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Abstract For many years, folic acid has been evaluated for its
utility as a chemopreventive agent due to its position at the
center of the one-carbon metabolic network. This network is
responsible for generating precursors to nucleotide synthesis
as well as the one-carbon moieties used in DNA methylation
reactions, two mechanisms which are frequently disrupted
during carcinogenesis. While the use of folic acid for the che-
moprevention of colorectal cancer is still controversial, there
is evidence that folic acid intake has significant influence on
these fundamental cellular mechanisms. Folic acid has a dual
role with regards to nucleotide synthesis and colorectal
cancer prevention; in a healthy colon, adequate folate
status is important for nucleotide metabolism homeosta-
sis and the maintenance of DNA integrity; however, in
a colon harboring premalignant lesions, lowered folate
status may help to eliminate transformed cells. In addi-
tion, folic acid is important for the generation of the
one-carbon groups used in DNA methylation reactions,
and modulation of folic acid metabolism may be useful
in combating the aberrant DNA methylation during car-
cinogenesis. Interestingly, it has been revealed that de-
creased folic acid intake can dampen the inflammatory re-
sponse, which has recently been a popular strategy for colo-
rectal cancer chemoprevention. In this review, we discuss the
molecular mechanisms influenced by folic acid intake and
how they might be relevant to cancer chemoprevention in
greater detail.
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Introduction

Over the last few decades, there has been increased interest in
how an array of dietary components may affect cancer pro-
gression and whether any of these components have potential
for use as chemopreventative agents. Folate, also known as
vitamin B9, has been the subject of numerous studies seeking
to understand its role in cancer progression [1–6]. This is due,
in part, to the 1996 mandate by the United States Food and
Drug Administration (FDA) requiring the supplementation of
wheat, rice, bread, cereals, pasta, and other grain products
with folic acid in an effort to reduce the incidence of neural
tube defects in newborns [7]. Following this mandate, several
studies were published that put forth conflicting findings re-
garding the influence of folate supplementation on colorectal
cancer (CRC) progression; nearly two decades later, the de-
bate over whether folate promotes or prevents CRC continues.
The controversy surrounding the influence of folate on tumor-
igenesis is likely due to its position at the center of a complex
metabolic network that influences a variety of biological pro-
cesses including nucleotide synthesis, DNA integrity, and
gene expression through epigenetic regulation [2]. The most
thoroughly characterized function of folate is its immediate
role in one-carbon metabolism. Through a series of metabolic
reactions, dietary folate can be converted into several forms,
each of which plays a role in distinct metabolic pathways. The
three most thoroughly investigated folate metabolites are 5-
methyl tetrahydrofolate (THF), 10-formyl THF, and 5,10-
methylene THF. These three metabolites all provide one-
carbon groups for use in a variety of biosynthesis reactions
(Fig. 1) [8]. 10-Formyl THF and 5,10-methylene THF are key
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intermediates required for thymidylate and pyrimidine biosyn-
thesis, respectively, while 5-methyl THF feeds one-carbon
groups into the homocysteine metabolic cycle, the pathway
which serves as the primary source of methyl groups
used in DNA methylation reactions [9]. It is because
of folate’s involvement in many biological processes
relevant to cancer development, and its potential to
modulate these processes, that it has been widely con-
sidered for its potential chemopreventive benefit. However,
despite significant potential and a large body of research into
its multifaceted functions, understanding of the intricate

effects of folate intake and supplementation on cancer risk
remains elusive.

Folic Acid and Colorectal Cancer Risk

A large number of studies, both preclinical and clinical, have
sought to understand how intake of folic acid influences tumor
progression; a collection of key studies can be found in
Table 1. Unfortunately, this body of work has not yet been
able to provide a clear picture of how folate intake influences

Fig. 1 a Overview of folate metabolism. Dietary folate is converted into
several key metabolites by a series of enzymatic conversions. b 5,10-
Methylene tetahydrofolate is used as the substrate for thymidylate
synthesis, where a methyl group is donated to deoxyuridine
monophosphate (dUMP) to form deoxythymidine monophosphate
(dTMP). c 10-Formyl tetrahydrofolate performs a similar function in
the synthesis of the purine nucleotide precursor, inosine monophosphate
(IMP). Initially, 10-FTHF donates a formyl group to convert glycinamide
ribonucleotide (GAR) to N-formylglycinamide ribonucleotide (FGAR).

