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Abstract The current standard of care for prostate cancer in-
cludes hormone therapy, radiation therapy, and radical prosta-
tectomy, eachwith its own set of undesirable side effects. In this
regard, there is an unmet need to develop strategies that can
prevent or delay the development of clinical prostate cancer.
One potential area involves the use of natural compounds in-
volving botanicals. Along these lines, we have found that
Nexrutine®, a dietary supplement derived from Phellodendron
amurense bark extract, has prostate cancer prevention activity.
The Bextract^ nature of this botanical, which constitutes a blend
of several active protoberberine alkaloids, allows it to target
several pathways deregulated in prostate cancer simultaneous-
ly. In this review, we will emphasize the prospective transla-
tional benefit of Nexrutine® as a chemopreventive agent for

prostate cancer management. The potential of Nexrutine®
was first identified and has subsequently been most exhaustive-
ly studiedwith reference to prostate cancer. Therefore, the focus
of this review is on the use of Nexrutine® in prostate cancer. In
addition, we have summarized the emerging evidence regard-
ing the use of Nexrutine® in other tumormodels to demonstrate
the potential benefits of Nexrutine®.
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Introduction

Prostate cancer (PCA) is the second leading cause of cancer-
related deaths in American men [1]. Early localized disease has
a 5-year survival rate of almost 100 %, with a myriad of treat-
ment approaches such as active surveillance, radiation therapy,
hormone therapy, and radical prostatectomy [1, 2•]. Unfortu-
nately, these strategies are associated with several undesirable
side effects and are limited by progression to metastatic
castration-resistant prostate cancer (CRPC) [3, 4]. Notably,
the Food and Drug Administration (FDA) recently approved
six new drugs, which improve overall survival or bone
metastasis-free survival for CRPC patients (Table 1) [5]. How-
ever, the survival benefit is limited with a suggested reactiva-
tion of the androgen receptor (AR) axis [6, 7••, 8•]. Poor quality
of life for patients undergoing these treatments underscores the
need to find alternative strategies that can improve quality of
life and or prevent the development of PCA in the first place.

A long latency is involved in the development of PCA
including proliferative inflammatory atrophy, low- and high-
grade prostatic intraepithelial neoplasia (PIN) that finally cul-
minates into clinically significant PCA [9]. Recent advances
in technologies that detect alterations (next-generation
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sequencing, transcriptome sequencing) in various
cancer-causing pathways have improved our understand-
ing of the molecular mechanisms involved in PCA
[10•]. This sets the stage to use the ‘long latent develop-
ment period’ to test preventive agents using mechanism-based
markers.

Prostate Cancer Chemoprevention

The emergence of the field of cancer chemoprevention reiter-
ates the old proverbial saying, BPrevention is better than
cure.^ Sporn et al. originally defined chemoprevention as
the application of natural, synthetic, or biological modalities
to prevent, contain, or reverse the initiation of carcinogenesis
or progression of localized cancer to metastatic disease [11].
The recent addition of a ‘delay’ in initiation or progression has
added an extra dimension to this definition [12••]. Chemopre-
vention can be generally classified into three categories de-
pending on the stage of cancer when the intervention begins.
Primary chemoprevention refers to the use of chemopreven-
tive agent to healthy and high-risk populations; secondary
chemoprevention is used to prevent or delay progression of
premalignant lesions to invasive cancer, while tertiary chemo-
prevention targets tumor recurrence andmetastasis for patients
undergoing successful treatment of local disease [12••, 13].
The FDA approval of ten drugs for cancer risk reduction in-
cluding tamoxifen, raloxifene for breast cancer, and HPV vac-
cines for cervical cancer signifies the rising surge of cancer
prevention [14].

