Skip to main content

Advertisement

Log in

Hepatic Impairment Physiologically Based Pharmacokinetic Model Development: Current Challenges

  • Pharmacometrics and Quantitative System Pharmacology (S Woo, Section Editor)
  • Published:
Current Pharmacology Reports Aims and scope Submit manuscript

An Author Correction to this article was published on 26 October 2021

This article has been updated

Abstract

Purpose

This review summarizes the development processes of hepatic impairment (HI) PBPK models, examines current challenges, and proposes potential solutions.

Recent Findings

Because hepatic impairment can significantly alter a patient’s physiology, HI PBPK models must consider complex in vivo processes leading to potential changes in PK parameters. Adjustments need to be made to absorption, distribution, metabolism, and elimination parameters. Multiple studies already include changes in levels of CYP enzymes, UGTs, transporters, shunting, and protein binding in their HI models. However, despite recent progress, HI PBPK models face multiple challenges and may overpredict drug exposure with increasing severity of liver dysfunction. Foremost among these challenges is the use of the Child–Pugh scoring system in designing HI PBPK models. Furthermore, most HI PBPK models do not account for changes in certain drug parameters, potentially skewing resulting predictions. Ultimately, limitations with PBPK models can be traced to the scarcity of existing HI PBPK models and clinical data. Filling in this knowledge gap is critical to best support safe drug dosing adjustments for hepatically impaired patients.

Summary

Recent advancements have enhanced the predictive power of HI PBPK models, enabling accurate reflections of clinical trials. However, significant obstacles in developing accurate PK predictions remain, especially for severe impairment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Horak J, et al. The effect of different etiologies of hepatic impairment on the pharmacokinetics of gefitinib. Cancer Chemother Pharmacol. 2011;68(6):1485–95.

    Article  CAS  PubMed  Google Scholar 

  2. Verbeeck RK. Pharmacokinetics and dosage adjustment in patients with hepatic dysfunction. Eur J Clin Pharmacol. 2008;64(12):1147–61.

    Article  CAS  PubMed  Google Scholar 

  3. •• Kok B, Abraldes JG. Child-Pugh classification: time to abandon? Semin Liver Dis. 2019;39(1):96–103. (This article contains a comprehensive review of the failings of the Child-Pugh scoring system when used to classify disease severity in PBPK models.)

    Article  PubMed  Google Scholar 

  4. •• Heimbach T, et al. Physiologically-based pharmacokinetic modeling in renal and hepatic impairment populations: a pharmaceutical industry perspective. Clin Pharmacol Ther. 2020;110:297–310. (This paper evaluated the predictive accuracy of current HI PBPK models across a range of compounds.It suggests that for moderate to severe cases of HI, existing models tend to overpredict exposure because they do not account for changes in absorption induced by HI.)

    Article  PubMed  PubMed Central  Google Scholar 

  5. • Morcos PN, et al. Effect of hepatic impairment on the pharmacokinetics of alectinib. J Clin Pharmacol, 2018. 58(12): p. 1618–1628. This article provides a full mechanistic PBPK model of alectinib PK in hepatically impaired patients. The model was successfully used to inform a clinical trial design. (The model was found to have overpredicted the effect of hepatic impairment in patients with moderate to severe liver disease.)

  6. Huang W, et al. Physiologically based pharmacokinetic model of the CYP2D6 probe atomoxetine: extrapolation to special populations and drug-drug interactions. Drug Metab Dispos. 2017;45(11):1156–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. •• Assessing Changes in Pharmacokinetics of Drugs in Liver Disease, October 8, 2020. This workshop evaluated the impact of hepatic impairment on drug pharmacokinetics. It reviewed the shortcomings of existing hepatic impairment PBPK models. [cited 2021 July 11]; Available from: https://www.fda.gov/drugs/news-events-human-drugs/assessing-changes-pharmacokinetics-drugs-liver-disease-10082020-10082020.

  8. Chang Y, et al. Evaluation of hepatic impairment dosing recommendations in FDA-approved product labels. J Clin Pharmacol. 2013;53(9):962–6.

    Article  PubMed  Google Scholar 

  9. Food and drug administration, pharmacokinetics in patients with impaired hepatic function: study design, data analysis, and impact on dosing and labeling. 2003 [cited 2021 July 11]; Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/pharmacokinetics-patients-impaired-hepatic-function-study-design-data-analysis-and-impact-dosing-and.