In a later step, 10-FTHF donates a formyl group to convert 5-
Aminoimidazole-4-carboxamide ribonucleotide (AICAR) into 5-
formamidoimidazole-4-carboxamide ribotide (FAICAR). d Methyl
groups can be shuttled from 5-methyl tetrahydofolate (5-MTHF) to the
homocysteine cycle, where they are used to regenerate the Buniversal
methyl donor,^ S-adenosyl methionine (SAM). SAM in turn serves as
the substrate for the DNA methyltransferase enzymes, which transfer a
methyl group from SAM to cytosine, resulting in the formation of 5-
methylcytosine
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colorectal cancer risk. The earliest investigations into the re-
lationship between folate and CRC risk were typically epide-
miological case–control studies examining associations be-
tween CRC incidence and folate intake determined from die-
tary questionnaires. Three such studies that were among the
first to report on folate intake and CRC risk demonstrated an
inverse relationship between folate consumption and colorec-
tal cancer incidence [2, 10–12]. Importantly, all three of these
studies were conducted in countries that, at the time, had not
implemented folic acid fortification programs and were there-
fore more likely to have larger portions of the population with
inadequate folate intake. For the most part, studies of folic acid
intake and the risk of colorectal neoplasia conducted in the
United States after the implementation of the national fortifi-
cation program have also supported an inverse relationship
between intake and risk in the general population [13–15].
However, a key randomized clinical trial conducted by Cole
and Baron [16] challenged this long-standing paradigm by
demonstrating that very high doses of folic acid (1 mg/day)
in individuals with a history of colorectal adenoma do not
decrease the risk of future adenoma and may actually result
in an increased risk. Additionally, a more recent meta-analysis
of six large folic acid supplementation trials has concluded
that folic acid supplementation is associated with an increased
risk of cancer [17••].

Studies in rodent models have suggested that once neoplas-
tic lesions have been established folate deficiency slows tumor
progression [18, 19, 20•]. As a result, it has been suggested
that folic acid has a Bdual modulatory effect^ on carcinogen-
esis [21]; prior to the establishment of neoplastic lesions, high
folate intake decreases the risk of cancer, while high folate
intake after the establishment of neoplasia drives progression.
Thus, within the context of folate-based chemoprevention
strategies, careful consideration of dosage and timing with
respect to carcinogenic initiation are critical determinants of
the safety and efficacy of an intervention.

Folic Acid as a Carbon Source in De Novo Nucleotide
Synthesis

Folic acid metabolites are used as substrates in the biosynthe-
sis of both thymidylate and purine nucleotides. Once folate
has entered the cell, it is reduced to tetrahydrofolate (THF),
which is the derivative that acts as the central nexus of the folic
acid metabolic cycle. THF goes through a series of enzymatic
conversions, with each step in the pathway giving rise to an
intermediate that serves a unique role. The most important
folate derivatives for nucleotidemetabolism are 5,10-methylene
THF and N10-formyl THF. 5,10-methylene THF is the sub-
strate for the enzyme thymidylate synthase which transfers
a methyl group from 5,10-methylene THF to deoxyuridine
monophospha te (dUMP) to genera te thymid ine

monophosphate (dTMP) [22]. N10-Formyl THF, on the
other hand, is the substrate for two enzymes involved in
separate steps in the biosynthesis of purine nucleotides:
Phosphoribosylglycinamide formyltransferase (GART)
and phosphoribosylaminoimidazolecarboxamide formyl
transferase (AICARFT) [23, 24]. GART transfers a
methyl group from N10-formyl THF to glycinamide ri-
bonucleotide (GAR) to generate the purine intermediate
N-formylglycinamide ribonucleotide. Later in the purine
biosynthetic pathway, AICARFT transfers another carbon
from N10-formyl THF to AICAR to generate the purine inter-
mediate 5-formamidoimidazole-4-carboxamide ribonucleo-
tide (Fig. 1) [25]. Thus, the supply of folate is incredibly
important for nucleotide biosynthesis, as it is the primary
source of crucial structural carbons in purine precursors and
of the carbon that is necessary to convert dUMP to dTMP.
Imbalances in these key folate metabolites have previously
been detected in colorectal tumors, underscoring the relevance
of this metabolic pathway to colon carcinogenesis [26].

