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Abstract The use of enzyme/prodrug system has gained at-
tention because it could help improve the efficacy and safety
of conventional cancer chemotherapies. In this approach, can-
cer cells are first transfected with a gene that can express an
enzyme with ability to convert a nontoxic prodrug into its
active cytotoxic form. As a result, the activated prodrug could
kill the transfected cancer cells. Despite the significant prog-
ress of different suicide gene therapy protocols in preclinical
studies and early clinical trials, none has reached the clinic due
to several shortcomings. These include slow prodrug-drug
conversion rate, low transfection/transduction efficiency of
the vectors, and nonspecific toxicity/immunogenicity related
to the delivery systems, plasmid DNA, enzymes, and/or
prodrugs. This mini-review aims at providing an overview
of the most widely used enzyme/prodrug systems with em-
phasis on reporting the results of the recent preclinical and
clinical studies.
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Introduction

In recent years, cancer treatment methods are becoming more
focused on targeted approaches in order to maximize treat-
ment efficacy while reducing side effects. One of these
targeted approaches is termed suicide gene therapy, also
known as gene-directed enzyme prodrug therapy (GDEPT).
The success of suicide gene therapy is dependent on its three
major functional components: enzyme, prodrug, and gene
delivery system (vector).

The function of the vector is to carry the gene that en-
codes an enzyme to the target cancer cells for expression. In
general, gene delivery systems can be divided into two ma-
jor groups including viral (e.g., adenovirus, lentivirus, etc.)
and nonviral (e.g., synthetic polymers and lipids, bacteria-
based and cell-based) (Table 1). Each vector type comes
with a series of advantages and disadvantages. Since the
focus of this mini-review is not on vectors but on enzyme/
prodrug systems, we will not discuss them further here. For
more information related to the use of vectors for cancer
gene therapy, the readers are referred to excellent recent
reviews by Forbes [27], Cattaneo et al. [11], and Mohit
and Rafati [63].

The function of the enzyme which is expressed by the
transfected cancer cells is to convert the nontoxic/
nonfunctional prodrug into its toxic (functional) form
resulting in the death of the enzyme-producing cancer
cells as well as neighboring cells through a phenomenon
known as bystander effect (Fig. 1) [10, 26]. It is worth
mentioning that the expression of the enzyme in
transfected cells can be regulated by tumor-specific pro-
moters. This regulatory element could enhance the
enzyme/prodrug system’s safety by restricting the en-
zyme expression only to the tumor cells. By applying
the cancer-specific promoters, the suicide gene could
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get selectively expressed in cancer cells, while sparing
normal ones. The promoter of human telomerase reverse
transcriptase (hTERT) is one of the most widely used
promoters in the field and is the only transcriptional con-
trol element that has successfully entered into clinical
trials [67]. However, the problem associated with the
use of hTERT promoter is its low expression activity.
In order to enhance promoter’s expression activity and
also overcome the potential development of resistance
by the tumor cells, several groups have tried to create
more specific and efficacious ones. Recently, Rad 51,
OPN, RAN, BRMS1, and MCM5 promoters were iden-
tified through screening of a large panel of normal and
cancer cells, and interestingly, some of them showed sig-
nificantly higher activity than hTERT promoter [14, 15,

32]. Another means of improving promoter activity is to
artificially design a chimeric promoter. For example, a
promoter with a stronger activity can be obtained by
constructing the chimeric promoters with the fusion of
two promoters [23] or various transcriptional regulatory
elements [30, 89].

In the following sections, we provide an overview of the
eight most widely investigated enzyme/prodrug systems
which are shown to be effective in inducing tumor cell death
and inhibiting cancer progression. The purpose of this concise
mini-review is to discuss the forte and weaknesses associated
with the efficacy and safety of each system. Therefore, the
coverage of the literature in this review is not encyclopedic;
rather, selected examples have been chosen to highlight cer-
tain important points.