  10. Guideline on the evaluation of the pharmacokinetics of medicinal products in patients with impaired hepatic function 2005 [cited 2021 July 11]; Available from: https://www.emaeuropaeu/en/documents/scientific-guideline/guideline-evaluation-pharmacokinetics-medicinal-products-patients-impaired-hepatic-function_enpdf. .

  11. Grimstein M, et al. Physiologically based pharmacokinetic modeling in regulatory science: an update from the U.S. Food and Drug Administration’s Office of Clinical Pharmacology. Journal of pharmaceutical sciences, 2019. 108(1): p. 21–25.

  12. Wang L, et al. Transporter expression in liver tissue from subjects with alcoholic or hepatitis C cirrhosis quantified by targeted quantitative proteomics. Drug Metab Dispos. 2016;44(11):1752–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Murray M, et al. Differential effects of hepatic cirrhosis on the intrinsic clearances of sorafenib and imatinib by CYPs in human liver. Eur J Pharm Sci. 2018;114:55–63.

    Article  CAS  PubMed  Google Scholar 

  14. Infante-Rivard C, Esnaola S, Villeneuve JP. Clinical and statistical validity of conventional prognostic factors in predicting short-term survival among cirrhotics. Hepatology. 1987;7(4):660–4.

    Article  CAS  PubMed  Google Scholar 

  15. Chen Y, et al. Simulation of the pharmacokinetics of oseltamivir and its active metabolite in normal populations and patients with hepatic cirrhosis using physiologically based pharmacokinetic modeling. AAPS PharmSciTech. 2020;21(3):98.

    Article  CAS  PubMed  Google Scholar 

  16. Elmeliegy M, et al. Discordance between Child-Pugh and National Cancer Institute Classifications for Hepatic Dysfunction: implications on dosing recommendations for oncology compounds. J Clin Pharmacol. 2021;61(1):105–15.

    Article  CAS  PubMed  Google Scholar 

  17. Johnson TN, et al. A semi-mechanistic model to predict the effects of liver cirrhosis on drug clearance. Clin Pharmacokinet. 2010;49(3):189–206.

    Article  CAS  PubMed  Google Scholar 

  18. Le BH, et al. Oxycodone/naloxone prolonged-release tablets in patients with moderate-to-severe, chronic cancer pain: challenges in the context of hepatic impairment. Asia-Pacific Journal of Clinical Oncology, 2021. n/a(n/a).

  19. Geier A, et al. Side effects of budesonide in liver cirrhosis due to chronic autoimmune hepatitis: influence of hepatic metabolism versus portosystemic shunts on a patient complicated with HCC. World J Gastroenterol. 2003;9(12):2681–5.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chalasani N, et al. Hepatic and intestinal cytochrome P450 3A activity in cirrhosis: effects of transjugular intrahepatic portosystemic shunts. Hepatology. 2001;34(6):1103–8.

    Article  CAS  PubMed  Google Scholar 

  21. Neal EA, et al. Enhanced bioavailability and decreased clearance of analgesics in patients with cirrhosis. Gastroenterology. 1979;77(1):96–102.

    Article  CAS  PubMed  Google Scholar 

  22. Farthing MJ, et al. Pharmacokinetics of naftopidil, a novel anti-hypertensive drug, in patients with hepatic dysfunction. Postgrad Med J. 1994;70(823):363–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Scheers E, et al. Absorption, metabolism, and excretion of oral 14C radiolabeled ibrutinib: an open-label, phase I, single-dose study in healthy men. Drug Metab Dispos. 2015;43(2):289–97.

    Article  PubMed  Google Scholar 

  24. de Jong J, et al. Single-dose pharmacokinetics of ibrutinib in subjects with varying degrees of hepatic impairment<sup/>. Leuk Lymphoma. 2017;58(1):185–94.

    Article  PubMed  Google Scholar 

  25. Pomier-Layrargues G, et al. Effect of portacaval shunt on drug disposition in patients with cirrhosis. Gastroenterology. 1986;91(1):163–7.

    Article  CAS  PubMed  Google Scholar 

  26. Li R, Barton HA, Maurer TS. A mechanistic pharmacokinetic model for liver transporter substrates under liver cirrhosis conditions. CPT Pharmacometrics Syst Pharmacol. 2015;4(6):338–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tortorici MA, et al. Influence of mild and moderate hepatic impairment on axitinib pharmacokinetics. Invest New Drugs. 2011;29(6):1370–80.

