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Abstract Computational modelling is a cornerstone of
Comprehensive In Vitro Proarrhythmia Assay and is re-
inc reas ing ly be ing used in d rug deve lopmen t .
Electrophysiological effects of drug-drug interactions can be
predicted in silico, e.g. with the use of in vitro cardiac ion
channel data, PK profiles and human ventricular cardiomyo-
cyte models. There are, however, several approaches with
different assumptions used to assess the combined effect of
multiple drugs, and there is no agreed standard interaction
model. The aim of this study was to assess whether the choice
of the drug-drug interaction (DDI) model (Bliss indepen-
dence, Loewe additivity, or simple sum) influences the results
of QT interval simulation trial. The Simcyp Simulator version
12.1 (Simcyp Ltd. [part of Certara], Sheffield, UK) and
Cardiac Safety Simulator 2.0 (Simcyp Ltd. [part of
Certara], Sheffield, UK) were used to simulate results of
8 virtual trials mimicking clinical studies and generate
individual QTc data. The combined effect of inhibitory
actions of drugs which were given simultaneously was
calculated with use of three different interaction models.
The PD effect of DDI was assessed and the differences
between mean observed and mean predicted ΔQTcB

values for terfenadine interactions were not statistically
significant in all but one cases. Differences between the
three DDI models are not statistically significant, imply-
ing that the choice of the DDI model, in the case of lack
of synergy or antagonism, is irrelevant to the average
predicted effect at the clinical level. However, in some
cases, it can influence the verdict on combinatorial therapy
safety for individual patients.
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Introduction

Polypharmacy is a fact of life in the clinic. Medicine in
general and pharmacotherapy, in particular, take advan-
tages of combination therapies in many diseases, e.g.
hypertension, diabetes, asthma or cancer. When
intended, drug interactions resulting from drug combina-
tions maximize the efficacy of a therapy and minimize
adverse effects. On the other hand, however, in the ma-
jority of cases, simultaneous use of several active com-
pounds complicates the pharmacotherapy and may lead
to increased risk of health- or life-threatening drug-drug
interactions (DDI). The mechanism of interaction can be
specific for the pharmacokinetics (PK) of the combined
drugs as well as their pharmacodynamic (PD) activity or
combine both areas—PK/PD. PK interaction can occur
at any level of the absorption, distribution, metabolism,
and excretion (ADME). The detailed processes vary for
a different element of drugs pharmacokinetics [26].
There are plethora of potential interaction mechanisms
at the level of drug action. Pharmacodynamic interac-
tions occur when a precipitant drug alters the clinical
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effects of the object drug at its site of action [4]. This
alteration is caused by modification of the environment
which finally results in increasing or decreasing the expected
clinical effects. One of the potential harmful effects of DDI is
the QT interval prolongation and torsade de pointes (TdP)
arrhythmia.

DDIs are studied in vitro or in vivo during clinical trials.
However, many of potential adverse effects being a conse-
quence of DDI are not revealed until the drug is marketed
because of, among other issues, infeasibility of experimental
testing of all possible drug combinations. Computational ap-
proaches offer an advantage in DDIs evaluation as it is possi-
ble to explore wide space of drug combinations using various
types of drug data (e.g. chemical structure, physico-chemical
properties, information about targets) [3, 12, 24, 27, 33, 34,
36, 37].

In silico modelling is a cornerstone of CiPA
(Comprehensive in vitro Proarrhythmia Assay) initiative
and currently witnessed proarhythmia assessment para-
digm shift. To incorporate DDIs into proarrhythmia
modelling, it is necessary to assess the combined effect
of multiple drugs on channel or electrocardiogram
(ECG) level. There are several approaches used to as-
sess the combined effect of multiple drugs [8]. Proposed
DDI models differ in their assumptions, and there is a
lack of consensus on the standard interaction model
[31]. The Loewe additivity [23] and Bliss independence
[2] models are widely used and applied to various prob-
lems [11]. The main assumption of the Loewe model is
that all the interacting compounds in a combination act
on the same target or binding site through the same
mechanism while Bliss model assumes exactly the op-
posite, i.e. drugs in a combination act independently, yet
they can perturb their individual responses. Both the
models assume the lack of synergistic and antagonistic
interaction between drugs. In such situation, there is also the
possibility to consider the effect of interaction as a simple sum
of the effects of single compounds up to some physiologically
feasible maximum level.