Fig. 1 Schematic representation
of the mechanism of action in
suicide gene therapy. First, cancer
cells are transfected with a gene
that codes for an enzyme. The
enzyme is able to convert the
nontoxic prodrug into its
cytotoxic form resulting in the
death of the transfected cancer
cells and the neighboring ones
through a phenomenon known as
bystander effect

Table 1 Classification of the vectors used in suicide gene therapy of cancer

Vector type Vector subtype Advantages Disadvantages References

Viral vectors Retrovirus/lentivirus Long-term transgene expression
Integrates the gene into host genome
Low immunogenicity

Safety concerns (insertional
mutagenesis)

[7, 21, 115]

Adenovirus Effect on dividing and nondividing
cells

Lower risk of host genome integration

Safety concern (high immunogenicity)
Transient transgene expression

[48, 54, 111]

Adeno-associated virus Medium to high transgene expression
Effect on dividing and nondividing

cells
No significant immunogenicity

Low DNA loading capacity
Safety concerns (possibility of

insertional mutagenesis)

[21, 60, 64, 88]

Nonviral vectors Synthetic polymers and lipids Ease of preparation
Lower cost
Lower immunogenicity

Lower transfection efficiency [18, 43, 106]

Amino acid-based vectors Monodisperse and uniform constructs,
ability to fine tune structure

Lower transfection efficiency [8, 69, 108]

Bacteria-based vectors Large capacity for suicide enzyme
loading

Bacterial minicells (BMCs) are nonin-
fectious.

Safety concern (infection by using live
bacteria)

[33, 53, 100]

Cell-based vectors Tumor tropism
Self-isolated cells without the

immunogenicity concerns

Low efficiency of tropism
High costs
Safety concern (unknown fate)

[1, 70, 68]
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Enzyme/Prodrug Systems

Herpes Simplex Virus Thymidine Kinase (HSV-TK)
/Ganciclovir

In this system, gancyclovir (GCV) undergoes a
monophosphorylation step by herpes simplex virus thymi-
dine kinase (HSV-TK) enzyme. After the first phosphoryla-
tion step, the triphosphate form of the GCV is produced with
the help of endogenous kinase (Fig. 2a). In this form, the
GCV-triphosphate can cause apoptosis by introducing chain
termination and single-strand breaks into DNA [13]. One
limitation of using GCV-triphosphate as anticancer agent is
that it could only affect the dividing cells [4, 66, 87, 98].
The second drawback of this system is that the GCV-
triphosphate transportation to surrounding cells is limited
by the presence of gap junctional intercellular communica-
tions. Recently, Wu et al. showed that the bystander effect of
the GCV-triphosphate can be enhanced by the expression of
connexin32 (Cx32), which is responsible for producing gap
junctions [112]. Furthermore, HSV-TK has a high affinity
toward its natural substrate, thymidine, which leads to the
need for using a high dose of GCV in order to win the
competition [2]. This higher GCV dose could result in sup-
pression of immune system and damage to bone marrow
cells [50]. The enhanced activity of ATP-binding cassette
(ABC) transporters in cancer-resistant cells is one of the
main reasons of therapy resistance in cancer [55].
Therefore, ABCG2-mediated efflux of GCV in side popula-
tion cells can limit the efficiency of this enzyme/prodrug
system [35].

In the past decades, several attempts have been made in
order to improve the efficiency of TK/GCV system. In one
approach, modifications of enzyme active sites have resulted
in generation of mutated forms of the enzyme, such as mutant
30 (L159I/I160L/F161A/A168Y/L169F), SR39 (L159I/
I160F/F161L/A168F/L169M) [5, 50], A168H, and a mutated
form of A168H (TK007) [78]. All these mutants have shown
enhanced enzyme affinity toward GCV in comparison to wild
type. In a different approach, an MDR-1-targeted small hair-
pin RNA (shRNA) was used to inhibit the ABC transporters
which led to the accumulation and increase in drugs effect
[73]. Other groups have also examined the use of other drugs
such as acyclovir and valacyclovir instead of GCV and have
observed more efficacy [93, 113].

TK/GCV system has also been used in combination with
other therapeutic modalities in order to enhance its anticancer
efficacy. For example, TK/valacyclovir in combination with
surgery and accelerated radiation showed an increase in pa-
tient survival rates in malignant glioma patients [16]. This
approach has also shown to not only increase the efficacy of
the treatment but also decrease the toxicity in pancreatic ade-
nocarcinoma [4]. Currently, there are a couple of clinical trials

in progress for patients with high-risk acute leukemia
(NCT00914628) and in patients with recurrent prostate cancer
(NCT01913106) (www.clinicaltrials.gov).

