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Abstract With new high-throughput technologies and su-
perior computational power available for application to
current pharmacology research, biomarker discovery has
probably entered its most exciting phase to date, especially
with the concurrent advent of systems network biology for
“big data.” Study of recurrent network motifs in network
architecture can inform us better about regulatory path-
ways in the cellular milieu, more so in complex disease
states like cancer. In this review, we focus on the archi-
tecture of miRNA networks with emphasis on
chemoresistance networks in response to chemotherapeutic
drugs, chemoprevention networks modulated by dietary
phytochemicals, and novel bifunctional networks com-
prised of bifunctional miRNAs that operate in both
chemoresistance and chemoprevention. Since miRNA can-
cer networks are very complex, the regulatory architecture
in chemoresistance and/or chemoprevention may likely
include added dimensions of modulation by epigenetic
miRNAs and IncRNAs, which may explain, at least in
part, the bifunctionality associated with signature miRNA
nodes in these networks in addition to temporal dynamics,
spatial localization, and stress conditions in the dynamic
networks representing the complex cellular milieu. Collec-
tively, by a perusal of our chemoresistance,
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chemoprevention, and bifunctional networks, we can gain
deeper insights into the architecture of signature miRNA
regulatory networks in cancer that will serve as the basis
for future dynamic network studies and facilitate the dis-
covery of novel miRNA/target biomarkers for preventive
and/or therapeutic intervention in cancer.
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AITC Allyl isothiocyanate

ATRA All trans retinoic acid

CoMi Context-specific miRNA regulation

DATS Diallyl trisulfide

DIM 3,3"-Diindolyl methane

EGCG Epigallocatechin-3-gallate

FBL Feedback loops

FFL Feed-forward loops

HRPC Hormone refractory prostate cancers

13C Indole-3-carbinol

Jak/STAT  Janus kinase/Signal transducer and activator of
transcription

IncRNA Long noncoding RNA

MDRL Mitochondrial dynamic related IncRNA

mirDREM  MIRna Dynamic Regulatory Events Miner

miRNA MicroRNA

NFATC3  Nuclear factor of activated T cell isoform ¢3

PEITC Phenethyl isothiocyanate

SCC Squamous cell carcinoma

TP Tumor protein
TRPC5 Transient receptor potential channel C5
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Introduction

Despite substantial progress in understanding the cancer sig-
naling network, effective therapies remain scarce due to in-
sufficient disruption of oncogenic pathways, chemoresistance,
and drug-induced toxicity [1e¢]. Defects in the DNA damage
response and deregulation of microRNAs (miRNAs) are im-
portant hallmarks of human cancer; hence, a full understand-
ing of the mechanisms underlying the connection between
miRNAs and DNA damage response and DNA repair path-
ways will positively impact our knowledge on human tumor
biology and on different responses to distinct drugs [2]. By
definition, miRNAs are small noncoding endogenous regula-
tory RNAs that fine tune gene expression in a wide range of
biological processes and diseases, and exert their function by
targeting mRINAS to trigger their degradation or inhibit protein
translation [3¢]. According to current estimates, most human
genes are harboring miRNAs and/or are regulated by them;
thus, miRNAs can form complex regulatory networks by
themselves, but because their expression is often tightly coor-
dinated with gene expression, they form an intertwined regu-
latory network with many possible interactions among gene
and miRNA regulatory pathways [4]. Indeed, identifying
master regulators of biological processes and mapping their
downstream gene networks are key challenges in systems
biology that remain to be overcome [5]. Although initially
seen as a very promising source of breakthroughs in cancer
management, there has been little translation of miRNA sci-
ence from the bench to the bedside, thus underscoring the
need to highlight the potential role of miRNAs in cancer
prevention, viz., their use as biomarkers and as targets for
chemoprevention [6]. Given their significance in modulating
gene expression, miRNA research can provide insight into the
pleiotropic biological effects that chemopreventive agents
often display and a deeper understanding of their mecha-
nism(s) of action to inhibit carcinogenesis [7]. In this review,
we focus on the architecture of miRNA networks with em-
phasis on three kinds of important networks in cancer, viz.,
chemoresistance networks in response to chemotherapeutic
drugs, chemoprevention networks modulated by dietary phy-
tochemicals, and novel bifunctional networks comprised of
bifunctional miRNAs that operate in both chemoresistance
and chemoprevention.

