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Abstract Oxygen (O2) levels range from 2–9 % in vivo.
However, cell culture experiments are performed at atmo-
spheric O2 levels (21 %). Oxidative stress due to generation
of reactive oxygen species (ROS) in cells cultured at higher
than physiological levels is implicated in multitude of delete-
rious effects including DNA damage, genomic instability, and
senescence. In addition, oxidative stress activates redox-
sensitive transcription factors related to inflammatory and ap-
optotic signaling. Furthermore, several chromatin-modifying
enzymes are affected by ROS, potentially impacting epigenet-
ic regulation of gene expression. While primary cells are cul-
tured at lower O2 levels due to their inability to grow at higher
O2, the immortalized cells, which display no such apparent
growth difficulties, are typically cultured at 21 % O2. This
review will provide an overview of issues associated with
increased oxygen levels in in vitro cell culture and point out
the benefits of using lower levels of oxygen tension even for
immortalized cells.
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Introduction

Aerobic life forms on earth adapted to progressively increasing
oxidative environment and evolved with complex respiratory
system to utilize and distribute oxygen to various organs and
tissues. The partial pressure (pO2) of ambient atmospheric oxy-
gen is 150 mm/Hg, which is equivalent to 21 % oxygen (O2;
normoxia). However, the inhaled O2 levels progressively de-
crease as it reaches various internal organs and tissues (Fig. 1).
The level of O2 and its distribution among the various tissues
depends on the rate of capillary blood flow and its metabolic
activity (i.e., oxygen utilization) [1]. For instance, in humans,
under physiological conditions, the pO2 in the arterial blood is
100 mm/Hg or 14 % O2. When it reaches the well-irrigated
parenchymal organs such as lungs [2–4], liver [5–7], and kidneys
[8], the O2 levels ranges from 4 to 14 %. In the relatively less
irrigated organs and tissues, including brain [9, 10], eye [11], and
bone marrow [12], the O2 concentration ranges between 0.5 and
7 %. Moreover, gradient distributions of O2 within organs and
developmental stage-specific O2 levels have also been observed
[4, 7, 13–15]. Several pathophysiological conditions resulting
from fluctuations in oxygen tension including (e.g., hyperoxia-
associated lung injury, hypoxia in cancer, and wound healing)
has been well documented [16].

In vitro cultured cells (both non-immortalized primary cells
and immortalized cells lines) are the preferred model system
for studying cellular response to specific stimuli such as drug
treatment and toxicity testing and to understand basic cellular
mechanisms including differentiation and disease develop-
ment. Cell lines provide cellular homogeneity, which is valu-
able for understanding molecular mechanisms including func-
tional genomics. Moreover, studies on certain areas such as
genetic disorders, neurological disorders, and genetic poly-
morphisms that may be uniquely human and thus not amena-
ble to studying using animal models. In vitro cell culture is
traditionally performed at 21 % O2, the O2 level in ambient
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atmospheric air. Thus, the O2 levels in in vitro cultures are
approximately 2–5-fold higher than the physiological O2

levels encountered by tissues in vivo [17, 18]. Accumulating
evidence suggests that culturing non-immortalized primary
cells or stem cells at lower physiologically relevant oxygen
tension (physioxia or physiological normoxia) increases the
replicative life span of the cells [19–21]. Therefore, primary
cells are typically cultured at lower O2 levels [18, 22–24].
However, unlike the primary cells, immortalized cells do not
exhibit apparent growth difficulties at 21 % O2, likely due to
its ability to evade replicative senescence [25, 26]. Therefore,
the detrimental effects of increased oxygen levels in immor-
talized cell cultures have been over-looked and growing these
cells at 21 % O2 is currently a standard practice. Nevertheless,
accumulating evidence suggests that abundant reactive oxy-
gen species (ROS) and associated oxidative stress in cells
cultured at high O2 levels could affect the physiology of cells
in culture [27, 28], which could potentially influence the ex-
perimental outcome. The current review will provide an over-
view of issues associated with increased oxygen tension in in
vitro cell culture and point out the benefits of using lower
levels of oxygen tension even for immortalized cells.