The untapped potential for PCA prevention led to large-
scale clinical trials using 5α- reductase inhibitors. Prostate
Cancer Prevention Trial (PCPT) and Reduction by
Dutasteride of Prostate Cancer Events (REDUCE) were ran-
domized placebo-controlled trials using the 5α-reductase in-
hibitor finasteride and dutasteride, respectively [15, 16]. The
PCPT was a large-scale trial with 18,882 men, but the final
analysis included only 9,060 men due to early study termina-
tion and men declining the end-of-study biopsies [16]. It is
also important to note the higher rates of non-adherence
(14.7 % vs. 10.8 %) and increased sexual functions in the

finasteride group [16]. A drawback of the study design was
the lack of baseline determination of 5α-reductase levels,
which may have affected the treatment outcome. Recently,
an 18-year follow-up of the PCPT trial showed that use of
finasteride for a period of about 7 years had no signif-
icant difference in overall survival compared with pla-
cebo, further questioning potential use of finasteride in
the clinic [17•]. While the finasteride trial showed that
it could prevent lower-grade cancer, it also identified
high-grade tumors (Gleason 8–10) in the treatment
group [16]. Subsequently, it has been suggested that
finasteride helps in the detection of these high-grade
tumors [18, 19]. However, it does not fulfill the premise
on which cancer chemoprevention as discussed above is
based.

Dietary Supplements as Prospective Chemopreventives

Diet is a modifiable risk factor, which can impact the progres-
sion of indolent disease to clinically significant PCA [20, 21•].
Epidemiological studies have suggested that the incidence of
PCA is much lower in Asian populations consuming
phytonutrient-rich diet compared with their western counter-
parts [22]. Furthermore, increased cancer prevalence in Asian
populations that have migrated to the west underscores the
importance of diet, lifestyle, and environmental factors in in-
creased risk of PCA [22–24]. Interestingly, cancer incidence
data from Surveillance, Epidemiology, End Results (SEER)
registries showed that PCAwas the most commonmalignancy
in a majority of Asian Americanmen in the United States [25].
In this regard, dietary supplements such as lycopene, seleni-
um, vitamins, soy isoflavones, green tea polyphenols, and
silibinin are some of the phytoconstituents tested in various
preclinical and clinical settings for their chemopreventive ca-
pabilities in PCA [20, 26–28]. The Selenium and Vitamin E
Cancer Prevention Trial (SELECT) which randomly assigned
35,533 men to selenium, vitamin E, selenium, and vitamin E
or placebo groups was concluded after the 7-year interim anal-
ysis because of lack of benefit in PCA risk reduction [29].
Selenium was administered in the form of selenomethionine
in the SELECT trial, although the smaller Nutritional Preven-
tion of Cancer trial which showed chemopreventive potential
of selenium used selenized yeast containing methyl
selenocysteine, suggesting the value of choice of selenium
that maybe beneficial [30]. Furthermore, the variability in
the endogenous levels of selenium in the study population
could have affected the outcome. An increase in PCA inci-
dence was noted in the vitamin E arm, which may be due to
the higher dose of vitamin E used in SELECT compared with
earlier trials [29]. Interestingly, two recently published follow-
up studies of the SELECTand PCPT trials have suggested that
circulating vitamin D can prevent clinically relevant PCA [31,

Table 1 Change in treatment landscape for CRPC in the past 4 years.
Adapted from www.cancer.gov and Yin et al., IJMS (2012)

Category Drug name Approved

Androgen receptor antagonist Enzalutamide Aug 2012

Cyp17 inhibitor Abiraterone Dec 2012

Microtubule inhibitor Cabazitaxel June 2010

Vaccine against PAP antigen Sipuleucel-T Aug 2010

RANKL antibody Denosumab Sept 2011

Radium 223-Ca2+ mimetic Alpharadin May 2013
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32]. However, this effect was limited only to the African-
American population in the SELECT trial with other men
showing increased PCA risk. As we learn these lessons, there
is a general need to design more effective chemoprevention
trials with careful consideration given to study design, formu-
lation, dosage, and patient selection criteria.

Phytoceuticals (plant-derived chemicals) are a rich source of
number of FDA-approved drugs. Strikingly, approximately
50 % of FDA-approved drugs for cancer are natural products
or their derivatives, which includes the taxanes and vinca alka-
loids widely used in current cancer therapy [33••]. Herbal ex-
tracts used in traditional Chinese medicine and Ayurvedic med-
icine are anecdotal for treatment of various pathological condi-
tions including cancer [34, 35]. Although these extracts are un-
der-explored, they provide the starting advantage of havingmin-
imal systemic toxicity. In addition to potential use as
chemopreventives, they may also be beneficial in reducing the
dose of current toxic treatments and delay therapeutic resistance.