    Article  CAS  PubMed  Google Scholar 

  28. Reshetnyak VI. Physiological and molecular biochemical mechanisms of bile formation. World J Gastroenterol. 2013;19(42):7341–60.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Turnberg LA, Grahame G. Bile salt secretion in cirrhosis of the liver. Gut. 1970;11(2):126–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Burckart GJ, et al. Cyclosporine pharmacokinetic profiles in liver, heart, and kidney transplant patients as determined by high-performance liquid chromatography. Transplant Proc. 1986;18(6 Suppl 5):129–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Budha NR, et al. Drug absorption interactions between oral targeted anticancer agents and PPIs: is pH-dependent solubility the Achilles heel of targeted therapy? Clin Pharmacol Ther. 2012;92(2):203–13.

    Article  CAS  PubMed  Google Scholar 

  32. Li J, et al. Differential metabolism of gefitinib and erlotinib by human cytochrome P450 enzymes. Clin Cancer Res. 2007;13(12):3731–7.

    Article  CAS  PubMed  Google Scholar 

  33. O’Bryant CL, et al. An open-label study to describe pharmacokinetic parameters of erlotinib in patients with advanced solid tumors with adequate and moderately impaired hepatic function. Cancer Chemother Pharmacol. 2012;69(3):605–12.

    Article  PubMed  Google Scholar 

  34. Abou-Alfa GK, et al. Pharmacokinetics and safety of vismodegib in patients with advanced solid malignancies and hepatic impairment. Cancer Chemother Pharmacol. 2017;80(1):29–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sharma MR, et al. Evaluation of food effect on pharmacokinetics of vismodegib in advanced solid tumor patients. Clin Cancer Res. 2013;19(11):3059–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Abuhelwa AY, et al. Population pharmacokinetic modeling of itraconazole and hydroxyitraconazole for oral SUBA-itraconazole and sporanox capsule formulations in healthy subjects in fed and fasted states. Antimicrob Agents Chemother. 2015;59(9):5681–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Miranda C, et al. Biowaiver or bioequivalence: ambiguity in sildenafil citrate BCS classification. AAPS PharmSciTech. 2018;19(4):1693–8.

    Article  CAS  PubMed  Google Scholar 

  38. Nichols DJ, Muirhead GJ, Harness JA. Pharmacokinetics of sildenafil after single oral doses in healthy male subjects: absolute bioavailability, food effects and dose proportionality. British journal of clinical pharmacology, 2002. 53 Suppl 1(Suppl 1): p. 5S-12S.

  39. Muirhead GJ, et al. The effects of age and renal and hepatic impairment on the pharmacokinetics of sildenafil. Br J Clin Pharmacol, 2002. 53 Suppl 1(Suppl 1): p. 21s-30s.

  40. Horsmans Y, et al. Effects of mild to severe hepatic impairment on the pharmacokinetics of sonidegib: a multicenter, open-label, parallel-group study. Clin Pharmacokinet. 2018;57(3):345–54.

    Article  CAS  PubMed  Google Scholar 

  41. Huang ML, et al. Drug-binding proteins in liver transplant patients. J Clin Pharmacol. 1988;28(6):505–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Israili ZH, Dayton PG. Human alpha-1-glycoprotein and its interactions with drugs. Drug Metab Rev. 2001;33(2):161–235.

    Article  CAS  PubMed  Google Scholar 

  43. Application of PBPK modeling to support labelling initiatives: Janssen case study. Presented at Development of Best Practices in Physiologically Based Pharmacokinetic Modeling to Support Clinical Pharmacology Regulatory Decision-Making;. 2019 [cited 2021 July 11]; Available from: https://www.fdagov/media/134175/download.

  44. Williams RL, et al. Naproxen disposition in patients with alcoholic cirrhosis. Eur J Clin Pharmacol. 1984;27(3):291–6.

    Article  CAS  PubMed  Google Scholar 

  45. Orlando R, et al. Irreversible CYP3A inhibition accompanied by plasma protein-binding displacement: a comparative analysis in subjects with normal and impaired liver function. Clin Pharmacol Ther. 2009;85(3):319–26.

    Article  CAS  PubMed  Google Scholar 

  46. Adiwijaya, B., et al. The effect of mild and moderate hepatic impairment on telaprevir pharmacokinetics. 2011. 6th International Workshop on the Clinical Pharmacology of Hepatitis Therapy, Cambridge, MA http://www.regist2virology-educationcom/2011/6HEPPK/docs/05_Gargpdf. 2011 [cited 2021 July 11]; Available from: http://www.regist2virology-educationcom/2011/6HEPPK/docs/05_Gargpdf.

