Skip to main content

Advertisement

Log in

Drug Discovery from Natural Sources

  • Natural Products: From Chemistry to Pharmacology (Z-Y Su, Section Editor)
  • Published:
Current Pharmacology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

A discussion of the role of natural products as drugs and/or following partial or complete chemical synthesis, have been approved human use drugs in at least one country, or alternatively is/are the source of inspiration for further investigation.

Recent Findings

The blister beetle toxin pederin and the multiple structurally similar natural products from marine sources demonstrated that this base structure is microbial in origin and therefore may be manipulated. Subsequent investigations led to significant discoveries as to the actual source(s) of many nominal bioactive sponge metabolites. The microbial origin of the dolastatins and their derivatives as warheads in ADCs with at least four entities being approved and may be more in the clinical pipeline. The total syntheses of vancomycins have now produced agents that have overcome the microbial resistance phenotypes. Possibilities from chemical modifications of the anthracyclines may lead to novel ADC-like constructs. The 20-year synthetic chemistry program to generate bioactive modifications of the halichondrins led to the totally synthetic antitumor agent (eribulin) and a novel fully synthetic halichondrin B analog plus an ADC based on eribulin. Both are now in phase I clinical trials in Japan. I discussed artemisinin and its current derivatives as antimalarial, antiviral, and potential antitumor agents.

Summary

Recognizing that most bioactive natural product structures from marine sources are predominately microbial in origin (even if not yet fermentable), when coupled to excellent synthetic chemistry applications, has opened up drug discovery and subsequent development in previously unexpected ways. These advances have led to the application of genomics particularly utilizing discoveries in microbial sources, with the proven ability to fully characterize the genome (from a single cell) of as yet unculturable microbes and to utilize the skill sets of synthetic chemists to modify these bioactive precursors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Pavan M, Bo G. Ricerche sulla differenziabilita, natura e attivita del principio tossico di Paederus fuscipes Curt. (Col. Staph.). Mem Soc Ent It. 1952;31:67–82.

    Google Scholar 

  2. Cardani C, Ghiringhelli D, Yondelli R, Quilioo A. The structure of pederin. Tet Lett. 1965;6:2537–45.

    Article  Google Scholar 

  3. Matsumoto T, Yanagiya M, Maeno S, Yasuda S. A revised structure of pederin. Tet Lett. 1968;9:6297–300.

    Article  Google Scholar 

  4. Kellner RLL. What is the basis of pederin polymorphism in Paederus riparius rove beetles? The endosymbiotic hypothesis. Entomol Exp Appl. 1999;93:41–9.

    Article  CAS  Google Scholar 

  5. Kellner RLL. Suppression of pederin biosynthesis through antibiotic elimination of endosymbionts in Paederus sabaeus. J Insect Physiol. 2001;47(4–5):475–83.

    Article  CAS  PubMed  Google Scholar 

  6. Kellner RLL. Molecular identification of an endosymbiotic bacterium associated with pederin biosynthesis in Paederus sabaeus (Coleoptera: Staphylinidae). Insect Biochem Mol Biol. 2002;32(4):389–95.

    Article  CAS  PubMed  Google Scholar 

  7. Kellner RLL. Interspecific transmission of Paederus endosymbionts: relationship to the genetic divergence among the bacteria associated with pederin biosynthesis. Chemoecology. 2002;12:133–8.

    Article  CAS  Google Scholar 

  8. Cressey BD, Paniz-Mondolfi AE, Rodríguez-Morales AJ, Ayala JM, De Ascenção Da Silva AA. Dermatitis linearis: vesicating dermatosis caused by Paederus species (Coleoptera: Staphylinidae). Case series and review. Wilderness Environ Med. 2013;24:124–31

  9. Jewett JC, Rawal VH. Total synthesis of pederin. Angew Chem Int Ed. 2007;46:6502–4.

    Article  CAS  Google Scholar 

  10. Wu C-Y, Feng Y, Cardenas ER, Williams N, Floreancig PE, De Brabander JK, et al. Studies toward the unique pederin family member psymberin: structure−activity relationships, biochemical studies, and genetics identify the mode-of-action of Psymberin. J Am Chem Soc. 2012;134:18998–9003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Perry NB, Blunt JW, Munro MHG, Pannell LK. Mycalamide-A, an antiviral compound from a New Zealand sponge of the genus Mycale. J Am Chem Soc. 1988;110(14):4850–1.