Nexrutine®

Nexrutine® is an inexpensive over-the-counter dietary supple-
ment used to relieve joint pain. It is derived fromPhellodendron
amurense, more commonly known as the cork tree, which is
native to Asia and belongs to family Rutaceae [36, 37].
Isoquinoline alkaloids like berberine, palmatine,
phellodendrine, jatrrorhizine, and magnoflorine, and the
liminoid, limonin (Fig. 1a) are considered as active components
of this extract that exhibit biological activity [36, 38, 39]. In
traditional Chinese medicine, the bark extract is referred to as
‘Huang Bai’ and has been used for centuries to treat inflamma-
tory conditions including psoriasis, gastroenteritis, abdominal
pain, and diarrhea and also as an anti-bacterial [36, 40]. It has
also been shown to be useful for symptoms of osteoarthritis and
shows potential as a neuroprotective agent in Alzheimer’s dis-
ease [40, 41]. Relora® (Next Pharmaceuticals, Salinas CA) is a
proprietary formulation of P. amurense bark extract

a

b

Fig. 1 aMajor phytoconstituents
of P. amurense bark extract. b
Model depicting the molecular
mechanism of action of Nx based
on current data
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standardized to berberine and is believed to reduce stress and
anxiety [42]. Using activity-guided fractionation of
Nexrutine®, we found that butanol fraction (F3) recapitulates
the anti-proliferative and NF–κB inhibitory activity of the ex-
tract. Furthermore, ultra-performance liquid-chromatography
(UPLC) tandem mass spectrometry with multi-reaction moni-
toring analysis identified berberine and palmatine as the active
constituents present in F3 [43].

In Vitro Evaluation in PCA: One Extract, Many
Properties

Compared with other natural compounds, the use of
Nexrutine® is relatively unexplored in the arena of chemopre-
vention. However, in the past decade, the number of reports
demonstrating anti-cancer properties of Nexrutine® has been
on the rise with reports of its testing in melanoma, multiple
myeloma, prostate, pancreatic, breast, and non-melanoma
skin cancer [37, 43–48, 49•, 50••]. Studies from our laboratory
first discovered Nexrutine® has anti-proliferative properties
against PCA cell lines irrespective of their androgen-
dependence status [37]. Subsequent studies showed that
Nexrutine® also inhibited invasion and anchorage-
independent growth of androgen-independent PCA cell lines
[37, 47]. Mechanistic investigations revealed that Nexrutine®
exerts its biological effects by modulating key cell-survival
pathways such as PI3K/AKT and STAT3/NF–κB signaling,
leading to apoptosis [37, 43, 44, 48, 50••]. Introduction of a
constitutively active form of AKT blocked the anti-
proliferative effect of Nexrutine® in PCA cells, implying
PI3K/AKT pathway as a target of Nexrutine® [37]. Similarly,
Nexrutine® decreased phosphorylation and DNA binding ac-
tivity of cAMP response element-binding protein (CREB), a
transcription factor downstream of PI3K/AKT signaling and
elevated in high-Gleason-grade human prostate tumors [37,
48]. CREB transcriptionally regulates expression of a plethora
of genes involved in various cellular processes including cell
proliferation, survival, apoptosis, inflammation, invasion, and
metastasis [51]. Nexrutine® was shown to inhibit NF–κB re-
porter and DNA binding activity in androgen-independent
PC-3 cells [43]. Treatment with Nexrutine® reduced levels
of cyclin D1 (cell cycle) and COX-2 (inflammatory mediator)
[44, 48]. It is noteworthy to mention that an integrated
oncogenomic analysis of prostate tumors revealed that the
PI3K/AKT pathway was deregulated in 42 % of primary tu-
mors and almost 100 % of metastatic tumors [52]. Alterations
in PTEN, PIK3CA, PHLPP, and INPP4B genes are associated
with poor prognosis and progression to metastatic CRPC.
Furthermore, there is reciprocal cross-talk between PI3K and
AR signaling whereby inhibiting AR with anti-androgens
causes increased PI3K/AKT signaling [53]. Similarly, com-
bined inhibition of AKTand AR delays progression to castrate

resistant disease, underscoring the advantage of targeting the
PI3K/AKT signaling in PCA [54]. PI3K/AKT signaling-
mediated activation of NF–κB was shown to mediate PCA
cell proliferation [55]. Strikingly, nuclear expression of
NF–κB is found to correlate with biochemical recurrence in
PCA patients [56]. Therefore, ability of Nexrutine® to modu-
late multiple critical deregulated signaling pathways will have
enormous therapeutic benefit.