  47. Kiang TK, Wilby KJ, Ensom MH. Telaprevir: clinical pharmacokinetics, pharmacodynamics, and drug-drug interactions. Clin Pharmacokinet. 2013;52(7):487–510.

    Article  CAS  PubMed  Google Scholar 

  48. Willmann S, et al. Applications of physiologically based pharmacokinetic modeling of rivaroxaban—renal and hepatic impairment and drug-drug interaction potential. J Clin Pharmacol. 2021;61(5):656–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gonzalez D, et al. The effect of critical illness on drug distribution. Curr Pharm Biotechnol. 2011;12(12):2030–6.

    Article  CAS  PubMed  Google Scholar 

  50. Gill MA, Kern JW. Altered gentamicin distribution in ascitic patients. Am J Hosp Pharm. 1979;36(12):1704–6.

    CAS  PubMed  Google Scholar 

  51. Blaschke TF. Protein binding and kinetics of drugs in liver diseases. Clin Pharmacokinet. 1977;2(1):32–44.

    Article  CAS  PubMed  Google Scholar 

  52. Bϋdingen F, et al. Relevance of liver failure for anti-infective agents: from pharmacokinetic alterations to dosage adjustments. Ther Adv Infect Dis. 2014;2(1):17–42.

    PubMed  Google Scholar 

  53. Wang Y, et al. Physiologically-based pharmacokinetic (PBPK) modeling and simulation of pharmacokinetics of hepatitis C NS5A protein inhibitors in non-cirrhotic hepatitis C virus (HCV) patients and patients with hepatic impairment. 2020 [cited 2021 July 17]; Available from: https://ascpt.onlinelibrary.wiley.com/doi/https://doi.org/10.1002/cpt.1732.

  54. Fisher CD, et al. Hepatic cytochrome P450 enzyme alterations in humans with progressive stages of nonalcoholic fatty liver disease. Drug Metab Dispos. 2009;37(10):2087–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chalon SA, et al. Effect of hepatic impairment on the pharmacokinetics of atomoxetine and its metabolites. Clin Pharmacol Ther. 2003;73(3):178–91.

    Article  CAS  PubMed  Google Scholar 

  56. Frye RF, et al. Liver disease selectively modulates cytochrome P450–mediated metabolism. Clin Pharmacol Ther. 2006;80(3):235–45.

    Article  CAS  PubMed  Google Scholar 

  57. Garattini E, Terao M. The role of aldehyde oxidase in drug metabolism. Expert Opin Drug Metab Toxicol. 2012;8(4):487–503.

    Article  CAS  PubMed  Google Scholar 

  58. De Sousa Mendes M, et al. A laboratory-specific scaling factor to predict the in vivo human clearance of aldehyde oxidase substrates. Drug Metab Dispos. 2020;48(11):1231–8.

    Article  PubMed  Google Scholar 

  59. Dalvie D, Di L. Aldehyde oxidase and its role as a drug metabolizing enzyme. Pharmacol Ther. 2019;201:137–80.

    Article  CAS  PubMed  Google Scholar 

  60. Glaenzel U, et al. Absorption, distribution, metabolism, and excretion of capmatinib (INC280) in healthy male volunteers and in vitro aldehyde oxidase phenotyping of the major metabolite. Drug Metab Dispos. 2020;48(10):873–85.

    Article  CAS  PubMed  Google Scholar 

  61. Jones JP, Korzekwa KR. Predicting intrinsic clearance for drugs and drug candidates metabolized by aldehyde oxidase. Mol Pharm. 2013;10(4):1262–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Rowland A, Miners JO, Mackenzie PI. The UDP-glucuronosyltransferases: their role in drug metabolism and detoxification. Int J Biochem Cell Biol. 2013;45(6):1121–32.

    Article  CAS  PubMed  Google Scholar 

  63. Bosilkovska M, et al. Analgesics in patients with hepatic impairment: pharmacology and clinical implications. Drugs. 2012;72(12):1645–69.

    Article  CAS  PubMed  Google Scholar 

  64. Prasad B, et al. Abundance of phase 1 and 2 drug-metabolizing enzymes in alcoholic and hepatitis C cirrhotic livers: a quantitative targeted proteomics study. Drug Metab Dispos. 2018;46(7):943–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kasichayanula S, et al. Influence of hepatic impairment on the pharmacokinetics and safety profile of dapagliflozin: an open-label, parallel-group, single-dose study. Clin Ther. 2011;33(11):1798–808.