ROS Production in Tissue Culture

Oxidative stress is an imbalance between the production of reac-
tive oxygen species (ROS) such as superoxide anion (O2

•−),
hydroxyl radical (•OH), hydrogen peroxide (H2O2), and singlet
oxygen (1O2) and their detoxification, resulting in cellular dam-
age. Most ROS are generated in cells by the mitochondrial respi-
ratory chain. Mitochondrial ROS production is modulated

largely by the rate of electron flow through respiratory chain
complexes. Under physiological conditions approximately 1–
4 % of the oxygen consumed by mitochondria is diverted for
the formation of ROS [29]. Considering that the average rate of
utilization of oxygen in each cell of human body is ∼2.5×10–
18 mol/s (i.e., 2.2×1010 molecules/day) [29], almost ∼1 billion
molecules of ROS are being produced by each cell every day in
vivo [29]. This can be multiplied several fold under in vitro
culture conditions which is cultured at 21 % O2 as compared to
physiological conditions (10–13 % O2).

Although excess ROS can lead to oxidative stress, moder-
ate to low levels of ROS function in cellular signaling path-
ways [30]. The mammalian system is naturally equipped to
deal with oxidative stress. Antioxidants, including glutathione
(GSH), vitamins C and E, and antioxidant enzymes such as
catalase, superoxide dismutase (SOD), and various peroxi-
dases help to maintain the cellular redox environment.
Recent evidence suggests that lower availability of antioxi-
dants including vitamins E and C and selenium in cell culture
medium could affect the cell’s ability to efficiently scavenge
ROS [31]. Moreover, the photochemical oxidation of flavo-
noids, thiols, and polyphenolic compounds in the cell culture
media can produce H2O2 in cell culture [32]. Therefore, over-
production of ROS at 21 % O2 combined with impaired anti-
oxidant system in cell culture conditions could contribute to
cellular damage, inflammation, and senescence.

Cellular Damage by ROS

The deleterious effects of 21 % O2 on primary cells have been
well documented [33]. Oxidative stress induces production of
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Fig. 1 Oxygen distribution in
various organs: The partial
pressure (pO2) of ambient
atmospheric oxygen is 150 mm/
Hg (21 % O2). The inhaled O2
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highly reactive free radicals, which cause irreversible damage
to all biomolecules including DNA, proteins, lipids, and
sugars [34]. The formation of peroxyl radicals and oxidation
of cysteine residues during oxidative stress causes protein
conformational changes, which ultimately affect their func-
tions [35]. For instance, damage to protein kinases or phos-
phatases leads to dysregulation of signaling cascades, affect-
ing a multitude of cellular functions. Protein folding in endo-
plasmic reticulum (ER) is catalyzed by disulfide isomerase
that requires GSH for its functioning [36]. Over utilization
of GSH during oxidative stress results in ER stress, causing
in accumulation of unfolded proteins in the cytoplasm [36]
and autophagy [37]. The most destructive effect of ROS is
their ability to cause DNA damage [22, 38–41]. ROS can
oxidize nucleotides and can cause single- and double-strand
DNA breaks (SSBs and DSBs), and oxidatively generated
non-DSB clustered DNA lesions (OCDLs) [38]. The addition
of hydroxyl radical to the C8 position of guanine ring, pro-
duces the 8-hydroxy-7,8-dihydroguanyl radical that is further
oxidized to 8-oxo-7,8-dihydroguanine (8-oxodG) and 2,6-
diamino-4-hydroxy-5-formamidopyrimidine (FapydG) [38].
The OCDLs are resistant to DNA repair process and can result
in irreversible DNA damage [38, 41]. Interestingly, mouse
stem cells cultured at 3 % O2 showed less oxidative stress
and lower aneuploidy, compared to the cells cultured at
21 % O2 [42]. Increased neuronal cell survival and differenti-
ation of human neural progenitor cells is observed in human
umbilical cord Wharton jelly derived mesenchymal stem cells
(hWJ-MSCs) cultured at lower oxygen tension as compared to
normoxia [43, 44]. On the contrary, culturing cells at 21 % O2

is known to induce chromosomal abnormality/aberration [41,
45, 46], aneuploidy [42], telomere shortening [47], and DNA
damage [22] at genome levels in primary cells.

