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Abstract The bed nucleus of the stria terminalis (BNST) reg-
ulates not only stress-related behaviors but also maternal be-
havior, pain-related behaviors, and reward-driven behavior.
Dysfunction of the BNST leads to physiopathological states
like anxiety disorder, post-traumatic syndrome disorder, an-
orexia, or addiction. Thus, a better understanding of the BNST
emerges as an important challenge in order to develop inno-
vative therapeutic strategies. Indeed, to improve our knowl-
edge on the BNST, we first need to understand what shapes its
activity. The BNST is strongly innervated by multiple inputs
(glutamatergic, GABAergic, noradrenergic, dopaminergic, se-
rotoninergic) giving rise to a part of its complexity.
Importantly, under specific conditions (stress exposure,
drug-withdrawal), endocannabinoid and neuropeptides can
orchestrate the activity of the BNST. Here, we give a brief
overview of the main pharmacological approaches targeting
the BNST to assess the function of classical neurotransmitters
and neuromodulators, from a pharmacological point of view
through to behavior.

Keywords Pharmacology . Bed nucleus of the stria
terminalis . Neuromodulators . Endocannabinoid .

Catecholamine . Neuropeptides

Introduction

The bed nucleus of the stria terminalis (BNST) belongs to a
neuronal network of interconnected limbic regions and is con-
served between rodents and humans [1]. For several years,
more attention has been directed to understand the role of
the BNST in humans [2–4]. The BNST emerges as a critical
region that is activated in response to a potential threat or to a
stress exposure, in order to develop adaptive strategies. Thus,
it gives to the BNST a strong function in the regulation of
anxiety and stress exposure [5–9]. Importantly, the BNST
has also been presented as key player in motivational and goal
directed behavior, through its connections with the reward
circuit [7, 8, 10–13]. Dysfunction of the BNST may trigger
maladaptive responses to inoffensive cues and physiopatho-
logical states such as anxiety disorders or addiction.

The BNST is located posterior to the nucleus accumbens,
below the lateral ventricles and surrounding the anterior com-
missure. The BNST is a heterogeneous structure, not only
composed of GABAergic neurons [41, 42] but also contains
glutamatergic neurons [7, 41, 43–45]. It can be divided into
different subnuclei based on morphological, biochemical, and
electrophysiological studies: the antero-medial part of the
BNST (amBNST), the antero-lateral part of the BNST
(alBNST), the posterior part of the BNST (pBNST), [46–49].

BNST neurons project principally to a fundamental region
of the reward system, the ventral tegmental area (VTA), and to
a key regulator center of the hypothalamo-pituitary axis, the
paraventricular nucleus of the hypothalamus (PVN). In turn,
the BNST receives strong glutamatergic inputs mainly arising
from the prefrontal cortex, the ventral hippocampus, the
basolateral nucleus of the amygdala, and the paraventricular
nucleus of the thalamus. In addition, the central nucleus
of the amygdala (CeA) and the nucleus accumbens send
GABAergic projections to the BNST.
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The activity of BNST neurons is modulated by dopamine
(DA) and 5-hydroxytryptamine (5-HT) from the ventral
periaqueductal gray region (vPAG)/dorsal raphe (DR) [50, 51]
and noradrenaline (NA) coming, from the nucleus of the tractus
solitarius (A2) and A1 region [52]. Moreover, the activity of
BNST neurons can be modulated by distinct neuropeptides such
as corticotropin-releasing factor (CRF), pituitary adenylate
cyclase-activating peptide (PACAP), neuropeptide Y, and
endocannabinoid under certain circumstances [45, 52].
Altogether, these interconnected structures not only constitute a
functional connectome consistent with its role in stress and
motivation-associated behaviors but also support the complexity
and the multifaceted aspects of the regulation of BNST neurons.

Thus, this review will aim to summarize the main pharma-
cological studies performed in the BNST based on in vitro,
in vivo electrophysiology and behavioral data, in order to give
a better view of the intriguing regulation of BNST neuron
activity (Table 1).