Preclinical Evaluation

Chemopreventive potential of Nexrutine® was evaluated in
preclinical animal models [43, 44, 46, 47, 50••]. Intervention
with Nexrutine® not only prevented development of early
stage prostate tumors but also metastatic lesions in transgenic
adenocarcinoma of mouse prostate (TRAMP) mice [47]. Re-
markably, intervention with Nexrutine® resulted in statistical-
ly significant increase in bonemineral density in these animals
[47]. Bone is the most frequent site of metastasis in human
PCA patients and is associated with increased pain and skel-
etal complications [57]. Validation of these observations in
large-scale studies will have significant impact to improve
the quality of life for these patients. In addition, Nexrutine®-
mediated in vivo effects were shown to be associated with
decreased levels of cyclin D1, AKT/CREB, and NF–κB acti-
vation [43, 44].

From Bench to Bedside

Radiation therapy (RT) and radical prostatectomy are the com-
mon modes of treatment for localized PCA but are associated
with several side effects with biochemical recurrence in the
high- and intermediate-risk groups [58]. Interestingly,
Nexrutine® supplementation prior to RT inhibited progression
of prostate tumors to poorly differentiated stage in TRAMP
mice with no prominent toxicity (Hussain et al., unpublished
data). Low-dose radiation combined with Nexrutine® showed
similar inhibition of surviving fraction as high-dose radiation
in androgen-independent PC-3 cells (Hussain et al., unpub-
lished data). Encouraged by the pre-clinical efficacy of
Nexrutine®, Swanson et al. tested whether the supplementa-
tion of Nexrutine® would benefit PCA patients undergoing
prostatectomy or RT. The 6–8-week period after diagnosis
and before beginning treatment was effectively used to admin-
ister Nexrutine® to PCA patients with either Gleason score >6
or prostate-specific antigen (PSA) >10 ng/ml. Nine patients
receiving RT and 12 patients undergoing surgery were en-
rolled in this trial. Indeed, oral administration of Nexrutine®
(500 mg tid) 1 to 2 months prior to radiation/surgery or with
radiation decreased PSA in 81 % of patients with no signs of
grade 3 toxicity [59]. The trial also established the safety of
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Nexrutine®. This was the first clinical study, which tested the
tolerance and efficacy of Nexrutine® in cancer patients. These
studies have strengthened the potential use of Nexrutine® in
combination with existing therapy to maximize clinical bene-
fits for patients. Along these lines, given that reactivation of
(AR) signaling is critical in the development of CRPC, studies
to establish the potential of Nexrutine® alone and in combi-
nation with FDA-approved androgen antagonists and andro-
gen synthesis inhibitors are warranted [60]. Given that andro-
gen deprivation therapy is an important treatment component
of the armamentarium to treat patients with intermediate- to
high-risk disease as well as to treat those men with recurrent
PCA, use of non-toxic alternatives will have substantial ben-
efit in delaying the progression [2•].

Antitumorigenic Effects of Nexrutine® in Other Tumor
Models

Recent studies from our lab unraveled the benefits of
Nexrutine® against pancreatic cancer [49•, 50••]. Similarly,
Nexrutine® decreased both NF–κB and STAT3 levels and
transcriptional activity in pancreatic cancer cell lines [50••].
Disrupting the cross-talk between NF–κB and STAT3 ensured
inhibition of the feedback loop. Furthermore, Nexrutine® was
shown to inhibit NF–κB-mediated transactivation of COX-2,
which resulted in decreased expression of COX-2 [50••]. In-
hibition of STAT3 reduced the elevated levels of ROS and
autophagy (a survival mechanism) in pancreatic cancer cells
[49•]. In a COX-2 over-expressing BK5–COX-2 preclinical
model of pancreatic cancer, Nexrutine® intervention reduced
fibrosis [50••]. Fibrosis or desmoplasia produced through tu-
mor–stromal interactions impedes drug delivery leading to
therapeutic resistance [61]. Along these lines, Nexrutine®-me-
diated disruption of pancreatic desmoplasia makes it a partic-
ularly attractive adjuvant for conventional therapy.