    Article  CAS  PubMed  Google Scholar 

  66. Hirano M, et al. Effect of hepatic impairment on the pharmacokinetics of pradigastat, a diacylglycerol acyltransferase 1 (DGAT1) inhibitor. Clin Pharmacokinet. 2015;54(7):761–70.

    Article  CAS  PubMed  Google Scholar 

  67. Upthagrove A, et al. Pradigastat disposition in humans: in vivo and in vitro investigations. Xenobiotica. 2017;47(12):1077–89.

    Article  CAS  PubMed  Google Scholar 

  68. Zhang W, et al. The effect of moderate hepatic impairment on the pharmacokinetics of ipragliflozin, a novel sodium glucose co-transporter 2 (SGLT2) inhibitor. Clin Drug Investig. 2013;33(7):489–96.

    Article  CAS  PubMed  Google Scholar 

  69. Debinski HS, et al. Localization of uridine 5’-diphosphate-glucuronosyltransferase in human liver injury. Gastroenterology. 1995;108(5):1464–9.

    Article  CAS  PubMed  Google Scholar 

  70. Almazroo OA, Miah MK, Venkataramanan R. Drug metabolism in the liver. Clin Liver Dis. 2017;21(1):1–20.

    Article  PubMed  Google Scholar 

  71. Benet LZ. Predicting drug disposition via application of a biopharmaceutics drug disposition classification system. Basic Clin Pharmacol Toxicol. 2010;106(3):162–7.

    Article  CAS  PubMed  Google Scholar 

  72. Vildhede A, et al. Hepatic uptake of atorvastatin: influence of variability in transporter expression on uptake clearance and drug-drug interactions. Drug Metab Dispos. 2014;42(7):1210–8.

    Article  PubMed  Google Scholar 

  73. Drozdzik M, et al. Protein abundance of hepatic drug transporters in patients with different forms of liver damage. Clin Pharmacol Ther. 2020;107(5):1138–48.

    Article  CAS  PubMed  Google Scholar 

  74. Patel M, Taskar KS, Zamek-Gliszczynski MJ. Importance of hepatic transporters in clinical disposition of drugs and their metabolites. J Clin Pharmacol. 2016;56(Suppl 7):S23-39.

    Article  CAS  PubMed  Google Scholar 

  75. Thakkar N, Slizgi JR, Brouwer KLR. Effect of liver disease on hepatic transporter expression and function. J Pharm Sci. 2017;106(9):2282–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zollner G, et al. Adaptive changes in hepatobiliary transporter expression in primary biliary cirrhosis. J Hepatol. 2003;38(6):717–27.

    Article  CAS  PubMed  Google Scholar 

  77. Granneman GR, et al. Pharmacokinetics of temafloxacin in patients with liver impairment. Clin Pharmacokinet. 1992;22(Suppl 1):24–32.

    Article  CAS  PubMed  Google Scholar 

  78. Villeneuve JP, Fortunet-Fouin H, Arsène D. Cimetidine kinetics and dynamics in patients with severe liver disease. Hepatology. 1983;3(6):923–7.

    Article  CAS  PubMed  Google Scholar 

  79. Kubitza D, et al. Effect of hepatic impairment on the pharmacokinetics and pharmacodynamics of a single dose of rivaroxaban, an oral, direct Factor Xa inhibitor. Br J Clin Pharmacol. 2013;76(1):89–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Morcos PN, et al. Absorption, distribution, metabolism and excretion (ADME) of the ALK inhibitor alectinib: results from an absolute bioavailability and mass balance study in healthy subjects. Xenobiotica. 2017;47(3):217–29.

    Article  CAS  PubMed  Google Scholar 

  81. Morcos PN, et al. Effect of food and esomeprazole on the pharmacokinetics of alectinib, a highly selective ALK inhibitor, in healthy subjects. Clinical Pharmacology in Drug Development. 2017;6(4):388–97.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tycho Heimbach.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Pharmacometrics and Quantitative System Pharmacology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, A.N., Han, B.R., Zhang, T. et al. Hepatic Impairment Physiologically Based Pharmacokinetic Model Development: Current Challenges. Curr Pharmacol Rep 7, 213–226 (2021). https://doi.org/10.1007/s40495-021-00266-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40495-021-00266-5

Keywords

Navigation