Glutamatergic Pharmacology of the BNST

The amBNST receives excitatory inputs primarily from the
ventral subiculum of the hippocampus (vSUB) and
infralimbic cortex [42, 60, 61]. The lateral part of the BNST
mainly received excitatory inputs from the insular cortex [61]
and the paraventricular nucleus of the thalamus [62]. Our un-
derstanding of the functional role of these pathways mainly
stems from local glutamatergic pharmacology studies.

First, activation of metabotropic glutamatergic receptors
(mGluR) in the BNST diminishes the glutamatergic transmis-
sion. For example, an agonist of the group I mGluR -3,5-
Dihydroxyphenylglycine (DHPG) decreases the frequency of
the miniature excitatory postsynaptic currents (mEPSCs) and
triggers long-term depression (LTD) in the BNST [14, 15]. In
addition, bath application of an agonist of the group II of the
mGluR (LY354740) diminishes the field response and the EPSC
in the BNST [53]. It has been shown that bath application of an
agonist of the group III of mGluR (3,4-Dicarboxyphenylglycine
(DCPG)) decreases the frequency and the amplitude of the spon-
taneous excitatory post-synaptic current (sEPSCs) [54].
Together, these studies indicate that activation of mGluR results
in a wide range of inhibitory responses in the BNST that have
been associated to anxiety and stress-related behaviors [63].

On the other hand, an infusion of ionotropic glutamatergic
antagonist (CNQX ((6-cyano-7-nitroquinoxaline-2,3-dione) +
AP5 (2-amino-5-phosphonovaleric acid) reduces the excitato-
ry response in the BNST evoked by the infralimbic cortex
stimulation in anesthetized rats [13]. Interestingly, blocking
glutamatergic transmission within the BNST in mice (local
infusion of CNQX and AP5) can induce anxiolytic effect
[8]. In addition, projections from neurons of the BNST to
the VTA are crucial not only to behaviors related to reward

and motivation but also aversion [7]. One particularly impor-
tant glutamatergic output of the BNST is the VTA. BNST
neurons control the activity of VTA DA neurons; chemical
stimulation of the ventral part of the BNST (vBNST) with
glutamate infusion increases the bursting activity of VTA
DA neurons [11]. Infusing AP5, an N-methyl-D-aspartate
(NMDA) receptor antagonist, in the BNST blocks the LTP
in BNST neurons projecting to the VTA induced by high-
frequency stimulation in the vSUB and the concomitant po-
tentiation of VTA DA neurons [16]. This NMDA-dependent
LTP in the BNST enhances the locomotor activity induced by
a low threshold of cocaine [16]. The NMDA receptor is a
heterotetrameric complex composed of two obligatory
GluN1 subunits and two GluN2 and/or GluN3 subunits. The
use of NMDA receptor subunit-specific pharmacology have
demonstrated a key role of the extrasynaptic populations of
GluN2B-containing NMDA receptors in tuning LTP after
chronic ethanol exposure [64]. All together, these BNST stud-
ies show that glutamate acting on specific NMDA, AMPA, or
mGluR receptor subtypes not only can modulate fear and
anxiety but also regulate behaviors related to substances of
abuse.

GABAergic Pharmacology of the BNST

The amBNST receives GABAergic innervation mainly from
intra-BNST connections (from the oval nucleus), from local
interneurons or collaterals [48, 65], and from the central
amygdala [60]. First, it has been shown that bath application
of an antagonist of GABAA receptor (Picrotoxin) enhances
the resting membrane potential of dorsal part of the BNST
neurons [66]. Moreover, BNST infusion of an agonist of
GABAA receptors (Muscimol) inhibits freezing behavior fol-
lowing an exposure to a predator odor [17]. In addition, anx-
iety behavior and decrease in social behavior have been noted
in animals that had received a GABA synthesis inhibitor (L-
allyglycine) in the BNST [18]. An important role attributed to
the BNST is the integration of sensory information from a
situation perceived as stressfull [67]. Lines of evidence com-
ing from different branches of neuroscience indicate that
GABAergic neurotransmission in the BNST is a preferred
candidate for modulation of anxiety-related and innate-
defensive responses, with evidently clinically relevant effect
with benzodiazepine [68]. Together, these data support a
strong impact of the GABAergic transmission in the BNST
on anxiety-related behaviors.