Systems Biology of microRNA Cancer Networks

The biological sciences are in a state of rapid development,
driven largely by the new technologies that have developed as
byproducts of the Human Genome Project; thus, the true
revolution inspired by genomics is probably changing what
was exclusively a laboratory science into an information sci-
ence [8]. Rather than focusing exclusively on single drug
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targets, systems pharmacology examines the holistic response
of a phenotype-dependent pathway or pathways to drug per-
turbation [9]. “Top—down” systems biology identifies molec-
ular interaction networks on the basis of correlated molecular
behavior observed in genome-wide “omics” studies, whereas
“bottom—up” systems biology examines the mechanisms
through which functional properties arise in the interactions
of known components [10]. Importantly, data integration ef-
forts can be achieved through the conversion of data from the
various datasets of recent large-scale projects into single-
node-type networks, gene-set libraries, or multipartite graphs
resulting in a lean “big data” integration strategy that could
bring us closer toward the goal of realizing personalized
medicine [11].

miRNA Network Biology and Cancer Biomarker Discovery

We have recently reported [12¢¢] on our use of systems phar-
macology for elucidation of differential signaling regulatory
networks governing hormone refractory prostate cancers
(HRPC) and identification of putative “target hubs” in the
architecture of these gene networks. In addition, we have
constructed [13] transcription factor networks to elucidate
potential relationships between NRF2 (NFE2L2) and NFkB1
in the etiopathogenesis of inflammation and cancer. Similarly,
it is known that the miRNA network is linked at several and
unexpected levels with cancer-related signaling pathways;
thus, our understanding of the role(s) and regulation of the
miRNA network has been extended to include classical cell
signaling, i.e., the miRNA network complements cell signal-
ing in cancer [14]. Recently, high-throughput sequencing
coupled with network analysis [15] was used to identify
cancer-specific miRNA signatures and potentially useful bio-
markers in colorectal cancer. Zhang et al. [16] reconstructed
the human miRNA-mRNA interaction network exhibiting
scale-free features and designed a novel cancer miRNA bio-
marker prediction framework applied to prostate cancer study
that could also be extended to other cancers. Further, Zhu et al.
[17] used network biology for predictive marker discovery
using context-specific miRNA regulation (CoMi) patterns to
represent a distinctive feature of the miRNA regulatory net-
work in the transcriptome. Indeed, the utility of miRNAs as
prognostic biomarkers and possible druggable target(s) for
circumventing multidrug resistance in cancer chemotherapy
[18] is now being greatly appreciated.

Architecture of miRNA Networks in Cancer

Emerging models supporting an miRNA-modulated sys-
tems-level or network-wide regulation of gene expression
are exciting and will yield deep insight into the regulatory
architecture of biology; however, because of the technical
challenges facing the network-based study of miRNAs,
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many gaps remain in our understanding [19]. Network
motifs are subgraphs that are statistically overrepresented
within networks [20]; hence, recurring network motifs may
have important gene regulatory role(s). Interestingly, tran-
scription factors and miRNAs can jointly regulate target
gene expression in the forms of feed-forward loops
(FFLs) or feedback loops (FBLs), which serve as important
motifs in gene regulatory networks [21] and play critical
roles in multiple biological processes and different diseases.
The proteins encoded by the genes targeted by miRNAs
may act as key components of cellular networks; thus, the
use of biological molecular network information for the
purposes of elucidating the role of miRNAs in molecular
disease mechanisms is a key objective in systems biomed-
icine [3¢]. Further, because miRNAs can modulate epige-
netic architecture and can be regulated by epigenetic alter-
ation, they can reasonably play an important role(s) in
mediating the crosstalk between epigenetic regulators; thus,
study of the epigenetic-miRNA regulatory pathway is a
promising avenue for the design of innovative strategies
in the fight against human cancer [22].