It is folic acid’s role in nucleotide metabolism that has
made it an interesting chemopreventive candidate from a
mechanistic standpoint. It has been hypothesized that folate
deficiency causes DNA damage by reducing the availability
of nucleotide synthesis precursors and thus causing an imbal-
ance in nucleotide pools [27]. Such imbalances are known to
lead to uracil misincorporation into DNA, DNA mismatches,
and double-stranded breaks [27, 28]. Inhibition of one-carbon
metabolism, such as that caused by dietary folate deficiency,
has been shown to cause uracil misincorporation and DNA
double-stranded breaks in lymphocytes and colonic epithelial
cells in rodent models [29–31]. It has also previously been
shown that dietary folate deficiency is capable of inducing
both uracil misincorporation and chromosome breaks in hu-
manDNA [32, 33]. Thus, when folate status is low in a normal
cell, that cell will accumulate DNA damage and have a higher
probability of undergoing transformation; on the one hand,
folic acid supplementation has been proposed to reduce
CRC risk by ensuring the ample supply of nucleotide precur-
sors. On the other hand, this same mechanism might help to
explain the inhibitory effect of folate deficiency on tumor
growth. Cells which have undergone transformation tend to
have a higher rate of replication and a higher demand for
nucleotides than their comparatively slow-replicating normal
counterparts. In these transformed cells, low folate status
places a severe restriction on nucleotide biosynthesis,
inhibiting DNA replication and slowing tumor growth [34].
A recent study byWitherspoon [35•] revealed that the chemo-
preventive agent α-difluoromethylornithine (DFMO) exerts
its protective effects through a similar mechanism; DFMO
alters the metabolic availability of folate derivatives and in-
hibits thymine biosynthesis.

It is possible that transformed cells are unable to cope with
the rapid accumulation of DNA damage caused by folate

200 Curr Pharmacol Rep (2015) 1:197–205



deficiency and eventually activate apoptotic pathways,
resulting in the death of the initiated cell before it can develop
into a more advanced lesion. In fact, this mechanism has been
used for many years as the basis for antimetabolite chemother-
apy; 5-fluorouracil (5-FU) acts by inhibiting thymidylate syn-
thase which leads to the reduced availability of thymidylate,
inhibition of DNA replication, and ultimately, the induction of
apoptosis [36]. Furthermore, antifolate drugs such as metho-
trexate and pemetrexed function by inhibiting steps in folate
one-carbon metabolism and have consequences for DNA in-
tegrity that are similar to those of 5-FU [37].

Confusion regarding the effects of folate intake on CRC
risk may arise from the fact that these two effects of deficiency
are not necessarily mutually exclusive. An individual with low
folate intake may have two distinct subpopulations of colonic
epithelial cells: normal cells which are sustainin DNA damage
and are pushed towards transformation and a population of
initiated cells the progression of which is inhibited by folate
restriction. For the purpose of chemoprevention, then, a
folate-based intervention may take one of two forms depend-
ing on an individual’s personal risk profile. Endoscopic detec-
tion of an adenoma is a known risk factor for future neoplasia,
suggesting that individuals with a history of adenoma may
possess multiple synchronous neoplastic foci capable of
progressing to a more advanced lesion. In these cases, it
may be of greater benefit to the patient to restrict folate intake
so as to inhibit the progression of existing neoplasia; in a
young individual with a colon free of neoplastic foci, it may
be of greater benefit to supplement folate intake in order to
prevent DNA damage and reduce the likelihood of neoplastic
initiation. A key task which must be completed in order to
maximize the utility of folate chemoprevention is the charac-
terization of the effects of various levels of folate intake on
cellular viability at different stages of carcinogenesis. From
these data, it may be possible to identify individuals who
belong to specific at-risk subpopulations that stand to benefit
most from folate supplementation or restriction. The overall
effect on carcinogenesis of a given folate intake level may be
quite different for certain high-risk individuals, such as pa-
tients with a personal history of colorectal cancer or individ-
uals with familial adenomatous polyposis, than it is for the
general population.