Monoamine Pharmacology of the BNST

A characteristic of the BNST is its high contents and diversity
of neuromodulators. Indeed, both glutamatergic and
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GABAergic transmission within the BNST can be modulated
by stress-elicited release of neuromodulators such as mono-
amines, neuropeptides, and endocannabinoid. Overall, the effects
of these neuromodulators in the BNST seem to participate to a
multistep control of the autonomic and psychoneuroendocrine
impacts of stress.

Noradrenaline

Noradrenergic fibers arising from the A1 and A2 noradrener-
gic cell groups (nucleus of the tractus solitarius) [69, 70] main-
ly project to the vBNST [71]. Threatening or stressful stimuli
activate these noradrenergic inputs which thereafter promote
the release of NA in the BNST [72, 73]. In addition, norad-
renergic system may be activated in response to a reward
stimulus. For example, an increase of NA release in the
vBNST has been noted after intracranial self-stimulation of
the VTA/SNc [74]. NA can act on three different classes of
adrenergic receptors: α, β1, and β2 receptors (see for more
details review [75] ). Intra-BNST infusion of β1 and β2 recep-
tor antagonist decreases footshock-induced reinstatement of
cocaine seeking behaviors [23] and diminishes drug
withdrawal-induced conditional placed aversion [22].

NA can affect both excitatory and inhibitory transmission
in the BNST [20, 63, 66]. The action of noradrenaline onto the
glutamatergic transmission in the BNST depends on the type
of receptor activated. Indeed, it has been demonstrated that
application of NA can trigger both enhancement and decrease
of the excitatory transmission in the BNST [66]. Notably, bath
application of an agonist of the α2A adrenergic receptors
(UK-14,304) decreases the EPSC in the BNST whereas a β
adrenergic receptor agonist (isoproterenol) increases the excit-
atory transmission in the dBNST [21]. Furthermore, NA can
increase the GABAA inhibitory postsynaptic currents (IPSC)
in the vlBNST [20]. Thus, these data suggest that noradrena-
line canmodulate the glutamatergic and the GABAergic trans-
mission in the BNST.

Dopamine

Dopaminergic fibers originating from the vPAG/DR and the
VTA principally innervate the anterodorsolateral part of the
BNST [50]. It has been shown that DA bath application in-
creases the frequency of sEPSCs in the dlBNST which was
blocked by D1R and D2R antagonists, SCH23390, and
sulpiride, respectively [76]. This study suggests that DA en-
hances the glutamatergic drives onto dlBNST neurons. To
extend that work, Krawczyck et al. [19] specify that catechol-
amines have bidirectional effect onto the oval BNST, a subre-
gion of the anterodorsolateral part of the BNST. In particular,
DA diminishes the evoked GABAA-IPSCs through D2R
whereas NA decreases the AMPAR-EPSCs through the α2

adrenergic receptor. Therefore, this result may propose that

DA reduces the inhibitory influence onto oval BNST neurons
whereas the NA downregulates the excitatory drive specifical-
ly onto them. Thus, DA may regulate differentially
anterodorsolateral part of BNST neurons depending on their
specific localization.

In the future, better characterization of DA’s modulation of
the different subnuclei of the alBNST may help to better un-
derstand the regional specificity of neurons in the dlBNSTand
their control by dopamine released from multiple origins.
Catecholamines may be an important signal that triggers in-
formation related to stressful situations or reward-related situ-
ation to the dlBNST.