    Article  CAS  Google Scholar 

  12. Perry NB, Blunt JW, Munro MHG, Thompson AM. Antiviral and antitumor agents from a New Zealand sponge, Mycale sp. 2. Structures and solution conformations of mycalamides A and B. J OrgChem. 1990;55(1):223–7.

    Article  CAS  Google Scholar 

  13. Sakemi S, Ichiba T, Kohmoto S, Saucy G, Higa T. Isolation and structure elucidation of onnamide A, a new bioactive metabolite of a marine sponge, Theonella sp. J Am Chem Soc. 1988;110:4851–3. https://doi.org/10.1021/ja00222a068.

    Article  CAS  Google Scholar 

  14. Burres NS, Clement JJ. Antitumor activity and mechanism of action of the novel marine natural products mycalamide-A and -B and onnamide. Can Res. 1989;49:2935–40.

    CAS  Google Scholar 

  15. Piel J. A polyketide synthase-peptide synthetase gene cluster from an uncultured bacterial symbiont of Paederus beetles. Proc Natl Acad Sci USA. 2002;99:14002–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Piel J, Hofer I, Hui D. Evidence for a symbiosis island involved in horizontal acquisition of pederin biosynthetic capabilities by the bacterial symbiont of Paederus fuscipes beetles. J Bacteriol. 2004;186(5):1280–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Piel J, Hui D, Wen G, Butzke D, Platzer M, Fusetani N, et al. Antitumor polyketide biosynthesis by an uncultivated bacterial symbiont of the marine sponge Theonella swinhoei. Proc Nat Acad Sci USA. 2004;101:16222–7. https://doi.org/10.1073/pnas.0405976101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Piel J, Butzke D, Fusetani N, Hui D, Platzer M, Wen G, et al. Exploring the chemistry of uncultivated bacterial symbionts: antitumor polyketides of the pederin family. J Nat Prod. 2005;68:472–9. https://doi.org/10.1021/np049612d.

    Article  CAS  PubMed  Google Scholar 

  19. Smith AB III, Jurica JA, Walsh SP. Total synthesis of (+)-psymberin (irciniastatin A): catalytic reagent control as the strategic cornerstone. Org Lett. 2008;10:5625–8. https://doi.org/10.1021/ol802466t.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bielitza M, Pietruszka J. The psymberin story—biological properties and approaches towards total and analogue syntheses. Angew Chem Int Ed. 2013;52:10960–85. https://doi.org/10.1002/anie.201301259.

    Article  CAS  Google Scholar 

  21. Piel J. Approaches to capturing and designing biologically active small molecules produced by uncultured microbes. Annu Rev Microbiol. 2011;65:431–53.

    Article  CAS  PubMed  Google Scholar 

  22. Hentschel U, Piel J, Degnan SM, Taylor MW. Genomic insights into the marine sponge microbiome. Nat Rev Microbiol. 2012;10:641–54.

    Article  CAS  PubMed  Google Scholar 

  23. Wilson MC, Piel J. Metagenomic approaches for exploiting uncultivated bacteria as a resource for novel biosynthetic enzymology. Chem Biol. 2013;20:636–47.

    Article  CAS  PubMed  Google Scholar 

  24. Wilson MC, Mori T, Ruckert C, Uria AR, Helf MJ, Takada K, et al. An environmental bacterial taxon with a large and distinct metabolic repertoire. Nature. 2014;506:58–62.

    Article  CAS  PubMed  Google Scholar 

  25. Wakimoto T, Egami Y, Nakashima Y, Wakimoto Y, Mori T, Awakawa T, et al. Calyculin biogenesis from a pyrophosphate protoxin produced by a sponge symbiont. Nature Chem Biol. 2014;10:648–55.

    Article  CAS  Google Scholar 

  26. Mori T, Cahn JKB, Wilson MC, Meoded RA, Wiebach V, Martinez AFC, et al. Single-bacterial genomics validates rich and varied specialized metabolism of uncultivated Entotheonella sponge symbionts. Proc Nat Acad Sci USA. 2018;115:1718–23. https://doi.org/10.1073/pnas.1715496115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rust M, Helfrich EJN, Freeman MF, Nanudorn P, Field CM, Rückert C, et al. A multiproducer microbiome generates chemical diversity in the marine sponge Mycale hentscheli. Proc Nat Acad Sci USA. 2020;117:9508–18. https://doi.org/10.1073/pnas.1919245117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nakabachi A, Ueoka R, Oshima K, Teta R, Mangoni A, Gurgui M, et al. Defensive bacteriome symbiont with a drastically reduced genome. Curr Biol. 2013;23:1478–84. https://doi.org/10.1016/j.cub.2013.06.027.