Cytosine Deaminase (CD)/5-Fluorocytosine

In this system, 5-fluorocytosine (5-FC) that is a nontoxic
prodrug is converted to its active form, 5-fluorouracil (5-
FU), by CD activity (Fig. 2b) [37]. Although 5-FU has been
used for cancer chemotherapy, at its therapeutic dose, it causes
significant side effects such as mucositis, myelosuppression,
dermatitis, and cardiac toxicity. Due to these side effects, its
application as prodrug in the form of 5-FC and in combination
with cytodeaminase enzyme has gainedmomentum in the past
decades. Two forms of cytosine deaminase, bacteria (bCD)
and yeast (yCD), have been investigated in the context of
cancer therapy. After activation by CD, 5-FU can be further
changed into potent pyrimidine antimetabolites by other cel-
lular enzymes. 5-FU can inhibit thymidylate synthase which
consequently leads to the cell cycle arrest and apoptosis. Since
5-FU traverse into the neighboring cells independent of gap
junctions and even can pass the blood-brain barrier by diffu-
sion, it induces a significant bystander effect [25, 45]. Because
of its unique properties, CD/5-FC system has been used for
the treatment of different types of cancer, such as colon carci-
noma, glioma, and pancreatic cancer [24, 41, 42]. Having
been combined with radiotherapy, CD/5-FC has shown quite
a promising result due to the radio-sensitizing effect of 5-FU
on the treated cells [65]. In comparison to HSV-TK/GCV, CD/
5-FC has shown better results in renal and colorectal carcino-
ma probably due to its more potent bystander effect [92, 99].

Although use of CD/5-FC system has several strengths as
mentioned above, there are some drawbacks that yet need to
be addressed. The first drawback is due to the presence of
normal flora in the gut which is able to convert 5-FC to 5-
FU resulting in side effects. Several groups have worked to
create bCD mutants in order to improve its kinetic showing
promising results [24, 40, 41]. Yeast cytosine deaminase is
another form of the enzyme which provides a few advantages
over bCD including high affinity and better prodrug conver-
sion kinetics. In addition, yCD can be fused with E. coli uracil
phosphoribosyl transferase (UPRT) which is absent in mam-
malian cells. UPRT can directly convert 5-FU to 5-FdUMP
[107] resulting in significant improvement of activity and en-
hanced cancer cell killing efficiency in prostate, ovarian, co-
lon, and breast cancers [62, 81]. Some studies have also
shown that yCD:UPRT/5-FC system may not get affected by
acquired 5-FU resistance and could potentially kill both pro-
liferating and nonproliferating cancer cells [52, 81].

While past clinical trials with CD/5-FC system alone have
reported limited success [44], there are several new clinical
trials in progress which could produce interesting outcomes.
For instance, in one trial, genetically modified neural stem
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cells expressing bCD are used in combination with orally
administered 5-FC for the treatment of recurrent gliomas
(NCT01172964). In another phase I–II study, an investiga-
tional drug APS001F is currently being examined in

combination with a recombinant bacterium (Bifidobacterium
longum) which can produce CD (NCT01562626). Finally,
there is a phase I study in progress for the treatment of grade
III/IV gliomas by using retroviral replicating vector (Toca

Fig. 2 Chemical structures of the inactive prodrugs and their cytotoxic forms after activation by the corresponding enzyme
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511) in combination with 5-FC (NCT01470794). The results
of these ongoing trials are not reported but can be followed at
www.clinicaltrials.gov.

Cytochrome P450 (CYP450)/Oxazaphosphorine

Cytochrome P450 (CYP) enzymes are important factors in
xenobiotics metabolism as they are responsible for deactiva-
tion of the toxic drugs in the liver. It has also been shown that
these enzymes play an important role as an activating factor
for oxazaphosphorine agents [72]. Oxazaphosphorine is a
class of anticancer drugs that includes cyclophosphamide
(CPA) and ifosfamide (IFA). Both of these two akylating
agents are the substrates of P450 enzymes which metabolizes
these compounds to yield a 4-hydroxy derivative. Then, the
resulting metabolites continue their chemical reaction to pro-
duce phosphoramide or ifosphoramide mustard and acrolein
(Fig. 2c). Ultimately, they form DNA cross-links and kill the
cells. The resulted active reagents can be transported to the
surrounding cells, independent of gap junctions, which gives
them potent bystander effect [85]. Another advantage of this
system in comparison to the other enzyme/prodrug systems is
its less immunogenicity due to the presence of P450 enzymes
in human body [70].