Serotonin

It has been described that serotonin (also known as 5-
hydroxytryptamine (5-HT)) application in the alBNST in-
duces complex neuronal responses. It can drive both excitato-
ry and inhibitory responses [35, 58]. One hypothesis is that the
inhibition of BNST neurons elicited by 5-HTmay be triggered
by an activation of 5-HT type 1 receptor whereas the excita-
tion of BNST neurons may be mediated through another type
of 5-HT receptor, the 5-HT2A or 5-HT7. In addition, a recent
study highlights a key role of BNST 5-HT2C receptors in
promoting anxiety through a specific activation of a subpop-
ulation of CRF neurons [77]. Moreover, bilateral injection of
an agonist of the 5-HT1R (5-CT), in the BNST reduced the
acoustic startle responses, which suggests an anxiolytic effect
[24]. Thus, activation of the 5HT1AR in the lBNST may con-
tribute to anxiolytic behavior whereas the activation of the
5HT2R may drive anxiogenic effect. Indeed, 5-HT reuptake
inhibitor is used as therapeutic tool to treat anxiety trouble
disorder. 5-HT is an important neuromodulator that can bidi-
rectionally modulate anxiety depending on the targeted recep-
tor. Additional works may be required to further dissect the
action of 5-HT within the BNST.

Endocannabinoid Pharmacology of the BNST

The endocannabinoid (eCB) system exerts a powerful control
onto BNST neurons activity. The eCB system acts as a retro-
grade signaling by releasing on demand anandamide or 2-
arachidonoyl-glycerol (2-AG) that targets cannabinoid type
1 receptor (CB1R). Activation of CB1R leads to a temporary
or prolonged decrease of the neurotransmitter release. CB1R
have been localized on glutamatergic inputs from medial pre-
frontal cortex (mPFC) [13, 25] and GABAergic fibers inner-
vating the BNST [25], but have also been proposed to modu-
late aversive behaviors through its action on noradrenergic
transmission in the BNST [78].

The BNST integrates information from stress input pathways,
and subsequently regulates both stress output and reward
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pathways [11, 79]. The endocannabinoid system participates in
these functions, since it has been shown that intra-BNST infusion
of a CB1R agonist, (Win 55,212–2) induces a decrease of excit-
atory response in BNST neurons evoked by infralimbic cortex
(ILCx) electrical stimulation in anesthetized rats [13], which was
reversed by i.p. injection of CB1R antagonist (SR1416A). In
addition, this intra-BNST infusion also decreases ventral tegmen-
tal area (VTA) dopamine neurons excitatory evoked activity in-
duced by ILCx stimulation. Moreover, bath application of CB1R
agonist, (Win 55,212–2), promotes the decrease of fEPSCs,
EPSCs and of the frequency of sEPSCs in the alBNST [25].
One of the main functions of the eCB system is to modulate
stress response since it acts as an inhibitory tone on the
hypothalamo-pituitary axis [80].

We have previously shown that acute restraint stress in-
duced an eCB dependent long term potentiation (LTP) in the
amBNST after a 10 Hz stimulation in the mPFC since it was
blocked by intra- BNST infusion of an antagonist of CB1R,
(AM251) [26]. Moreover, 10 Hz stimulation in the mPFC also
promotes eCB dependent LTP in the amBNSTafter 60 days of
nicotine self-administration in rats [27]. Intra-BNST infusion
of AM251 blocked this LTP and decreased the cue-induced
reinstatement in these nicotine self-administrated rats.

All together, these data convey a key function of the eCB
system in the regulation on BNST neurons activity notably
after stress or drug exposure. Further investigations are re-
quired to better tackle the role of this complex eCB system
in the BNST and their behavioral outcomes.

Neuropeptides Pharmacology of the BNST

In this part, we will give a brief overview of the different
neuropeptides encountered in the BNST and their effects,
please for more details (see review [81]).

PACAP

Pituitary adenylate cyclase activating peptide (PACAP) is a
neuropeptide that can be synthetized in two possible isoforms
PACAP38 and PACAP27. PACAP has been detected in fibers
from the PVN and dorsal vagal complex [82]. The BNST is
enriched in PAC1 receptor, which is the main postsynaptic
target of PACAP. PACAP infusion in the BNST induces
anxiogenic behavior which can persist for up to 7 days after
[83]. An increase in the level of corticosterone has been ob-
served after acute PACAP 38 infusion in the BNST [36].
Indeed, repeated stress exposure promotes an increase in
PACAP transcript specifically in the dlBNST [37, 83]. In ad-
dition, PACAP antagonist infusion in the BNST blocks
anxiogenic effect of repeated stress and deficit in novel objet
test [38]. In addition, 14 h after PACAP infusion in the poste-
rior part of the BNST, there is a loss of weight and food intake

[38, 39]. Thus, these results suggest that PACAP may be re-
leased in the BNST after stress exposure to participate to the
stress response, and therefore promotes anxiogenic effect.
Further electrophysiological studies will be really helpful to
understand the neuronal mechanisms of PACAP within the
BNST.