microRNAs and Chemoresistance Networks

One of the most important factors limiting the effectiveness
of chemotherapy is the primary and secondary resistance of
cancer cells; thus, understanding the genetic factors and
mechanisms that contribute to the lack of or low sensitivity
of tumor tissue to cytostatics is a key element in the cur-
rently developing trend of personalized medicine [23]. There
is known to be great heterogeneity in tumors with
chemoresistance [24], which makes the disease far more
difficult to treat using conventional chemotherapy acting
on limited known targets. Indeed, drug resistance is a com-
plex multistep process resulting from deregulated expression
of many molecules, including tumor suppressor genes, on-
cogenes, and miRNAs [25]. A growing body of evidence
suggests that miRNA polymorphisms are associated with
drug metabolism and chemoresistance and that differentially
expressed miRNAs play critical roles in the prediction of
sensitivity to chemotherapeutic agents [26]. Experimental
evidence demonstrates that dysregulation of specific
miRNAs leads to drug resistance in different cancers, and
correction of these miRNAs using miRNA mimics or
antagomirs can normalize the gene regulatory network and
signaling pathways and sensitize cancer cells to chemother-
apy [lee]. Thus, current evidence strongly reinforces the case
for a better understanding of drug resistance-related
miRNAs that may eventually lead to optimized therapeutic
strategies for cancer patients [25].

Fig. 1 Architecture of chemoresistance, chemoprevention, and P>
bifunctional cancer networks showing: a putative canonical interactions
between miRNAs involved in chemoresistance, b epistemologic
interactions between chemoresistance miRNAs and targets, ¢ putative
canonical interactions between miRNAs involved in chemoprevention, d
epistemologic interactions between chemoprevention miRNAs and
targets, e putative canonical interactions between miRNAs involved in
cancer bifunctionality, and f epistemologic interactions between
bifunctional cancer miRNAs and targets. Putative canonical miRNA
interactions were constructed using Cytoscape 3.1.1 [125, 126],
whereas epistemologic miRNA—target interactions were delineated by
Ingenuity Pathway Analysis (IPA, http://www.ingenuity.com). The
bifunctional cancer network E comprised a subset of miRNAs that were
common to both chemoresistance and chemoprevention networks a and
¢, respectively

miRNAs Involved in Chemoresistance
Against Chemotherapeutic Drugs

In our previous report [27¢¢] on emerging role(s) for miRNA
cancer signatures, we had succinctly tabulated various che-
motherapeutics along with up- or downregulated miRNAs
involved in resistance against them. Building on this, we
reviewed 24 chemotherapeutic agents including 5-
fluorouracil [28-33], bortezomib [34], camptothecin [35],
cetuximab [36, 37], cisplatin [38, 39], dasatinib [40], dauno-
rubicin [41], docetaxel [39, 42, 43], doxorubicin [44—47],
erlotinib [48], everolimus [49], fludarabine [50, 51],
fulvestrant [52], gefitinib [53-55], gemcitabine [56-58],
imatinib [59], lapatinib [55], methotrexate [60, 61], pac-
litaxel [38, 62], sorafenib [63], sunitinib [64], tamoxifen
[65], temozolomide [66—68], and trastuzumab [69], and
miRNAs involved in drug resistance to these agents.
These miRNAs are included in Fig. la that depicts the
architecture of our proposed canonical chemoresistance
network showing putative interactions between 55
miRNA nodes or vertices involved in chemoresistance
and 2970 undirected edges facilitating these interactions.
Further, we queried these miRNAs for interactions with
targets to construct an epistemologic chemoresistance
network showing “arcs,” i.e., directed edges, connecting
miRNA nodes of the network (Fig. 1b).