Folic Acid as a Source of One-Carbon Groups for DNA
Methylation

A second mechanism through which folate intake has been
proposed to offer chemopreventive effects is the modulation
of DNA methylation patterns. In a landmark paper, Feinberg
and Vogelstein established the connection between genomic
hypomethylation and colorectal carcinogenesis by demon-
strating that, compared with matched normal tissue, primary

tumor samples were significantly hypomethylated at a specific
subset of genes [38]. This finding was expanded upon when
Feinberg later demonstrated that, compared with normal mu-
cosa, adenomas and adenocarcinomas have reductions in total
genomic 5-methylcytosine content of 8 % and 10 %, respec-
tively [39]. A link between hypomethylation and carcinogen-
esis was later demonstrated in an animal model when Gaudet
found that mice expressing hypomorphic Dnmt1 developed
aggressive lymphomas between 4 and 8 months of age [40].
It was later revealed that, while tumors do undergo a global
reduction in DNA methylation, they also become
hypermethylated at specific CpG islands in a tissue-specific
manner, suggesting that there exists a more general relation-
ship between the disruption of normal methylation patterns
and colorectal carcinogenesis.

The supply of one-carbon groups for use in methyl-
ation reactions is dependent on metabolic flux through
the homocysteine cycle [41], which generates S-
adenosyl methionine (SAM), the Buniversal methyl donor.^
Dietary folic acid is eventually converted to the metabolite 5-
methyltetrahydrofolate (5-MTHF); a methyl group is then
transferred to homocysteine to generate methionine, which
reacts with ATP to generate SAM. SAM is the substrate for
DNA methyltransferase enzymes (DNMTs) which transfer a
methyl group to DNA CpGs, converting SAM to S-adenosyl
homocysteine (SAH) and the target cytosine to 5-
methylcytosine (Fig. 1) [42]. The availability of SAM and
SAH are important regulators of DNMTactivity and the main-
tenance of patterns of DNA methylation. Considering the im-
portance of folate for homocysteine metabolism and DNA
methylation, it has been suggested that folate-based chemo-
prevention may help to maintain normal patterns of methyla-
tion [43, 44].

Studies of the relationship between folic acid intake and
DNA methylation status have produced inconsistent results.
While some studies have reported that folate supplementation
has no effect on global DNAmethylation [33, 45, 46], there is
also ample evidence to support a relationship between folate
intake and methylation. Several studies have shown that in-
creased folic acid intake is associated with an increase in glob-
al DNA methylation in both leukocytes and colonic epithelial
cells [47, 48]. It has also been shown that folate deficiency
causes both a global reduction in DNA methylation and spe-
cific hypomethylation at the p53 gene promoter in human
colon carcinoma cells [43]; it was further demonstrated that
both types of hypomethylation could be reversed when folic
acid was added to the culture medium. This finding was par-
tially recapitulated in an animal model when ApcMin/+ mice
were fed a diet deficient in folate: folate deficiency was asso-
ciated with both a decrease in DNA hypomethylation and
SAM [49]. Interestingly, in a 2007 study by Keyes [48], this
positive correlation between folate intake and global DNA
methylation was found to be present in 18-month-old mice
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but not in 4-month-old mice. A more recent study showed
that, in old mice (18 months), administration of a diet deficient
in folate and supplemented with 18 % ethanol caused a sig-
nificant reduction in global DNA methylation compared with
control [50]. These studies suggest an age-dependent suscep-
tibility of DNA methylation patterns to modulation by folate
intake.

There have been only a few clinical studies investigating
the relationship between folate intake and DNA methylation
in humans, but, in general, they support a positive correlation
between folic acid intake and DNAmethylation. Early studies
indicated that supplementation of folic acid intake caused an
increase in DNA methylation in cells of the colonic mucosa
[47, 51, 52]. However, one drawback of these early studies is
that they all relied on the methyl acceptance assay, which has
been reported to be subject to a large degree of variation [53].
Two more recent studies, which measured DNA methylation
with more sophisticated techniques, have also produced in-
consistent findings; one study confirmed the positive correla-
tion between folate intake and DNA methylation in the colon
while the other did not [33, 54].