Activation of Redox-Sensitive Inflammatory
Signaling

Prolonged generation of reactive oxygen species (ROS) con-
tributes to chronic inflammation [34]. Alternatively, chronic
inflammation can also induce oxidative stress and reduce the
cellular antioxidant capacity [34]. Freshly isolated human
PBMCs at atmospheric oxygen levels (21 % O2) sent out
inflammatory signals as though they were fighting off an in-
fection. Interestingly, the same cells grown at lower oxygen
levels (5 and 10 % O2) displayed considerably reduced in-
flammatory signaling [17, 18]. Human PBMCs response to
stimulation with mitogens including conA and CD3/CD28
crosslinking is observed to be significantly higher at 20 %
oxygen tension, compared to 5 and 10 % oxygen tensions
[17, 18]. The mitogen-induced PBMCs show increased intra-
cellular nitric oxide levels and reduced intracellular glutathi-
one levels at 20 % oxygen [17, 18]. Haddad et al., showed the

increase in expression of genes involved in cell death, cellular
repair, and stress response in primary T cells maintained at
atmospheric O2 levels indicating increased oxidative stress
response [48]. Cultivation of rat liver sinusoidal endothelial
cells (LSECs) at 5 % O2, as opposed to 21 % O2 improved the
survival of LSECs and scavenger receptor-mediated endocytic
activity, reduced the production of the pro-inflammatory me-
diator, interleukin-6, and increased the production of the anti-
inflammatory cytokine, interleukin-10 [49]. Expression of the
cell adhesion molecule, ICAM-1 at the cell surface was slight-
ly more elevated in cells maintained at 21 % O2 [50], indicat-
ing activation of an inflammatory response.

Increase in secretion of pro-inflammatory cytokines in se-
nescent cells suggests a crucial link between oxidative stress
and inflammatory signaling [34]. A likely reason is that sev-
eral inflammatory signaling events and transcription factors
are redox-sensitive and would get manipulated by the alter-
ation in the cellular redox potential [34, 51]. Interestingly, the
activation of different redox-sensitive transcription factors and
the resultant biological response is correlated with the levels
of ROS in the cells [34, 51] (Fig. 2). Low-sustained ROS level
mainly induces the antioxidant and cellular detoxification pro-
gram like the Kelch-like ECH-associated protein 1 (Keap1)–
NF-E2-related factor-2 (NRF2) regulatory pathway, which
plays a key role in the protecting cells against oxidative and
xenobiotic damage [52]. An intermediary amount of ROS
triggers inflammatory response through the activation of
NF-κB, STATs, and AP-1, transcription factors involved in
the regulation of a wide array of genes involved in stress
response, inflammation, immune function, differentiation, ap-
optosis, cell survival, and growth [53]. Finally, high levels of
oxidative stress trigger disruption of electron transfer by in-
ducing mitochondrial pore formation, thereby resulting in ap-
optosis or necrosis (Fig. 2). The effects of ROS on the cell are
also partly mediated through activation of mitogen-activated
protein kinases (MAPKs) [54, 55]. Recent studies show non-
hypoxic activation of HIF-1α via mitochondrial-derived ROS
[56]. The ROS-induced activation of HIF-1αmight cross talk
with redox sensitive transcription factors and signaling mech-
anisms, which could lead to tumor initiation.

Cellular Immortality Requires Development
of Oxidative Stress Resistance

Primary cells exhibit growth difficulty at 21 % O2 due to the
overproduction of ROS and the subsequent bio-molecular
damage [39, 47, 57–59]. This poor growth response in high
oxygen-treated cultures was abrogated by administration of
catalase, which scavenges excessive H2O2 produced at 21 %
O2. This suggests that the toxic effects observed in high O2