Architecture of Chemoresistant miRNA Networks

miRNAs are involved in many regulatory pathways some of
which are complex networks enriched in regulatory motifs
like positive or negative FBLs or coherent and incoherent
FFLs [70]. A methylation-based regulatory network for
miR-320a in chemoresistant breast cancer through targeting
of transient receptor potential channel C5 (TRPCS) and nu-
clear factor of activated T cells isoform ¢3 (NFATC3) has
recently been reported [71]. The existence of FBLs between
E2F1 and miRNAs have been reported [72] resulting in a
complex regulatory network. Vera et al. [73] performed
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Fig. 1 (continued)

kinetic-modeling-based simulations to demonstrate that con-
ventional genotoxic drug treatment favors selection of
chemoresistant cells in genetically heterogeneous tumors, in
a manner requiring dysregulation of incoherent FFLs that
involve E2F1, p73/DNp73, and miR-205. Kopp et al. [74]
showed that miR-200c sensitizes breast cancer cells to doxo-
rubicin treatment by decreasing expression of receptor tyro-
sine kinase TrkB and the transcriptional repressor Bmil,
whereas loss of miR-200c resulted in acquired
chemoresistance to doxorubicin. Ratovitski [75] showed re-
cently that cisplatin exposure of squamous cell carcinoma
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SCC-11 cells led to upregulation of miR-297, miR-92b-3p,
and miR-485-5p through a phosphorylated ANp63«-
dependent mechanism and that the tumor protein (TP) p63/
miRNA functional network may play a key role in supporting
the response of SCC to chemotherapy. Lecca [76] has de-
scribed Bayesian methods of biological network inference for
reverse engineering cancer chemoresistance mechanisms. In-
deed, network-based therapy that affects network flexibility,
including rewiring of network structures and focusing on
“target hub” molecules in these networks, could minimize
the occurrence of side effects and be a promising strategy for
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enhancing the therapeutic efficacy of cancer treatments in
chemoresistance and radioresistance [77]. Based on our
chemoresistance network in Fig. 1b, several miRNA nodes
with high “degree,” i.e., “number of interactions” were visible
including miR-148b-3p, miR-21-5p, miR-10, miR-455-3p,
miR-342-3p, miR-34a-5p, miR-125b-5p, miR-30, let-7,
miR-29b-3p, miR-8, miR-130a-3p, miR-30c-5p, miR-335-
5p, miR-7a-5p, miR-23a-3p, miR-16-5p, miR-200b-3p,
miR-192-5p, miR-26a-5p, miR-141-3p, miR-489-3p, miR-
199a-3p, among others. Further, autoregulation was observed
for miR-29 and miR-29b-3p; also, let-7 and miR-30 exhibited
highest “in-degree,” i.e., arrows pointing towards these nodes
in the directional miRNA network, whereas most other
miRNA nodes exhibited higher “out-degree,” i.e., arrows
pointing away from these nodes in Fig. 1b. In addition, several
targets of the miRNAs with high “degree” were observed in
the network in Fig. 1b including ZBTB18, CCNT2, AGO2,
TRERF1, ETNK1, PCDH19, CCDC6, TXLNG, CEPS85L,
SLC5A3, TNRC6B, EPHB6, LIN28B, among others, that
may be important in mediating chemoresistance via miRNAs.

microRNAs and Anti-cancer Chemoprevention Networks

Chemoprevention is a pharmacological approach to interven-
tion in order to arrest or reverse the process of carcinogenesis
[78]. We have noted earlier [79¢] that mammalian cells, in-
cluding human cells, respond to dietary phytochemicals by
“nonclassical receptor sensing” mechanisms of electrophilic
chemical-stress typified by “thiol-modulated” cellular signal-
ing events primarily leading to the gene expression of phar-
macologically beneficial effects, but sometimes unwanted
cytotoxicity also. Interestingly, specific targeting of miRNAs
by natural agents could open newer avenues for com-
plete eradication of tumors by killing drug-resistant cells
to improve survival outcomes in patients diagnosed with
malignancies [80¢¢]. Indeed, as previously observed [81]
by us, although the precise mechanism underlying the
control of miRNA expression in chemoprevention is not
well understood currently, epigenetic changes could play
a major role.