Importantly, the findings of two key studies may warrant a
reevaluation of our understanding of the effects of folate in-
take on methylation during colorectal carcinogenesis. These
studies showed that, when the activity of either Dnmt1 or
Dnmt3a is reduced in ApcMin/+ mice, there is a dramatic re-
duction in intestinal tumor multiplicity; in the case of Dnmt1,
tumorigenesis is suppressed completely. These studies suggest
that, in the intestine and colon, carcinogenesis is dependent on
DNMT activity. It is well known that DNA methylation is
critical for regulating chromatin conformation [55], and it is
thought that hypomethylation of a particular region of DNA
may cause it to be more susceptible to accumulating damage.
In the past, it has been proposed that folic acid supplementa-
tion might provide chemopreventive protection by preventing
hypomethylation and reducing susceptibility to genomic dam-
age [56]. If, however, colorectal carcinogenesis is dependent
on methylation, it may actually be beneficial to restrict the
generation of methyl groups destined for use in DNA methyl-
ation in certain situations. This view of folate-dependent
methylation in the context of colorectal cancer may help to
explain the anti-tumor effects of folate deficiency that have
been recently described in mouse models [19–21]. Just as
the effects of folate intake on tumorigenesis appear to vary
depending on timing and dosage, they may also vary depend-
ing on an individual’s age and epigenetic background.

Taken together, the variability in these studies suggests that
the effects of folate intake on DNA methylation may be mod-
ulated by confounding factors, including age and intake of
alcohol. If modulation of methylation patterns is a key mech-
anism through which folic acid chemopreventionmay exert its
effects, it will be important to tease out which members of the
DNA methylation pathway (SAM, SAH, DNMTs, etc.) are

the dominant regulators. In addition, it is possible that, based
on their unique epigenetic profile, certain individuals may
benefit from folate-based chemoprevention more than others.
It will be important to understand how outside factors, such as
other dietary factors or advanced age, interact with folate-
dependent methylation.

Folic Acid as a Requirement for Immune Cell
Proliferation

Although it is not discussed as frequently as biosynthesis or
DNA methylation within the context of folate chemopreven-
tion, one-carbon metabolism is important for the maintenance
of the immune system and the inflammatory response. There
is considerable evidence that inflammation is a significant risk
factor for the development of colorectal cancer [57–59].Much
like cancer cells, immune cells divide rapidly following acti-
vation and are therefore highly dependent on an adequate
supply of nucleotides [60–62]. Thus, it is possible that
lowered folate intake and the subsequent restriction of nucle-
otide availability will inhibit immune cell proliferation and
lead to an attenuated inflammatory response. While inhibition
of the immune system comes with a host of potential compli-
cations, it may serve as the basis for a useful chemopreventive
strategy for particular subpopulations, such as individuals
with inflammatory bowel disease (IBD). The practice of
disrupting one-carbon metabolism as an anti-inflammatory
therapy has been in use for some time; the antifolate metho-
trexate (MTX) has been administered at low doses to treat
rheumatoid arthritis for several decades [63]. Investigations
into the anti-inflammatory mechanism of MTX showed that
it acts by inhibiting replication of the immune cells responsi-
ble for mediating the inflammatory response [64]. Mild to
moderate deficiency in folic acid intake, in certain subpopu-
lations, may function through the same mechanism to reduce
inflammation and cancer risk.