One major drawback of this system is the natural metabo-
lism of these prodrugs by the liver P450 enzymes that gener-
ates active toxic metabolites in the whole body and eventually
causes various side effects, including cardiotoxicity, bone
marrow suppression, neurotoxicity, and nephrotoxicity.
Some of these toxicities can be associated with the
chloroacetaldehyde formation from CPA and IFA via N-
dechloroethylation [12]. Therefore, the big challenge in this
system is the inhibition of P450 enzyme activity in the liver so
that the prodrug gets activated only in the tumor sites [29].

A few methods have been used to improve the cancer treat-
ment efficacy of P450GDEPTand to reduce its side effects. In
one approach, combined or in parallel with CYP450/
oxazaphosphorine treatment, anti-thyroid drugs, such as
propylthiouracil and methimazole were used to inhibit hepatic
P450 reductase activity and improve the prodrug activation in
tumor cells [84]. In another approach, a CYP2B6/RED fusion
protein was designed so that it can transfer electrons from
NADPH to the heme moiety of the protein. This modification
increases the efficiency of CYP2B6 substrate metabolism into
active drugs [102].

In a phase I/II clinical trial, a recombinant retroviral vector
that contains human CYP450 type 2B6 genes (CYP2B6),
neomycin resistance marker gene and E. coli lacZ has been
tested. In this study, gene-based delivery of CYP2B6 to the
tumor site led to prodrug activation locally and produced
higher concentrations of the active drug at the target site.
The promising results of this study inspired the use of this
approach in other cancer treatment studies [7]. However,

regardless of the exciting results, there are still serious con-
cerns about using this system for cancer therapy because of
normal activity of CYP450 in human cells and difficulty in the
delivery of the GDEPT elements to the targeted cancer cells
without causing side effects on normal healthy cells [51, 82].

Nitroreductase/CB1954

This enzyme/prodrug system contains group of nitroreductase
(NTR) enzymes that can activate prodrugs, such as CB1954
(5-(aziridin-1-yl)-2,4-dinitro-benzamide) (Fig. 2d). Two clas-
ses of enzymes and four types of prodrugs have been studied
in this system. The two classes of enzymes are categorized
based on their sensitivity to oxygen. Type I NTR can produce
nitroso, hydroxylamine, and/or amine terminated products in
the presence of molecular oxygen, while type II, on the other
hand, can only produce these products when oxygen is absent
[110]. The four classes of prodrugs include dinitroaziridinyl
benzamides, dinitrobenzamide mustards, 4-nitrobenzyl carba-
mates, and nitroindolines. CB1954, which is the most widely
used prodrug, is from dinitrobenzamide group [91]. The me-
tabolites of this prodrug can freely diffuse to the surrounding
cells which induce a strong bystander effect. They can damage
DNA by their chelating property leading to p53 and cell cycle-
independent apoptosis in both dividing and nondividing cells.
This is an important advantage of the system over the ones that
can only target the dividing cells [105]. While several studies
have reported promising results, the low activation rate of
CB1954 is one major limitation associated with this enzyme/
prodrug system. At least two general approaches have been
tested to improve the efficacy of this system. One is the engi-
neering and application of alternative CB1954-activating
nitroreductases, such as AzoR, NFsA, NemA, and flavin re-
ductase I (FRase I) [79, 97]. The other approach is the synthe-
sis of other nitroreductase prodrugs such as nitro-CBI-DEI
and PR-104A [31, 80]. Both approaches have shown promis-
ing results in vitro and in vivo. Effective use of this enzyme/
prodrug system has been demonstrated in a few clinical trials
for the treatment of prostate and liver cancers [76]. However,
the CB1954 low conversion rates and dose-dependent hepa-
totoxicity remained as major challenges for clinical applica-
tion of this GDEPT method [46, 61]. For additional and more
in depth information related to the nitroreductase/CB1954
system, readers are referred to an excellent review by
Williams et al. [110].