    Article  CAS  PubMed  Google Scholar 

  29. Schofield MM, Jain S, Porat D, Dick GJ, Sherman DH. Identification and analysis of the bacterial endosymbiont specialized for production of the chemotherapeutic natural product ET-743. Environ Microbiol. 2015;17:3964–75. https://doi.org/10.1111/1462-2920.12908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kust A, Mareš J, Jokela J, Urajová P, Hájek J, Saurav K, et al. Discovery of a pederin family compound in a nonsymbiotic bloom-forming cyanobacterium. ACS Chem Biol. 2018;13:1123–9. https://doi.org/10.1021/acschembio.7b01048.

    Article  CAS  PubMed  Google Scholar 

  31. Schleissner C, Cañedo LM, Rodríguez P, Crespo C, Zuń̃iga P, Peñalver A, et al. Bacterial production of a pederin analogue by a free-living marine alphaproteobacterium. J Nat Prod. 2017;80:2170−3. https://doi.org/10.1021/acs.jnatprod.7b00408.

  32. Kacar D, Schleissner C, Cañedo LM, Rodríguez P, de la Calle F, Galán B, et al. Genome of Labrenzia sp. PHM005 reveals a complete and active trans-AT PKS gene cluster for the biosynthesis of Labrenzin. Front Microbiol. 2019;10:2561. https://doi.org/10.3389/fmicb.2019.02561.

  33. Kacar D, Schleissner C, Canedo LM, Rodríguez P, de la Calle F, Cuevas C, et al. In vivo production of pederin by labrenzin pathway expansion. Metabol Eng Comm. 2022;14:e00198. https://doi.org/10.1016/j.mec.2022.e00198.

  34. Pettit GR, Kamano Y, Herald CL, Tuinman AA, Boettner FE, Kizu H, et al. The isolation and structure of a remarkable marine animal antineoplastic constituent: Dolastatin 10. J Am Chem Soc. 1987;109:6883–5.

    Article  CAS  Google Scholar 

  35. Pettit GR, Singh SB, Hogan F, Lloyd-Williams P, Herald DL, Burkett DD, et al. Antineoplastic agents. Part 189. The absolute configuration and synthesis of natural (-)-dolastatin 10. J Amer Chem Soc. 1989;111:5463–5.

  36. Pettit GR, Singh SB. Synthesis of Dolastatin 10. USP 4978744 1990.

  37. Pettit GR. The dolastatins. In: Herz W, Kirby GW, Moore RE, Steglich W, Tamm C, editors. Progress in the Chemistry of Organic Natural Products. New York: Springer; 1997. p. 1–79.

    Google Scholar 

  38. Harrigan GG, Luesch H, Yoshida WY, Moore RE, Nagle DE, Paul VJ, et al. Symplostatin 1: a dolastatin 10 analogue from the marine cyanobacterium Symploca hydnoides. J Nat Prod. 1998;61:1075–7.

    Article  CAS  PubMed  Google Scholar 

  39. Luesch H, Moore RE, Paul VJ, Mooberry SL, Corbett TH. Isolation of dolastatin 10 from the marine cyanobacterium Symploca Sp. VP642 and total stereochemistry and biological evaluation of its analogue symplostatin 1. J Nat Prod. 2001;64:907–10.

    Article  CAS  PubMed  Google Scholar 

  40. Salvador-Reyes LA, Engene N, Paul VJ, Luesch H. Targeted natural products discovery from marine cyanobacteria using combined phylogenetic and mass spectrometric evaluation. J Nat Prod. 2015;78:486–92. https://doi.org/10.1021/np500931q.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Engene N, Tronholm A, Salvador-Reyes LA, Luesch H, Paul VJ. Caldora penicillata gen. nov., comb. nov. (cyanobacteria), a pantropical marine species with biomedical relevance. J Phycol. 2015;51:670–81. https://doi.org/10.1111/jpy.12309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Doronina S, Senter PD, Toki BE. Pentapeptide compounds and uses related thereto. In: WIPO, editor.2002.