With the exception of a recent study which demonstrated
that mouse monocytes cultured in a folate-depleted medium
significantly upregulate expression of inflammatory cyto-
kines, most evidence points towards an immunosuppressive
effect of folate deficiency. Depletion of folic acid has been
shown to inhibit the proliferation of T cells in vitro [65]; this
finding is particularly interesting because ulcerative colitis , a
form of IBD which carries a significant increase in CRC risk,
is characterized by T cell infiltration of the colonic mucosa
[66]. Studies in animal models and in humans also generally
support an anti-inflammatory effect of folic acid deficiency. In
order to better understand the role of folate metabolism in the
process of tumor development, our laboratory [20•] recently
restricted the flux of one-carbon metabolism by administering
a diet deficient in the methyl donors folate, choline, methio-
nine, and B12 to ApcMin/+ mice. In this study, it was
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demonstrated that methyl donor deficiency dramatically re-
duces tumor burden in the small intestine; it was further shown
that this reduction in tumor burden was associated with a
decrease in immune cell populations and in the expression
of inflammatory cytokines. A prior clinical trial in which adult
men were placed on a folate-deficient diet for either 4 or
8 weeks showed a similar reduction in inflammatory markers
[33]. A study of folic acid intake in the AOM/DSS mouse
model of colitis-associated CRC demonstrated that tumor
multiplicity was positively correlated with folic acid intake;
folate-deficient mice had the lowest number of tumors [67].
Together, these studies demonstrate the potential for a folic
acid-based anti-inflammatory intervention, which has impor-
tant implications for colorectal cancer chemoprevention.

There is considerable evidence to support the use of non-
steroidal anti-inflammatory drugs (NSAIDs) for the chemo-
prevention of colorectal cancer [68]. Interestingly, it has been
shown that a large number of NSAIDs commonly considered
for use as chemopreventive agents act as competitive inhibi-
tors of folate-dependent enzymes in addition to their primary
mechanisms of action [69]. This observation may suggest that
these NSAIDs have chemopreventive efficacy due, in part, to
the inhibition of folate one-carbon metabolism and presents
the possibility of using antifolate drugs for chemoprevention.
It may be worthwhile to reevaluate existing antifolates for use
as chemopreventive agents, particularly in high-risk popula-
tions such as individuals who have recently undergone colo-
rectal tumor resection and are therefore at a high risk of relapse
[70]. Drugs such as methotrexate, which is already used at low
dosages for long-term management of rheumatoid arthritis,
may be the best candidates to be repurposed for use in
chemoprevention.

Conclusion

Folic acid may still prove to be a useful chemopreventive
agent, but it will likely find the most utility when interventions
are tailored for an individual based on his personal medical
history and unique genetic background. Due to the multiple
mechanisms through which the modulation of folic acid intake
may exert its chemoprotective effects, and the differences
among at-risk populations, it will be necessary to carefully
tailor interventions to an individual’s unique risk profile. If,
for example, folate supplementation promotes the progression
of established neoplasia [16], it may be prudent for an indi-
vidual to reduce folate consumption following endoscopic
detection of an adenoma. It is especially important to under-
stand the optimal folate intake for specific high-risk subpop-
ulations considering the FDA-mandated national fortification
program and the effects it may have on non-target populations.
Though this program achieved its goal of reducing the inci-
dence of neural tube defects by raising folate intake in women

of childbearing age, it has concurrently raised folate intake
nationwide, with men and women over the age of 50 years
being the most significantly affected [71, 72]. Collectively, the
data suggest that dietary supplementation with folic acid is not
protective against CRC in all instances and that successful
folate-based chemoprevention will require better understand-
ing of the optimal intake level for particular groups of people
as well as carefully targeted interventions.

While nucleotide biosynthesis is the best-characterized
folate-dependent molecular mechanism [73], steps still need
to be taken to understand how its role in cancer risk changes
throughout the carcinogenic process. As a cell acquires more
genomic changes and progresses towards cancer, its metabolic
demands change. This should be taken into account when
considering a biosynthesis-based mechanism of folate chemo-
prevention. Similarly, DNAmethylation profiles are known to
be influenced by a number of outside factors including age
and the consumption of alcohol [50, 74, 75]. Thus, not only
may different subpopulations require unique chemopreventive
strategies, but the best strategy for a particular individual may
change over time in order to adapt to changes in diet, age, and
personal history of neoplasia. Finally, effects of modulated
folate intake which are not commonly considered for chemo-
preventive use may find relevance in specific high-risk sub-
populations, such as the potential use of the anti-inflammatory
effects of folate deficiency in individuals with IBD. While
folate chemoprevention has not turned out to be the Bmagic
bullet^ it was once hoped to be, it still has potential to be an
effective strategy when interventions are founded in a mech-
anistic understanding and tailored to an individual’s unique
requirements.
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