CRF

CRF is a neuropeptide that is mainly produced by the PVN,
BNST neurons, or CeA [46, 84] which notably participates to
the initiation of stress responses through two different type of
receptors CRF type: CRF type 1 receptor (CRFR1) and CRF
type 2 receptor R (CRFR2) (for more details, see the review
[81]). CRF signaling modulates both glutamatergic and
GABAergic transmission within BNST and modulates the
subpopulation of neurons projecting to the VTA [85]. For
example, CRFR1 activation enhances the frequency of
sEPSCs in the BNST [31]. In addition, CRF application in-
creases the amplitude of miniature IPSCs in the BNST
through CRFR1 [30].

A number of studies have drawn links between CRF sig-
naling in the BNST with several aspects of aversive and
anxiogenic behavioral phenotypes. CRFR1 antagonist infused
in the BNST block stress-induced reinstatement of drug seek-
ing behavior [28, 86]. CRF infusion in the BNST induces
anxiogenic effect mediated by CRFR1 and drives conditional
place aversion [34]. However, the effect of CRF depends not
only on the type of receptor activated but also on the region of
the BNST studied. Indeed, intra-alBNST injection of CRFR2
antagonist also induces an anxiogenic effect [32]. In addition,
CRF system within the BNST influences maternal behavior.
Notably, it has been shown that CRFR1 activation in the
BNST impaired maternal care [33] and participated to the
control of autonomic and neuroendocrine function [87].

Neuropeptide Y

Neuropeptide actions on the BNST are nevertheless much
more complex; we do not discuss the action of other neuro-
peptides in the BNSTsuch as dynorphin, nociceptin, oxytocin,
and neurotensin (see, [81] for more details) nor their concom-
itant actions.

In the BNST, the neuropeptide Y (NPY) can mainly mod-
ulate inhibitory GABAergic transmission in the BNST
through two distinct receptors: Y1R and Y2R. NPY reduces
miniature Inhibitory Postsynaptic Current (mIPSC) amplitude
and frequency in the vlBNST via the Y2R [76] More recently,
it has been demonstrated that NPY can increase the frequency
of mIPSC in the BNST through the Y1R both in mice and
monkey [40]. Together, these studies suggest that NPY pro-
mote anxiolysis and anti-depressive effects, notably after
stress exposure [81, 88, 89].
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The NPY system in the BNST has also been implicated in
addiction. Interestingly, intra-BNST infusion of Y1R agonist
decreases binge alcohol drinking behavior, whereas Y2R ag-
onist increases binge drinking behavior. Further investigations
on the function of NPY in vivo in the BNST will be helpful
and may provide a new pharmaceutical target strategy for
anxiety and addiction disorder.

Conclusion

Thus, understanding how the activity of BNST neurons is
regulated represents still a great challenge. Indeed, classical
pharmacological approach is an important first step that helps
to better tackle these questions. However, as exposed previ-
ously, to have a more detail view of the BNST and its com-
plexity, we have also to take into account its different subre-
gions, cell subpopulations, and input specificity. Optogenetic
and pharmacogenetic approaches provide good perspectives
to further dissect mechanisms and functions of BNST neu-
rons. One other potent question to address is also to define
how informations from such different synapses can convey
and be integrated at the single cell level in the BNST and
how these informations will then be transferred to the VTA
and/or to the PVN. The BNST develops powerful plasticity
properties under certain circumstances to cope with drastic
changes in homeostasis induced by stressful situations or re-
ward experience for example. Further investigations on the
BNST and its ability to undergo onto plasticity may be re-
quired and would give another alternative approach to treat
pathology such as anxiety disorder, anorexia, and addiction.
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