environments are largely caused by endogenous production of
H2O2 [39]. Moreover, treatment with low doses of H2O2 is
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sufficient to induce replicative senescence in primary mouse
embryonic cells [39]. Unlike primary cells, the effect of high
O2-induced ROS in immortalized cells is less well studied.
However, it is clear that immortalized cells suffer less oxida-
tive damage compared to primary fibroblasts when cultured
under 20 % O2 [60, 61]. Moreover, immortalized cells are
shown to exhibit higher resistance to deleterious effect of
H2O2 than primary cells [60, 61]. Kondoh et al., showed an
induction of immortality in primary cells selected for in-
creased phosphoglycerate mutase (PGM) activity, which
showed enhanced glycolytic-influx and resistance to oxidative
stress [61, 62]. Similarly, tumor cells show remarkable toler-
ance towards oxidative stress and utilize excessive glucose via
anaerobic glycolysis to prevent the oxidative damage [60].
These studies suggest association of cellular immortalization
with the development of resistance to oxidative stress,
allowing them to grow at high O2 levels for extended periods.
However, immortalized cells cultured at ambient atmospheric
O2 levels showed redox imbalance, cell proliferation defects,
and activation of NF-κB/RelA-mediated inflammatory signal-
ing. Furthermore, the cells cultured at physiological O2 levels
showed better ability to handle oxidative stress as compared to
the cells cultured at ambient 21 % O2 levels [63]. Therefore,

although immortalized cells acquire the ability to grow under
high O2 levels, the cellular damage due to oxidative stress and
inflammation is not completely eliminated [63].

ROS Mediates the Effects of Both Hypoxia
and Hyperoxia

While increasing oxygen concentration can influence the pro-
duction of free radicals, decreasing it can lead to hypoxia.
Hypoxia can lead to the production of oxygen radicals in a
variety of experimental systems via electron attack of molec-
ular oxygen in the inactive mitochondria [64–66]. It is inter-
esting that oxidative stress and hypoxia, which are quite dif-
ferent scenarios in terms of total oxygen tension, can result in
similar outcome due to production of the common mediator,
ROS. Recently, it has become clear that under hypoxic condi-
tions, the mitochondrial respiratory chain also produces nitric
oxide (NO), which can generate other reactive nitrogen spe-
cies (RNS) [30]. Oxidative stress and hypoxia are serious
consequences of many diseases such as cancer, heart disease,
inflammation, COPD, and many others.

Fig. 2 Activation of redox sensitive inflammatory signaling: ROS
activates inflammatory signaling via activation of redox sensitive
transcription factors and signaling. The activation of different redox-
sensitive transcription factors and the resultant biological response is
correlated with the levels of ROS in the cells. Low-sustained ROS level
mainly induces the antioxidant and cellular detoxification program like
the Kelch-like ECH-associated protein 1 (Keap1)–NF-E2-related factor-2
(NRF2) regulatory pathway. An intermediary amount of ROS triggers

inflammatory response through the activation of NF-κB, STATs, and
AP-1 transcription factors associated gene expression. Finally, high
levels of oxidative stress trigger disruption of electron transfer by
inducing mitochondrial pore formation, thereby resulting in apoptosis
or necrosis. The effects of ROS on the cell are also partly mediated
through activation of mitogen-activated protein kinases (MAPKs). All
these mechanism can induce multitude of downstream processes
including inflammation, survival and apoptosis
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Hypoxia plays a major role in the pathology of several
human diseases, including cancer, diabetes, aging, and
stroke/ischaemia [67, 68]. Under hypoxia, the hypoxia induc-
ible factors (HIF) family of transcription factors becomes ac-
tivated. The members of the HIF family transcription factors,
HIF-1α, HIF-2α, and HIF-3α, are oxygen labile and can
heterodimerize with the oxygen insensitive HIF-1β, also
known as aryl hydrocarbon nuclear translocator (ARNT)
[68]. Under normal oxygen tension (normoxia), the proline
residues in the oxygen-dependent domain of HIF is hydrox-
ylated by a family of dioxygenases, called prolyl-
hydroxylases (PHDs) (oxygen sensors) [69]. The hydroxylat-
ed proline residues are recognized by von Hippel-Lindau
(VHL), which subsequently recruit an E3 ubiquitin ligase
complex and target HIF for degradation [70]. Another
dioxygenase, factor inhibiting HIF (FIH) can also influence
HIF activity. The enzymatic activities of both PHDs and FIH
require oxygen, α-ketoglutarate, iron (Fe2+), and ascorbate as
cofactors. Depletion of any of these cofactors, as well as ox-
idative stress mediated Fe oxidation, can inhibit enzymatic
activity and stabilize the HIFs.

