life Sci. 2001;68(10):1207–14. https://doi.org/10.1016/s0024-3205(00)01020-1.

    Article  PubMed  CAS  Google Scholar 

  54. Jeong SA, Yang C, Song J, Song G, Jeong W, Lim W. Hesperidin Suppresses the Proliferation of Prostate Cancer Cells by Inducing Oxidative Stress and Disrupting Ca2+ Homeostasis. Antioxidants (Basel). 2022;11(9):1633. Published 2022 Aug 23. https://doi.org/10.3390/antiox11091633.

  55. Ward AB, Mir H, Kapur N, Gales DN, Carriere PP, Singh S. Quercetin inhibits prostate cancer by attenuating cell survival and inhibiting anti-apoptotic pathways. World J Surg Oncol. 2018;16(1):108. Published 2018 Jun 14. https://doi.org/10.1186/s12957-018-1400-z.

  56. Sorrenti V, Vanella L, Acquaviva R, Cardile V, Giofrè S, Di Giacomo C. Cyanidin induces apoptosis and differentiation in prostate cancer cells. Int J Oncol. 2015;47(4):1303–10. https://doi.org/10.3892/ijo.2015.3130.

    Article  PubMed  CAS  Google Scholar 

  57. Rodriguez-Garcia A, Hevia D, Mayo JC, et al. Thioredoxin 1 modulates apoptosis induced by bioactive compounds in prostate cancer cells. Redox Biol. 2017;12:634–47. https://doi.org/10.1016/j.redox.2017.03.025.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Kornel A, Nadile M, Retsidou MI, et al. Ursolic Acid against Prostate and Urogenital Cancers: A Review of In Vitro and In Vivo Studies. Int J Mol Sci. 2023;24(8):7414. Published 2023 Apr 18. https://doi.org/10.3390/ijms24087414.

  59. Li S, Wu R, Wang L, et al. Triterpenoid ursolic acid drives metabolic rewiring and epigenetic reprogramming in treatment/prevention of human prostate cancer. Mol Carcinog. 2022;61(1):111–21. https://doi.org/10.1002/mc.23365.

    Article  PubMed  CAS  Google Scholar 

  60. Juge N, Mithen RF, Traka M. Molecular basis for chemoprevention by sulforaphane: a comprehensive review. Cell Mol Life Sci: CMLS. 2007;64(9):1105–27.

    Article  PubMed  CAS  Google Scholar 

  61. Clarke JD, Dashwood RH, Ho E. Multi-targeted prevention of cancer by sulforaphane. Cancer Lett. 2008;269(2):291–304.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Traka MH, Melchini A, Coode-Bate J, et al. Transcriptional changes in prostate of men on active surveillance after a 12-mo glucoraphanin-rich broccoli intervention-results from the Effect of Sulforaphane on prostate CAncer PrEvention (ESCAPE) randomized controlled trial. Am J Clin Nutr. 2019;109(4):1133–44. https://doi.org/10.1093/ajcn/nqz012.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Mordecai J, Ullah S, Ahmad I. Sulforaphane and Its Protective Role in Prostate Cancer: A Mechanistic Approach. Int J Mol Sci. 2023;24(8):6979. Published 2023 Apr 10. https://doi.org/10.3390/ijms24086979.

Download references

Acknowledgements

The authors thank all members of Dr. Wenji Li's laboratory for their strong support.

Funding

This work was supported by the National Natural Science Foundation of China (81973518), Talent’s start-up fund from Yangzhou University (137011474, 137012826).

Author information

Authors and Affiliations

Authors

Contributions

WL designed and allocated the review tasks, revised and submited the manuscript. SL wrote the majority of the manuscript. TC,SC,FL,RH wrote and revised the manuscript.

Corresponding author

Correspondence to Wenji Li.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Cai, T., Cui, S. et al. Prostate Cancer, Oxidative Stress, and Antioxidant Phytochemicals: A Brief Review. Curr. Pharmacol. Rep. 9, 391–396 (2023). https://doi.org/10.1007/s40495-023-00344-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40495-023-00344-w

Keywords

Navigation