Carboxypeptidase G2/Nitrogen Mustard

The enzyme carboxypeptidase G2 (CPG2) is derived
from the Pseudomonas strain RS-16 and has no human
analog. This enzyme cleaves glutamic acid from nitrogen
mustard-based drugs, such as 4-[(2-chloroethyl)(2-
mesyloxyethyl)amino]benzoyl-L-glutamic acid (CMDA)
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and bis-iodo phenol mustard (ZD2767P), into DNA
alkylating agents, without any further modification
(Fig. 2e). The resulted active drug can cause inter- and
intra-strand DNA cross-linking, leading to apoptosis in
both dividing and nondividing cells. It can also freely
diffuse through cell membranes independent of gap junc-
tions which offer potent bystander effect. Being indepen-
dent from host enzymes for prodrug activation gives this
system an outstanding benefit of a higher prodrug con-
version rate, in comparison to the other enzyme/prodrug
systems [22]. While different nitrogen mustard reagents
have been developed and tested in the past two decades,
4-[(2-chloroethyl)(2-mesyloxyethyl)amino] benzoyl-l-
glutamicacid (CMDA) is among the first successful ones.
Several attempts have been made to increase the potency
of CMDA. For example, ZD2767P is 300 times more
potent than CMDA [28].

To increase the enzyme efficiency, a mutated form of the
CPG2 gene was fused to vascular endothelial growth factor
(VEGF). This modification resulted in binding of secreted
CPG2 to the VEGF receptor, which kept CMDA around tu-
mor mass and significantly reduced systemic side effects [96].
This enzyme prodrug system was used in attachment with
tumor-specific antibodies in different clinical studies.
However, some issues, like immunogenicity against mouse
antibodies and CPG2 and also insufficient localization of
enzyme\antibody conjugate, limited its success in cancer ther-
apy [28, 56, 58].

Purine Nucleoside Phosphorylase/6-Methylpurine
Deoxyriboside

In this system, prodrugs such as 6-methylpurine 2-
deoxyriboside and fludarabine can be converted to 2-
deoxyribose-1-phosphate by the E. coli purine nucleoside
phosphorylase (PNP) (Fig. 2f). The advantage of using PNP/
MEP is its high bystander activity based on gap junction-free
transport of activated drugs, its effect on both proliferating and
nonproliferating cells, and its unique mechanism of action that
is independent of DNA synthesis. PNP catalyzes the cleavage
in glycoside bond of (deoxy) adenosine-based substrates that
produces either (MeP) or 2-fluoroadenine (F-Ade). Then,
these substrates are converted to their triphosphate forms by
cellular monophosphate and diphosphate kinases, which can
inhibit both RNA and protein syntheses [74, 94]. Three stud-
ied prodrugs of this system are 6-methylpurine-2′-
deoxyriboside (MeP-dR), 2-F-2′-deoxyadenosine (F-dAdo),
and arabinofuranosyl-2-F-adenine monophosphate (F-
araAMP). Among them, F-araAMP is clinically approved
for chronic lymphocytic leukemia treatment [95]. These
(deoxy) adenosine-based analogs are only the substrates of
E. coli PNP and cannot be recognized by humane PNP.
Thus, the prodrugs cannot be converted into toxic metabolites

in normal tissues and consequently limits the off-target toxic-
ities. However, the application of bacterial PNP can induce
host immune response. A few groups have worked on the
development of human PNP that can consume the (deoxy)
adenosine-based prodrugs as its substrate [3, 75]. Among the
recorded clinical trials, there is only one completed phase I
clinical trial using this system. In this trial, the safety of E. coli
PNP/fludarabine phosphate in patients with head and neck
cancers has been studied. It was shown that localized produc-
tion of fluoroadenine within tumor tissues, using fludarabine
and E. coli PNP system, is successful in eradicating tumors
without causing any significant toxicity [83].