ROS Mediates Epigenetic Dysregulation in Both
Hypoxia and Hyperoxia

ROS produced during both hypoxia and hyperoxia has pro-
found effects on epigenetic modification. A number of 2-
oxoglutarate dependent dioxygenases that demethylate his-
tone tails or hydroxylate the 5-position cytosine of DNA use
oxygen for their enzymatic activity. These enzymes sense ox-
ygen, since the oxygen levels are critical for mediating their
modification of the epigenetic program of a cell. Hypoxia
inhibits these enzymes thus causing an increase in histone
methylation and 5-methylcytosine (5mC) and a decrease in
hydroxymethylcytosine (5hmC) [71] During periods of low
oxygen tension, the messenger RNA (mRNA) and protein
levels of a number of histone demethylases are increased via
the hypoxia response elements (HREs) in their promoters
[71]. Similar to hypoxia, inhibition of demethylases also oc-
curs due to oxidative stress since the iron at the active site of
these enzymes can be oxidized rendering the enzyme inactive
[71] At the same time, oxidative stress decreases reduced
ascorbate levels, which further attenuates enzymatic activity
since ascorbate is a cofactor for these enzymes [72]. Finally, if
the oxidative stress arises from dysfunctional mitochondria
there will be less of 2-oxoglutarate, which is an essential co-
factor for these enzymes [66].

Methylation of histone lysines and arginines in the N ter-
minal tails, which protrude from the nucleosomes is involved
in regulating a wide range of cellular processes [73–75].
Histone methylation can be involved in both activation and
repression of gene expression depending on the residue

modified and degree of methylation. For example, while his-
tone 3 lysine 4 di- (H3K4me2) and trimethylation (H3K4me3)
and histone 3 lysine 9 monomethylation (H3K9me1) are as-
sociated with transcriptionally active, open chromatin regions,
histone 3 lysine 27 (H3K27) di- and trimethylation and H3K9
di- and trimethylation are associated transcriptionally silent,
closed chromatin regions [71, 74, 76–78]. Histone tail meth-
ylation is a dynamic process maintained by the histone meth-
yltransferases (HMTs) and demethylases. The majority of
HMTs contain a conserved catalytic domain called SET
(Suppressor of variegation, Enhancer of Zeste, Trithorax)
[79]. Histone demethylases, on the other hand, can be divided
into two classes: (1) KDM1 (Lysine (K) Demethylase1) fam-
ily, also known as LSD1, are FAD-dependent amine oxidases,
and (2) the Jumonji C (JmjC) domain containing
demethylases (JHDMs), which are members of the
dioxygenase superfamily of enzymes containing iron and are
2-oxoglutarate-dependent enzymes [73] [80]. The demethyla-
tion of lysines by JHDMs occurs by catalyzing the generation
of oxidized Fe (reactive oxygen species) in the presence of
oxygen, α-ketoglutarate and ascorbate. These resultant spe-
cies attack the methyl groups on histone lysines and produce
unstable oxidized intermediates that spontaneously release
formaldehyde, resulting in the removal of methyl groups from
histone lysines [81]. Since LSD1 and JmjC histone
demethlyases and TET family of DNA hydroxylases require
oxygen to function, it is likely that oxygen concentration in-
fluences histone and DNA methylation.

Although the functional significance of these enzymes in
relation to hypoxic response is not fully understood, a number
of studies have demonstrated their involvement. It was recent-
ly shown that decreased H3K4me3 levels in clear-cell renal
carcinoma were due to VHL inactivation, which was depen-
dent on the constitutively active HIF-2α and Jumonji/ARID
Domain Containing Protein 1C (JARID1C). In VHL−/−cells,
HIF induced JARID1C expression, resulted in altered expres-
sion of hypoxia-responsive genes (HRGs) and reduced
H3K4me3 levels at the promoters of IGFBP3, COL6A1,
DNAJC12, and GDF15 [82]. Interestingly, many 2-
oxoglutarate dioxygenases histone demethylases have hypox-
ia response elements (HREs) in their promoters and are in-
duced by HIF-1 [83]. For example, JARID1B (KDM5B),
JMJD1A (KDM3A), JMJD2B (KDM4B), and JMJD2C
(KDM4C) are known to be direct HIF-1 target genes with
robust HIF-1 binding to HREs in their promoters and upreg-
ulated expression under hypoxic conditions [84–87]. Under
hypoxia, cells ectopically expressing JARID1B had decreased
levels of H3K4 methylation [88]. Furthermore, JMJD1Awas
shown to regulate a subset of hypoxia-induced genes, includ-
ing ADM and GDF15, by maintaining a lower level of
H3K9me2 at their promoter regions. JMJD1A (KDM3A)
was also important for tumor growth in the hypoxic microen-
vironment of tumor xenografts [89]. In addition to
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upregulating the expression of certain demethylases, hypoxia
also directly inhibits their enzyme activity because they re-
quire oxygen to carry out their enzymatic function. The com-
pensatory upregulation of the histone demethylase expression
under hypoxia and possibly with oxidative stress affords a
way to identify the affected enzyme.