  43. Doronina SO, Toki BE, Torgov MY, Mendelsohn BA, Cerveny CG, Chace DF, et al. Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nature Biotech. 2003;21:778–84.

    Article  CAS  Google Scholar 

  44. Fu Z, Li S, Han S, Shi C, Zhang Y. Antibody drug conjugate: the “biological missile” for targeted cancer therapy. Sig Transduct Target Ther. 2022;7:93. https://doi.org/10.1038/s41392-022-00947-7.

    Article  CAS  Google Scholar 

  45. Singh SB. Discovery and development of dolastatin 10-derived antibody drug conjugate anticancer drugs. J Nat Prod. 2022;85:666–87. https://doi.org/10.1021/acs.jnatprod.1c01135.

    Article  CAS  PubMed  Google Scholar 

  46. Yao H-P, Tong X-M, Hudson R, Wang M-H. MET and RON receptor tyrosine kinases in colorectal adenocarcinoma: molecular features as drug targets and antibody-drug conjugates for therapy. J Exp Clin Cancer Res. 2020;39:198. https://doi.org/10.1186/s13046-020-01711-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yao H-P, Tong X-M, Wang M-H. Pharmaceutical strategies in the emerging era of antibody-based biotherapeutics for the treatment of cancers overexpressing MET receptor tyrosine kinase. Drug Discov Today. 2020;26:106–21. https://doi.org/10.1016/j.drudis.2020.11.002.

    Article  CAS  PubMed  Google Scholar 

  48. Cheng-Sánchez I, Moya-Utrera F, Porras-Alcalá C, López-Romero JM, Sarabia F. Antibody-drug conjugates containing payloads from marine origin. Mar Drugs. 2022;20:494. https://doi.org/10.3390/md20080494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hulst MB, Grocholski T, Neefjes JJC, vanWezel GP, Metsa-Ketela M. Anthracyclines: biosynthesis, engineering and clinical applications. Nat Prod Rep. 2022;39:814–41. https://doi.org/10.1039/d1np00059d.

    Article  CAS  PubMed  Google Scholar 

  50. Camerino B, Palamidessi G. Derivati della parazina II. Sulfonamdopir Gazz Chim Ital. 1960;90:1802–15.

    Google Scholar 

  51. Arcamone F, Cassinelli G, Fantini G, Grein A, Orezzi P, Pol C, et al. Adriamycin, 14-hydroxydaunomycin, a new antitumor antibiotic from S. peucetius var. caesius. Biotechnol Bioeng. 1969;11:1101–10. https://doi.org/10.1002/bit.260110607.

    Article  CAS  PubMed  Google Scholar 

  52. Norton N, Weil RM, Advani PP. Inter-individual variation and cardioprotection in anthracycline-induced heart failure. J Clin Med. 2021;10:4079. https://doi.org/10.3390/jcm10184079.

  53. Gabizon A, Shmeeda H, Barenholz Y. Pharmacokinetics of pegylated liposomal doxorubicin: review of animal and human studies. Clin Pharmacokinet. 2003;42:419–36. https://doi.org/10.2165/00003088-200342050-00002.

    Article  CAS  PubMed  Google Scholar 

  54. Schettini F, Giuliano M, Lambertini M, Bartsch R, Pinato DJ, Onesti CE, et al. Anthracyclines strike back: rediscovering non-pegylated liposomal doxorubicin in current therapeutic scenarios of breast cancer. Cancers. 2021;13:4421. https://doi.org/10.3390/cancers13174421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Harris CM, Harris TM. Structure of the glycopeptide antibiotic vancomycin. Evidence for an asparagine residue in the peptide. J Am Chem Soc. 1982;104:4293–5.

    Article  CAS  Google Scholar 

  56. D’Costa VM, King CE, Kalan L, Morar M, Sung WWL, Schwarz C, et al. Antibiotic resistance is ancient. Nature Biotechnol. 2011;477:457–61. https://doi.org/10.1038/nature10388.

    Article  CAS  Google Scholar 

  57. Wright GD, Poinar H. Antibiotic resistance is ancient: implications for drug discovery. Trends Microbiol. 2012;20:157–9.