Horseradish Peroxidase/Indole-3-Acetic Acid

This system consists of the horseradish peroxidase (HRP)
enzyme and indole-3-acetic acid (IAA) as the prodrug.
HRP enzyme oxidizes IAA at neutral pH to its cationic form
that produces the carbon-centered skatolyl radical. This rad-
ical can be changed to peroxyl radical in the presence of
oxygen which would turn into by-products, such as indole-
3-carbinol, oxindole-3-carbinol, and 3-methylene-2-oxindole
(Fig. 2g). These reactive by-products can induce DNA
strand breaks, leading to apoptosis and cell death. This sys-
tem also has a potent bystander effect because of the trans-
portation of the activated drug via diffusion to the
untransfected neighboring cells [30]. HRP/IAA system has
been tested in several in vitro and in vivo models, including
bladder, melanoma, and pancreatic cancer [36, 39, 47].
However, the major concern of using HRP/IAA system is
the low expression level of the enzyme in transfected cells
[19, 101]. The second drawback of this system is the origin
of the enzyme which comes from plants, because it results in
undefined mixture of isoenzyme with different glycosylation
patterns which can cause side effect in body. To avoid this
problem, different recombinant forms of HRP isoenzymes
are produced, which have shown significant effects on breast
and bladder carcinoma [6]. Although some promising results
have been obtained from HRP/IAA system, there has been
no clinical trial with this system by the time of writing this
manuscript (www.clinicaltrials.gov).

Carboxylesterase (CE)/Irinotecan

Carboxylesterases are active endogenous enzymes in hu-
man body that play roles in hydrolysis of different ester
and amide-containing chemicals [34]. Because of this
property, they can convert irinotecan (CPT-11), a less
cytotoxic agent, into its highly toxic form, SN-38
(Fig. 2h). SN-38 inhibits topoisomerase I and thus alters
the DNA relaxation machinery [34, 77]. This enzyme/
prodrug system has been used for the treatment of colo-
rectal cancer [104], glioma [17], and various other tumor
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models [49, 57, 114]. While this enzyme has different
isoforms, carboxylesterase-1 (CE1), which is mostly lo-
calized in the liver, is the most widely used one.
Unfortunately, CE1 suffers from the low catalytic effi-
ciency that limits the conversion rate of CPT-11 to SN-
38. To overcome this deficiency, another isoform of this
enzyme also known as CE2 has been studied. CE2 iso-
form is commonly expressed in intestine. CE2 has a
higher catalytic efficiency than CE1 [38, 86] and has
been used for the treatment of pancreatic and colon can-
cer [9, 71]. The rabbit analog of CE1 (rCE1) has also
been engineered and used for conversion of CPT-11 to
SN-38. While this isoform has shown a higher catalytic
efficiency in comparison to human CE1 [20], it can
cause immune response in human host. To avoid this
problem, mutant CE1 (hCE1m6) was engineered using
homology alignment of human and rabbit version of
CE1 followed by replacing eight amino acids in human
CE1. This change in sequence resulted in higher conver-
sion efficiency [109].

Given that SN-38 has poor water solubility, its by-
stander activity may get reduced [103]. In an attempt to
improve the bystander effect and/or overall anticancer
efficacy, secretory form of CE2 has been genetically
engineered [71]. This approach has shown promising
success in several precl inical models [59, 90].
Currently, there are a few ongoing clinical trials using
this enzyme/prodrug system. For instance, there is a
phase I clinical trial in progress in which the patients
with rrecurrent high-grade gliomas are undergoing treat-
ment. Here, genetically modified neural stem cells which
can express carboxylesterase are used in combination
with irinotecan hydrochloride (NCT02192359).

Conclusion

Significant amount of preclinical work have been per-
formed in the past two decades on gene-directed enzyme
prodrug therapy of cancer. Based on the preclinical data,
numerous clinical trials have been performed. While sub-
stantial progress has been made, no cancer suicide gene
therapy protocol has been approved for clinical use.
Important issues that have yet to be addressed include
development of effective vectors for efficient and targeted
gene transfer to the tumor cells, design of prodrugs that
can be efficiently converted into the active drugs with
potent bystander effect, and engineering enzymes with
low immunogenicity and high affinity toward prodrugs.
Overcoming these barriers may open new doors into ef-
fective eradication of many of yet incurable and stubborn
cancers through GDEPT.
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