Inhibition of the Jumonji histone demethylases JMJD1A-C
(KDM3A-C) and JMJD2A–D (KDM4A-D) with hypoxia as
well as with the treatment of dioxygenase inhibitors, such as
DMOG (N-(methoxyoxoacetyl)-glycinemethyl ester, DETA-
NO (2,20-(hydroxynitrosohydrazono)bis-ethanimine) and
ROS, resulted in increased levels of H3K9me2/me as well as
H3K36me3 [90]. Exposure to nickel, an oxidative stress-
causing agent can result in the distortion of a number of dif-
ferent post-translationally modified histone marks. A non-
toxic dose of nickel was shown to significantly increase global
levels of H3K4me3 and H3K9me2 [91] as well as cause
spreading of H3K9me2 causing aberrant gene silencing [78].
Thus, ROS produced during both hypoxia and hyperoxia can
alter gene expression by affecting key enzymes involved his-
tone post-translational modifications and DNA methylation,
in addition to activating redox sensitive transcription factors.

Conclusion

In vitro cell culture at ambient atmospheric O2 levels (21 %)
contribute to oxidative stress in both primary cells and immor-
talized cells. Furthermore, the pro-oxidant nature of the cell
culture medium and decreased availability of antioxidants,
combined with higher than normal physiological oxygen ten-
sion would result in net increase in ROS and inhibit several
key O2 sensitive cofactors and transcription factors. However,
decades of research have proven the utility of in vitro cell
culture system, which is a rapid and cost-effective research
tool [92–94]. The genetic and epigenetic changes observed
in cancer cells in vivo has been accurately observed in in vitro
studies [92–94]. Genome-wide studies have shown striking
similarity in genome folding, DNA methylation, and histone
modification profiles between in vitro cultures and the corre-
sponding tumor samples [94, 95].

Although culturing the cells at the physiological O2 levels
could potentially avoid the deleterious effects of high O2

levels, several practical difficulties exist. The distribution of
O2 in vivo is organ and tissue specific. Moreover, organs such
as skin [13], liver [5–7], and lung [2–4] show gradient distri-
bution in oxygen level depending on extent of capillary blood
supply. Furthermore, developmental stage specific oxygen
levels are observed in placenta [14, 15]. In addition, oxygen
consumption rate by mammalian cells in in vitro culture
ranges significantly between <1 and >350 amol cell−1 s−1

[29]. The cellular O2 consumption rate in vitro depends on
cell type, function, and metabolic activity and shows loose

linear correlation with cell volume and protein content [29].
Moreover, the actual oxygen level the cell is exposed to in a
culture dish is much lower than the surrounding atmospheric
levels and the O2 levels further decrease when the cells pro-
liferate [96]. Given the huge variation in O2 consumption rate
of mammalian cells in vitro [29] and the broad physiological
O2 levels in vivo [1], culturing cells at actual physiological O2

levels pose huge problems and is impractical. Alternatively,
addition of multiple-time matched controls, gain or loss of
function experiments, and usage of different cell types for
the same treatment could attenuate experimental bias to some
extent and would be a practically possible strategy.
Immortalized cells cultured under high oxygen tension might
show higher inflammatory response and redox imbalance.
Therefore, care should be taken while studying inflammatory
signaling and antioxidant activity of dietary molecules in im-
mortalized cells as they could potentially exhibit elevated ac-
tivity under in vitro culture conditions.
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