The aim of this study was to assess whether the choice
of the DDI model influences the results of QT interval
simulation trial and which of the applied interaction
models generates the results closest to the observed
values. Terfenadine was chosen as an exemplary case as
there are published results of several clinical studies
where different QT prolonging drugs were administered
concomitantly with terfenadine.

Methods

The Simcyp Simulator version 14.1 (Simcyp Ltd. [part of
Certara], Sheffield, UK) and Cardiac Safety Simulator 2.0

[10] were used to simulate results of eight virtual trials mim-
icking clinical studies. It is worth mentioning that these eight
trials cover all information on that topic in the publicly
available scientific sources [35]. Simcyp platform en-
abled to estimate drug exposure resulting from DDIs
between terfenadine and co-administrated metabolic in-
hibitors (clarithromycin, erythromycin, fluconazole, flu-
oxetine, itraconazole, ketoconazole, and paroxetine). The
simulations of the pharmacokinetics of terfenadine alone
and in the presence of metabolic inhibitor were per-
formed using full physiologically based pharmacokinetic
(PBPK) model to allow to simulate the heart tissue con-
centrations. Pharmacodynamic effects of DDIs in the
population of patients were simulated with the use of
Cardiac Safety Simulator.

Both PK and PD components of DDI simulation were de-
signed to mimic all settings of the above mentioned clinical
trials in terms of demographic, physiological and genetic char-
acteristics of the observed populations. Each study was simu-
lated 10 times to account for the inter-study variability as
described previously [35].

Three different interaction models were applied to
calculate the combined effect of inhibitory actions of
drugs which were given simultaneously, i.e. (1) simple
arithmetic sum with a maximal inhibition limit of 1 (all
channels blocked in 100 %), (2) Bliss independence,
and (3) Loewe additivity to assess which of the applied
interaction models generates the results closest to the
observed values.

Equation 1. Simple sum model.

for E A;Bð Þ≤1 : E A;Bð Þ ¼ E Að Þ þ E Að Þ;
for E A;Bð Þ > 1 : E A;Bð Þ ¼ 1

Equation 2. Bliss independence model [2].

E A;Bð Þ ¼ E Að Þ þ E Bð Þ−E Að Þ*E Bð Þ

Equation 3. Loewe additivity model [23].

E A;Bð Þ ¼ E Að Þ þ E Bð Þ−2*E Að Þ*E Bð Þ
1−E Að Þ*E Bð Þ

Figure 1 presents expected differences in DDI effect
predicted by three different models assuming the same
concentrations and equal potencies of interacting drugs
(A, B).

For all tested interaction models, the maximum current
inhibition was set to 1 (100 %).
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Table 2 Observed vs. predicted average QT intervals

QT interval [ms]

Observed Predicted
suma

Predicted
Blissa

Predicted
Loewea

Fluoxetine [1] BL 372.4 396.0

T 374.9 398.5

I – 400.9

T + I 379 401.6 400.8 400.2

Distance 1.49 2.59 3.34

Erythromycin
[15]

BL 392.8

T2 8 398.5

Ib 21 403.7

T + Ib 39 418.2 413.6 411.4

Distance 18.38 22.75 25.13

Fluconazole [16] BL 398.5 395.2

T 398.4 401.3

I 414.3

T + I 411 422.6 418.6 416.8

Distance 31.28 26.02 23.65

Itraconazolec [17] BL 376 430.5

T 390 438

I No effect 486.9

T + I 417 452.2 448.9 447.3

Distance 24.05 28.50 30.68

Ketoconazole
[18]

BL 408 394.5

T 416 395

I – 415.4

T + I 490 439 427.9 423.6

Distance 48.61 64.03 70.14

Clarithromycin
[19]

BL 409 395.5

T 410 401.4

I 407 393.9

T + I 430 404.4 403.8 402.7

Distance 21.43 22.96 23.79

Erythromycin
[19]