    Article  CAS  PubMed  Google Scholar 

  58. Okano A, Isley NA, Boger DL. Peripheral modifications of [Ψ[CH2NH]Tpg4]vancomycin with added synergistic mechanisms of action provide durable and potent antibiotics. Proc Natl Acad Sci, USA. 2017;114:E5052–61. https://doi.org/10.1073/pnas.1704125114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wu Z-C, Cameron MD, Boger DL. Vancomycin c-terminus guanidine modifications and further insights into an added mechanism of action imparted by a peripheral structural modification. ACS Infect Dis. 2020;6:2169–80. https://doi.org/10.1021/acsinfecdis.0c00258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wu Z-C, Boger DL. Maxamycins: durable antibiotics derived by rational redesign of vancomycin. Acc Chem Res. 2020;53:2587–99. https://doi.org/10.1021/acs.accounts.0c00569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wu Z-C, Isley NA, Okano A, Weiss WJ, Boger DL. C1-CBP-vancomycin: impact of a vancomycin c-terminus trimethylammonium cation on pharmacological properties and insights into its newly introduced mechanism of action. J Org Chem. 2020;85:1365–75. https://doi.org/10.1021/acs.joc.9b02314.

    Article  CAS  PubMed  Google Scholar 

  62. Uemura D, Takahashi K, Yamamoto T, Katayama C, Tanaka J, Okumura Y, et al. Norhalichondrin A: an antitumor polyether macrolide from a marine sponge. J Am Chem Soc. 1985;107:4796–8. https://doi.org/10.1021/ja00302a042.

    Article  CAS  Google Scholar 

  63. Hirata Y, Uemura D. Halichondrins - antitumor polyether macrolides from a marine sponge. Pure Appl Chem. 1986;58:701–10. https://doi.org/10.1351/pac198658050701.

    Article  CAS  Google Scholar 

  64. Bai R, Paull KD, Herald CL, Malspeis L, Pettit GR, Hamel E. Halichondrin B and homohalichondrin B, marine natural products bnding in the vinca domain of tubulin. J Biol Chem. 1991;266:15882–9.

    Article  CAS  PubMed  Google Scholar 

  65. Jordan MA, Wilson L. Microtubules as a target for anticancer drugs. Nat Rev Cancer. 2004;4:253–65. https://doi.org/10.1038/nrc1317.

    Article  CAS  PubMed  Google Scholar 

  66. Aicher TD, Buszek KR, Fang FG, Forsyth CJ, Jung SH, Kishi Y, et al. Total synthesis of halichondrin B and norhalichondrin B. J Am Chem Soc. 1992;114:3162–4. https://doi.org/10.1021/ja00034a086.

    Article  CAS  Google Scholar 

  67. Cheng X, Li J, Tanaka K, Majumder U, Milinichik AZ, Verdi AC, et al. MORAb-202, an antibody–drug conjugate utilizing humanized anti-human FRa farletuzumab and the microtubule-targeting agent eribulin, has potent antitumor activity. Mol Can Ther. 2018;17:2665–75. https://doi.org/10.1158/1535-7163.MCT-17-1215.

    Article  CAS  Google Scholar 

  68. Shimizu T, Fujiwara Y, Yonemori K, Koyama T, Sato J, Tamura K, et al. First-in-human phase 1 study of MORAb-202, an antibody–drug conjugate comprising farletuzumab linked to eribulin mesylate, in patients with folate receptor-a–positive advanced solid tumors. Clin Cancer Res. 2021;27:3905–15. https://doi.org/10.1158/1078-0432.CCR-20-4740.

    Article  CAS  PubMed  Google Scholar 

  69. Kawano S, Ito K, Yahata K, Kira K, Abe T, Akagi T, et al. A landmark in drug discovery based on complex natural product synthesis. Sci Rep. 2019;9:8656. https://doi.org/10.1038/s41598-019-45001-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Tu YY. Artemisinin-a gift from traditional Chinese medicine to the world ( Nobel lecture). Angew Chem Int Ed. 2016;55(35):10210–26.

    Article  CAS  Google Scholar 

  71. Wang J, Xu C, Wong YK, Li Y, Liao F, Jiang T, et al. Artemisinin, the magic drug discovered from traditional Chinese medicine. Engineering. 2019;5:32–9. https://doi.org/10.1016/j.eng.2018.11.011.

    Article  CAS  Google Scholar 

  72. Diouf G, Kpanyen PN, Tokpa AF, Nie S. Changing landscape of malaria in China: progress and feasibility of malaria elimination. Asia Pac J Pub Health. 2014;26:93–100. https://doi.org/10.1177/1010539511424594.