Furthermore, Nexrutine® inhibited the survival of several
melanoma cell lines by modulating their oxidative stress
levels (Hambright et al., Oncotarget, in press). Supporting
studies from other groups have demonstrated the chemopre-
ventive potential in breast and skin cancer [45, 46]. Interest-
ingly, decreased cell viability and increased apoptosis in
SkBr3 cells and induction of autophagy in MDA-MB231
ER-negative breast cancer cells were reported [45].
Nexrutine® also decreased COX-2 and PPARγ in breast can-
cer cells [45]. Nexrutine® had negligible cytotoxic effect on
primary murine keratinocytes [46]. Using well-established
mouse two-stage carcinogenesis model, Kumar et al. showed
reduced tumor incidence and associated decrease in the levels
of COX-2 and NF–κB [46]. In addition, Nexrutine® exhibited
antitumorigenic activities in a multiple myeloma (MM) cells
in vitro and in a preclinical model in vivo. Nexrutine® expo-
sure reduced cell viability through apoptosis and inhibition of

mTOR activation in murine 5TGM1 and human RPMI 8226
MM cells [62]. Furthermore, Nexrutine® administration re-
duced overall tumor burden in a MM preclinical mouse model
[62]. That study also suggested potential for combining
Nexrutine® with autophagy inhibitors for enhanced therapeu-
tic benefit. Taken together, these preclinical observations sug-
gest the potential utility of Nexrutine® as a secondary and/or
tertiary chemopreventive agent for management of not only
prostate but also other inflammation-associated malignancies.

Conclusions, Future Directions, and Challenges

In summary, Nexrutine® has been observed to have positive
impact in inhibiting carcinogenesis pathways and biological
processes involved not only in solid tumors, but also in hema-
tological malignancies (Fig. 1b). These benefits have been
reported to be potentially through both autophagy and apopto-
sis, perhaps in a cell-type contextual manner as well as due to
modulation of key inflammatory signaling pathways. It is well
established that chronic inflammation and associated COX-2
overexpression is an early event in the pathogenesis of
Binflammation-related^ cancers [63]. COX-2 is transcription-
ally regulated by STAT3, NF–κB, and CREB; therefore, it is
possible that Nexrutine® suppresses COX-2 by downregula-
tion of these transcription factors in tumor cells [64, 65]. Sup-
pression of this signaling not only inhibits tumor cell growth
but could also potentially sensitize cancer cells to convention-
al treatment. However, such concepts have not been tested.
Furthermore, although epidemiological studies showed re-
duced cancer risk in people who regularly take NSAIDs, its
long-term use has been associated with gastrointestinal or car-
diovascular side effects [66, 67]. In this scenario, Nexrutine®
could provide an alternative strategy for its anti-inflammatory
use. Imbalance of pro- and anti-inflammatory cytokines and
increased oxidative stress is associated with negative energy
balance in which energy consumed (caloric intake) is greater
than the energy expended (caloric expenditure) [68]. This neg-
ative energy contributes to obesity, one of the risk factors for
number of malignancies including PCA [69]. Accordingly,
given the ability of Nexrutine® to modulate inflammatory
molecules, its preventative benefits inmodulating obesity pos-
sibly as an exercise mimetic is an interesting hypothesis to
test. In addition, the potential of Nexrutine® to alter adverse
effects associated with cancer and cancer treatment including
fatigue also needs to be evaluated. However, further research
involving long-term pharmacokinetic studies to establish the
toxicity profile of Nexrutine® and biomarker-driven trials are
warranted to determine the full beneficial impact of
Nexrutine®.

Even though herbal extracts have shown promising results
in preclinical models, the transition from ‘bench to bedside’ is
hindered by their lack of bioavailability, difficulties in setting
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quality control parameters, and more importantly, the varied
effect observed during different stages of disease or at differ-
ent doses. In the case of Nexrutine®, we used the solid support
matrix in UPLC, which can cause adsorptive sample loss, thus
limiting the fractionation of natural extracts containing diverse
bioactive molecules. Hence, use of a high-throughput counter
current chromatography fractionation method that excludes
the solid support matrix can help elaborate the composition
of Nexrutine® [70, 71]. Quantitative composition activity re-
lationship, a newly identified approach based on algorithms to
correlate the chemical composition of an extract to its biolog-
ical activity, could help in designing the quality control and
standardization protocols for Nexrutine®, thus alleviating
some concerns of variation due to its natural origin [72, 73].
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