BL 394 397.5

T 408 403.7

I 409 405.8

T + I 428 420.1 415.6 413.5

Distance 14.27 19.46 22.17

Paroxetine [25] BL 381 392.0

T 387 394.5

I – 393.5

T + I 386 396.6 393.6 396.8

Distance 4.69 4.86 4.78

In bold - the best fitted model (the lowest distance value)

BL baseline, T terfenadine, I inhibitor
a DDI effect on ion channels calculation method
bOnly QT change reported in the study
cMaximal QT change
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Fig. 1 Resultant channel inhibition for 3 DDI models. Equal
concentrations and potencies assumed; [DRUG A] = [DRUG B];
IC50 = 1 μM, n = 1. S—simple sum model; B—Bliss model; L—
Loewe model

Table 1 Comparison of the observed and simulated pharmacokinetic
results of the clinical trials

Studied inhibitor
(Reference)

Cmax [ng/ml] AUCa [ng × h/ml]

Observed Predicted Observed Predicted

Fluoxetine
[1]

T 2 2.3 24.6 15.3

T + I 1.4 2.3 14.2 15.3

Erythromycine
[15]

T <5 2.71 NA NA

T + I 20.3b 9.74 NA NA

Fluconazole
[16]

T <5 2.48 NA NA

T + I <5 4.11 NA NA

Itraconazole
[17]

T 7.63c 4.9 NA NA

T + I 14.97c 14.6 NA NA

Ketoconazole
[18]

T 7d 2.23 NA NA

T + I 49.3e 19.67 NA NA

Clarithromycin
[19]

T <5 9f NA NA

T + I 2.39 7.03 NA NA

Erythromycine
[19]

T <5 2.47 NA NA

T + I 7.6g 8.98 NA NA

Paroxetine
[25]

T 3.68 2.31 30.8 20.5

T + I 3.64 2.48 30.0 27.5

T terfenadine only, T + I terfenadine + inhibitor, NA not available
a Time as in the clinical study
b For 3 out of 9 subjects; remaining subjects <5 ng/ml
c For 3 out of 6 subjects; remaining subjects <5 ng/ml
d For 1 out of 6 subjects; remaining subjects <5 ng/ml
e Estimated from the graph for 5 out of 6 subjects; remaining subject
<5 ng/ml
f For 4 out of 6 subjects
g For 3 out of 6 subjects
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The measure of distance (D) was calculated as follows:

D ¼


ΔTpred−ΔTobs

� �2 þ ΔTþ Ipred−ΔTþ Iobs
� �2 þ ΔTþ Ipred−ΔTpred

� �

− ΔTþ Iobs−ΔTobsð Þ� �2
q

where:

Δ QT interval change
T terfenadine
I inhibitor
pred predicted value
obs observed value

It was possible to compare the average values only
as the observations for individual patients were not re-
ported in the literature. Predictions for individual pa-
tients were analysed separately to determine the rele-
vance of the model choice for the drug cardiac safety
assessment. Safety threshold for which assumed DDI
model gives results which are of relevance to conclude
on potential health-threatening was defined as 5 ms of
the heart rate corrected QT prolongation. A mean QTc
interval prolongation of 5 ms with the upper limit of
95 % confidence interval above 10 ms is defined as
threshold pharmacologic effect of a drug on cardiac re-
polarization and the threshold level of regulatory con-
cern (ICH [20]). For the sake of this analysis, the case
was defined as a situation where using different interac-
tion model would change the decision about meeting the
above-defined threshold. The 5 ms threshold can be
recognized as very strict, especially considering the expected
population variability; however, this was used to mimic the
ICH E14 suggested value.

Results

The simulated and the reported clinical values of area under
the curves (AUCs) and maximum plasma concentrations
(Cmax) are given in Table 1.

Table 2 presents results of simulation QT studies and
compares them with the reported clinical values.
Distance is the measure indicating goodness of fit of
the predicted ΔQTc values as compared against the ob-
served one.

Predicted with the use of three different interaction
models and observed average changes of QTcB interval
lengths (baseline subtracted) resulting from concomitant
administration of terfenadine and an inhibitor are pre-
sented on Fig. 2.

Percentage of cases meeting the criterion of reaching the
safety threshold (5 ms increase for QTcB) for all analysed
models are presented in Table 3.