miRNAs Modulated by Anti-cancer Chemopreventive Agents

A summary of miRNAs modulated by several anti-cancer
chemopreventive agents has been furnished by us earlier
[27¢¢]. Building on this, we reviewed the literature for 17
chemopreventive agents (and miRNAs) including all trans
retinoic acid (ATRA) [82, 83], allyl isothiocyanate (AITC)
[84], boswellic acid [85], calcitriol [86—88], curcumin
[89-94], diallyl trisulfide (DATS) [95], 3,3'-diindolylmethane
(DIM) [96, 97], ellagitannin [98], (—) epigallocatechin-3-

gallate (EGCG) [99-101], genistein [96, 97, 102], green tea
polyphenon-60 [103], indole-3-carbinol (I3C) [104], lycopene
[105<, 106], phenethyl isothiocyanate (PEITC) [107], quer-
cetin [108], resveratrol [109, 110], and sulforaphane [111].
These miRNAs modulated by chemopreventive agents are
included in Fig. 1c that depicts the architecture of our pro-
posed canonical chemoprevention network showing putative
interactions between 71 miRNA nodes or vertices involved in
eliciting the protective chemopreventive effects of these nat-
ural or synthetic dietary factors and 4969 undirected edges
facilitating these interactions. Further, we queried these
miRNAs for interactions with targets to construct an
epistemologic chemoprevention network showing “arcs”
connecting miRNA nodes of the network (Fig. 1d).

Architecture of Chemopreventive miRNA Networks

Recently, Sehgal and Ram [112] mapped the upstream and
downstream connectivity within the JNK network to reveal an
enrichment of bi-fan and FFL motifs formed immediately
upstream and downstream of JNK in addition to negative
FBL motifs that exist through transcriptional activation of
phosphatases that target the JNK pathway. Shah et al. [113]
demonstrated in Sprague-Dawley rats that diet and carcino-
gen exposure modulated a number of miRNAs (miR-16, miR-
19b, miR-21, miR26b, miR27b, miR-93, and miR-203) linked
to canonical oncogenic signaling pathways. Recently, Song
et al. [114] identified a key miRNA regulatory network in-
cluding miR-200b, miR-200c, and miR-125b that defines the
mesenchymal gastric cancer subtype significantly associated
with poor overall survival in gastric cancer. Overall, there is
very limited information available in the literature on miRNA
networks in chemoprevention as the importance of applying
network analysis to miRNA chemoprevention research is in
its infancy and only beginning to be recognized. Based on our
chemoprevention network in Fig. 1d, several miRNA nodes
with high “degree” were visible including miR-148b-3p, miR-
377-3p, miR-103-3p, miR-292-5p, miR-1207-5p, miR-130a-
3p, miR-92a-3p, miR-16-5p, miR-186-5p, miR-125b-5p,
miR-135a-5p, miR-181a-5p, miR-296-5p, miR-200b-3p,
miR-21, miR-146a-5p, miR-150-5p, miR-17-5p, miR-221-
3p, miR-let-7, miR-17, miR-26, miR-192, miR-29, miR-
193, among others. Further, autoregulation was observed for
miR-21, miR-155, and miR-29; also, let-7, miR-17, and miR-
26 exhibited highest “in-degree,” whereas most other miRNA
nodes exhibited higher “out-degree” in Fig. 1b. Moreover,
miR-31, miR-192, miR-29, and miR-193 showed only “in-
degree” interactions, whereas miR-17-5p, miR-292-5p, and
miR-200b-3p showed only “out-degree” interactions. In addi-
tion, several targets of the miRNAs with high “degree” were
observed in the network 1d including LCOR, BAZ2A,
GPATCHS, FRYL, MTF1, DCP1A, GPC6, ZBTB34,
FAM19A1, FAM126B, FAM46C, DICER1, EPHB6,
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DDX20, AGO2, E2F3, SLC16A6, CCNJ, TMCCI,
HMBOX1, GOLGAI1, SBNOI1, LIN28A, among others,
which may be important in conferring or aiding
chemoprotection via miRNA-mediated mechanisms apart
from other role(s) in the cellular milieu.