    Article  Google Scholar 

  73. Cox FEG. History of the discovery of the malaria parasites and their vectors. Parasit Vect. 2010;3:5. https://doi.org/10.1186/1756-3305-3-5.

    Article  Google Scholar 

  74. Liu C-x. Discovery and development of artemisinin and related compounds. Chinese Herbal Med. 2017;9:101–14. https://doi.org/10.1016/S1674-6384(17)60084-4.

    Article  Google Scholar 

  75. Paddon CJ, Westfall PJ, Pitera DJ, Benjamin K, Fisher K, McPhee D, et al. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature. 2013;496:528–32. https://doi.org/10.1038/nature12051.

    Article  CAS  PubMed  Google Scholar 

  76. Paddon CJ, Keasling JD. Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development. Nature Rev Microbiol. 2014;12:355–67. https://doi.org/10.1038/nrmicro3240.

    Article  CAS  Google Scholar 

  77. Kung SH, Lund S, Murarka A, McPhee D, Paddon CJ. Approaches and recent developments for the commercial production of semi-synthetic artemisinin. Front Plant Sci. 2018;9:87. https://doi.org/10.3389/fpls.2018.00087.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Liu K, Zuo H, Li G, Yu H, Hu Y. Global research on artemisinin and its derivatives: perspectives from patents. Pharmacol Res. 2020;159:105048. https://doi.org/10.1016/j.phrs.2020.105048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Krieger J, Smeilus T, Kaiser M, Seo E-J, Efferth T, Giannis A. Total synthesis and biological investigation of (+/-)-artemisinin: the antimalarial activity of artemisinin is not stereospecific. Angew Chem Int Ed. 2018;57:8293–6. https://doi.org/10.1002/anie.201802015.

    Article  CAS  Google Scholar 

  80. Li WD, Dong YJ, Tu YY, Lin ZB. Dihydroarteannuin ameliorates lupus symptom of BXSB mice by inhibiting production of TNF-alpha and blocking the signaling pathway NF-kappa B translocation. Int Immunopharm. 2006;6:1243–50. https://doi.org/10.1016/j.intimp.2006.03.004.

    Article  CAS  Google Scholar 

  81. Efferth T. From ancient herb to modern drug: Artemisia annua and artemisinin for cancer therapy. Sem Cancer Biol. 2017;46:65–83. https://doi.org/10.1016/j.semcancer.2017.02.009.

    Article  CAS  Google Scholar 

  82. Haynes RK, Fugmann B, Stetter J, Rieckmann K, Heilmann H-D, Chan H-W, et al. Artemisone-a highly active antimalarial drug of the artemisinin class. Angew Chem Int Ed. 2006;45:2082–8. https://doi.org/10.1002/anie.200503071.

    Article  CAS  Google Scholar 

  83. Xiao J, Sun Z, Kong F, Gao F. Current scenario of ferrocene-containing hybrids for antimalarial activity. Eur J Med Chem. 2020;185:111791. https://doi.org/10.1016/j.ejmech.2019.111791.

    Article  CAS  PubMed  Google Scholar 

  84. de Lange C, Coertzen D, Smit FJ, Wentzel JF, Wong HN, Birkholtz L-M, et al. Synthesis, in vitro antimalarial activities and cytotoxicities of amino-artemisinin-ferrocene derivatives. Bioorg Med Chem Lett. 2018;28:289–92. https://doi.org/10.1016/j.bmcl.2017.12.057.

    Article  CAS  PubMed  Google Scholar 

  85. Peter S, Morifi E, Aderibigbe BA. Hybrid compounds containing a ferrocene scaffold as potential antimalarials. ChemistrySelect. 2021;6:1756–63. https://doi.org/10.1002/slct.202004710.

    Article  CAS  Google Scholar 

  86. Radke JB, Burrows JN, Goldberg DE, Sibley LD. Evaluation of current and emerging antimalarial medicines for inhibition of Toxoplasma gondii growth in vitro. ACS Infect Dis. 2018;4(8):1264–74. https://doi.org/10.1021/acsinfecdis.8b00113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ho WE, Peh HY, Chan TK, Wong WSF. Artemisinins: pharmacological actions beyond antimalarial. Pharm Thereap. 2014;142:126–39. https://doi.org/10.1016/j.pharmthera.2013.12.001.

    Article  CAS  Google Scholar 

  88. Efferth T. Beyond malaria: the inhibition of viruses by artemisinin-type compounds. Biotech Adv. 2018;36:1730–7. https://doi.org/10.1016/j.biotechadv.2018.01.001.