Discussion and Conclusions

The early assessment of cardiac safety liabilities is essential to
advance novel drug candidates confidently. Apart from being
early, the screening system should also be efficient and cost-
effective. Detection of the drug-induced electrophysiological
toxic effects is, therefore, crucial. The new paradigm of cardi-
ac safety testing using in vitro human ion channel assays,
human-based in silico reconstructions and human stem cell-
derived cardiomyocytes has been recently discussed [9]. One
of the characteristics of all safety testing systems is their focus
on the single chemical entity. Although, as it was described
before in the clinical settings, the situation where a single drug
is given is relatively rare and polypharmacy is very common.
Therefore, system for the safety assessment of the drug com-
binations would be needed. From the above-listed systems
and methods human-based in silico reconstructions of cardiac
electrophysiology look best suited for such need. If properly
validated, computer simulations with the use of biophysically
detailed models can offer precise information about the clini-
cal consequences of drug combinations without running clin-
ical trials, especially when combined with the already com-
monly used PBPK models used for the exposure assessment.
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In the current study, the pseudoECG signals were simulated
for terfenadine alone and in the presence of seven different
compounds which are inhibitors of terfenadine metabolism as
well as known QT prolonging drugs. The pharmacokinetic
component of the DDI was modelled and simulated with the
use of Simcyp Simulator. The predicted AUC and Cmax values
for terfenadine alone and with the concomitantly given inhibi-
tors were close to the clinically observed values as presented in
the recent publication [35]. Predicted terfenadine and inhibitor
exposure profiles were utilized to calculate ion channels inhibi-
tion and current changes (IKr, IKs, INa, ICa) resulting from drug
combination. The latter was done assuming three models of
DDI effect. Current specific, maximal ion channel conduc-
tances expressed in the ten Tusscher human ventricular cardio-
myocyte model were modified by the calculated total inhibition
of ion currents. The inhibition was drug concentration depen-
dent, under the assumptions that the in vitro measured activity
equals to in vivo situation and that the maximum inhibition
cannot exceed 100 %. TheΔQTcB was calculated on the basis
of simulated pseudoECG signals for baseline (no drug),
terfenadine alone, and terfenadine plus inhibitor scenarios.

The prediction of drug-drug interaction at the PD level was
assessed with the use of statistical methods. The differences
between mean observed and mean predicted ΔQTcB values
for terfenadine interactions were not statistically significant
(Welch t test) for most of the studies (except for ketoconazole
study). Some discrepancies between predictions and clinical
observations may arise from the in vitro data variability, small
populations of individuals included to the clinical trials, or
ΔQTcB calculation method (different definition of baseline).

The hERG channel is the main site of PD interaction be-
tween terfenadine and perpetrating drugs used in this study.
The Loewe and Bliss DDI model assume the same or different
binding sites within channel pore for simultaneously acting
channel blockers. Since erythromycin [5, 7] and possibly
clarithromycin [6] bind to the external domain of hERG chan-
nel protein, while terfenadine [21], fluoxetine [14, 28], flucon-
azole [13], ketoconazole [29, 30, 32], paroxetine [22] and
presumably itraconazole bind to internal domain of hERG
channel pore, the Bliss and Loewe model, respectively, should
perform better for those groups of drugs. This is not the case
according to the results obtained it this study. As indicated in
Table 2, in almost all cases, simple sum method yield the
closest results to those observed in clinical trials. However,
differences between the three DDI models are not statistically
significant, implying that the choice of the DDI model, in case

of lack of synergy or antagonism, is irrelevant to the average
predicted effect at the clinical level.

In the thorough QT (TQT) studies, threshold of regulatory
concern for QT prolongation is set as 5 ms (ICH [20]). The
percentage of individual patient records, where the difference
between the models predictions was at least 5 ms ranged from
0 to 78 % depending on the perpetrating drug. However, only
cases where the choice of the model could be of relevance for
the conclusions drawn, i.e. where the models predictions dif-
fer and put the QTc change on the opposite sites of the safety
threshold, can be interpreted as important difference. As
shown in Table 3, the percentage of such cases is low. It can
be concluded that the model choice can influence the verdict
on combinatorial therapy safety for individual patients, but it
has a negligible effect at the level of population.
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