microRNAs and Bifunctional Cancer Networks

To overcome the limitations of a static protein—protein inter-
action network, Luo and Kuang [115] have recently proposed
a new method to predict essential proteins by integrating
dynamic local average connectivity and in-degree of proteins
in complexes. Extending network dynamics to miRNA net-
works, Xue et al. [116] showed recently that negative feed-
back provided by miR-21 stimulates the propensity of oscil-
lations in NFkB and IL-6 activity, while negative feedback
provided by miR-146 dampens the oscillations of NFkB and
IL-6, suggesting that variations in the relative strength of the
two feedbacks may provide for altered response dynamics to
the same stimulus, thus revealing a novel regulatory module
of two miRNA-mediated negative feedback loops that allow
for the fine tuning of the dynamics of key mediators in
inflammation. Schulz et al. [117] developed the MIRna Dy-
namic Regulatory Events Miner (mirDREM), a probabilistic
modeling method that uses input—output hidden Markov
models to reconstruct dynamic regulatory networks that ex-
plain how temporal gene expression is jointly regulated by
miRNAs and transcription factors using postnatal lung devel-
opment in mice for measurements. Guo et al. [118] noted that
miRNA variants (termed isomiRs) are potential functional
molecules that may affect miRNA stability or target selection,
and multiple isomiR products and miRNA maturation pro-
cesses provide opportunities to perform versatile roles in the
regulatory network, which further enriches and complicates
the regulation of biological processes. Collectively, it follows
that the cancer cellular milieu is a dynamic environment, and it
is probable that same miRNAs may perform different, perhaps
opposing, functions at different time points or in different
stress conditions, which may explain, at least in part, the
bifunctional role of the miRNAs, i.e., both chemoresistant
and chemopreventive roles, as depicted in Fig. le.

Chemoresistant and Chemopreventive Bifunctional miRNAs

Using a simple first-principles approach, we analyzed our
networks in Fig. la and ¢ to fish out 21 common miRNAs
that were present in both chemoresistance and chemopreven-
tive networks, respectively. We then constructed our bifunc-
tional miRNA cancer network Fig. le that comprised this
common subset of miRNAs that may potentially exert dual
functions in both chemoresistance and chemoprevention
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probably depending on the cellular milieu, temporal status,
or stress conditions. These 21 bifunctional miRNAs included
let-7, let-7¢, let-7e, miR-100, miR-125b, miR-130a, miR-134,
miR-15a, miR-16, miR-181a, miR-195, miR-200b, miR-21,
miR-215, miR-221, miR-222, miR-224, miR-23a, miR-26a,
miR-27b, and miR-342. Figure le depicts the architecture of
our proposed canonical bifunctional network showing puta-
tive interactions between 21 miRNA nodes or vertices in-
volved in both chemoresistance and chemoprevention and
419 undirected edges facilitating these interactions. Further,
we queried these miRNAs for interactions with targets to
construct an epistemologic bifunctional network showing
“arcs” connecting miRNA nodes of the network (Fig. 1f).

Architecture of Bifunctional miRNA Cancer Networks

Based on our bifunctional network in Fig. 1f, few miRNA
nodes with high “degree” were visible, including miR-224-5p,
miR-100-5p, miR-200b-3p, miR-26a-5p, let-7a-5p, let-7,
miR-27a-3p, miR-23a-3p, miR-125b-5p, miR-16-5p, miR-
221-3p, miR-342-3p, among others. Further, autoregulation
was observed for miR-21, which was found to be modulated
by a large number of chemotherapeutic drugs and chemopre-
ventive agents; also, let-7 exhibited highest “in-degree”
among nodes, whereas miR-23a-3p, miR-27a-3p, and miR-
26a-5p exhibited highest “out-degree” among nodes in the
network in Fig. 1f. In addition, several targets of the miRNAs
with high “degree” were observed in the network in Fig. 1f
including SLC4A4, PRTG, TMEM170B, FGF14, EPHBG,
CEPS5L, UBN2, ZFHX4, WNK3, LIN28B, KBTBDS,
CCNJ, TMEMS87B, TMEM135, B3GNT1, ARID3A,
RBM12B, among others, which may be important in both
chemoresistance and chemoprotection functions under appro-
priate spatial and temporal conditions.