    Article  CAS  Google Scholar 

  89. Frohlich T, Hahn F, Belmudes L, Leidenberger M, Friedrich O, Kappes B, et al. Synthesis of artemisinin-derived dimers, trimers and dendrimers: investigation of their antimalarial and antiviral activities including putative mechanisms of action. Chem Eur J. 2018;24:8103–13. https://doi.org/10.1002/chem.201800729.

    Article  CAS  PubMed  Google Scholar 

  90. Laraia L, Robke L, Waldmann H. Bioactive compound collections: from design to target identification. Chem. 2018;4:705–30.

    Article  CAS  Google Scholar 

  91. Gotsbacher MP, Cho SM, Kim NH, Liu F, Kwon HJ, Karuso P. Reverse chemical proteomics identifies an unanticipated human target of the antimalarial artesunate. ACS Chem Biol. 2019;14:636–43. https://doi.org/10.1021/acschembio.8b01004.

    Article  CAS  PubMed  Google Scholar 

  92. Watts JK, Corey DR. Gene silencing by siRNAs and antisense oligonucleotides in the laboratory and the clinic. J Pathol. 2012;226(2):365–79. https://doi.org/10.1002/path.2993.

    Article  CAS  PubMed  Google Scholar 

  93. Coghi P, Yaremenko IA, Prommana P, Radulov PS, Syroeshkin MA, Wu YJ, et al. Novel peroxides as promising anticancer agents with unexpected depressed antimalarial activity. ChemMedChem. 2018;13:902–8. https://doi.org/10.1002/cmdc.201700804.

    Article  CAS  PubMed  Google Scholar 

  94. Wang T, Liu J, Luo X, Hu J, Lu H. Functional metabolomics innovates therapeutic discovery of traditional Chinese medicine derived functional compounds. Pharm Therap. 2021;224:107824. https://doi.org/10.1016/j.pharmthera.2021.107824.

    Article  CAS  Google Scholar 

  95. Newman DJ. Modern traditional Chinese medicine: identifying, defining and usage of TCM components. Adv Pharmacol. 2020;87:113–58. https://doi.org/10.1016/bs.apha.2019.07.001.

    Article  CAS  PubMed  Google Scholar 

  96. Dührkop K, Nothias L-F, Fleischauer M, Reher R, Ludwig M, Hoffmann MA, et al. Systematic classification of unknown metabolites using high-resolution fragmentation mass spectra. Nature Biotechnol. 2021;39:462–71. https://doi.org/10.1038/s41587-020-0740-8.

    Article  CAS  Google Scholar 

  97. Behsaz B, Bode E, Gurevich A, Shi Y-N, Grundmann F, Acharya D, et al. Integrating genomics and metabolomics for scalable non-ribosomal peptide discovery. Nat Comm. 2021;12:3225. https://doi.org/10.1038/s41467-021-23502-4.

    Article  CAS  Google Scholar 

  98. Schmid R, Petras D, Nothias L-F, Wang M, Aron AT, Jagels A, et al. Ion identity molecular networking for mass spectrometry-based metabolomics in the GNPS environment. Nat Comm. 2021;12:3832. https://doi.org/10.1038/s41467-021-23953-9.

  99. Panter F, Bader CD, Muller R. Synergizing the potential of bacterial genomics and metabolomics to find novel antibiotics. Chem Sci. 2021;12:5994–6010. https://doi.org/10.1039/d0sc06919a.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Miethke M, Pieroni M, Weber T, Brönstrup M, Hammann P, Halby L, et al. Towards the sustainable discovery and development of new antibiotics. Nat Rev Chem. 2021;5:726–49. https://doi.org/10.1038/s41570-021-00313-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kirsch SH, Haeckl FPJ, Muller R. Beyond the approved: target sites and inhibitors of bacterial RNA polymerase from bacteria and fungi. Nat Prod Rep. 2022;39:1226–63. https://doi.org/10.1039/d1np00067e.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Written by DJN, no other authors

Corresponding author

Correspondence to David J. Newman.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Natural Products: From Chemistry to Pharmacology

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Newman, D.J. Drug Discovery from Natural Sources. Curr Pharmacol Rep 9, 67–89 (2023). https://doi.org/10.1007/s40495-023-00313-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40495-023-00313-3

Keywords

Navigation