Conclusions

With new high-throughput technologies and superior compu-
tational power available for application to current pharmacol-
ogy research, biomarker discovery has probably entered its
most exciting phase to date, especially with the concurrent
advent of systems network biology for “big data.” Study of
recurrent network motifs in network architecture can inform
us better about regulatory pathways in the cellular milieu,
more so in complex disease states like cancer with associated
co-morbidities and mortality rates. Recently, Di Carlo et al.
[119] described a high-level inter-pathway regulatory motif in
complex networks called “pathway protection loop” in which
miRNAs play a crucial role in the successful behavior and
activation of a pathway resulting in new approaches in the
identification of therapeutic targets because it could unveil
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novel paths to “activate” or “‘silence” a target pathway. Indeed,
network biology will change the way we look at cellular
systems in cancer, and the intrinsic role(s) played by miRNAs
will need to be evaluated with a deeper understanding of
network dynamics that may confer multiple, sometimes con-
tradictory, roles on signature miRNAs due to spatial and
temporal constraints and/or stress conditions. Nazarov et al.
[120] investigated simultaneously the transcriptional changes
of miRNA and mRNA expression levels using dynamic time
series microarray data after activation of the Janus kinase/
signal transducer and activator of transcription (Jak/STAT)
pathway by interferon-y stimulation of melanoma cells, and
revealed network motifs in the form of FFLs involving tran-
scriptional regulators, mRNAs and miRNAs. Even in other
disease states such as HIV, a phased pattern of miRNA ex-
pression was evident by next-generation sequencing, and
many miRNAs that were initially suppressed were later
overexpressed at the height of infection, providing unique
signatures of HIV infection [121]. Hwang et al. [122] analyzed
regulatory network dynamics in mouse retina to reveal a
natural turning point at which the regulatory network of
miRNAs, transcription factors, and protein-coding genes un-
dergoes drastic topological changes, thus demonstrating that
adding a dynamic dimension to network analysis can provide
new insights into retinal development and suggesting that the
same approach would likely be useful for the analysis of other
developing tissues. Collectively, it is clear that to avoid the
limitations of knowledge from static networks, it is important
to invest our time and energies in dynamic networks in cancer
chemoresistance and chemoprevention in order to make the best
informed choice for preventive/therapeutic intervention in cancer.
Further, although epigenetic modifications, such as DNA meth-
ylation or histone acetylation, have been demonstrated to affect
miRNA expression, and to be potentially responsible for the
aberrant miRNA regulation observed in cancer, the other side
of the coin is represented by the capacity of epi-microRNAs to
control the epigenetic machinery directly targeting its enzymatic
components [123]. Interestingly, Wang et al. [124] reported that a
long noncoding RNA (IncRNA), named mitochondrial
dynamic-related IncRNA (MDRL), affects the processing of
miR-484 primary transcript in nucleus and regulates the mito-
chondrial network by targeting miR-361 and miR-484. On the
same note, it is certain that miRNA cancer networks are very
complex and the regulatory architecture of cancer
chemoresistance and/or chemoprevention networks may likely
include added dimensions of modulation by epi-miRNAs and
IncRNAs, which may further explain, at least in part, the
bifunctionality associated with miRNA nodes in our networks
apart from temporal dynamics, spatial localization, and stress
conditions. Taken together, by a perusal of our chemoresistance,
chemoprevention, and bifunctional networks, we can gain deeper
insights into the architecture of miRNA regulatory networks in
cancer that will serve as the basis for future dynamic network

studies and facilitate the discovery of novel miRNA/target bio-
markers for preventive and/or therapeutic intervention in cancer.
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