
MIRNA AND CANCER PREVENTION AND THERAPEUTIC AGENTS (F SARKAR, SECTION EDITOR)

MicroRNA Regulating Glutathione S-Transferase P1 in Prostate
Cancer

Savita Singh & Girish C. Shukla & Sanjay Gupta

Published online: 14 January 2015
# Springer International Publishing AG 2015

Abstract Glutathione S-transferase P1 (GSTP1), an enzyme
involved in detoxification process, is frequently inactivated in
prostate cancer due to epigenetic modifications. Through in
silico analysis, we identified a subset of microRNAs
(miRNAs) that are putative targets in regulating GSTP1.
miRNAs are small endogenous non-coding RNA that are
critical regulators of various physiologic and pathologic pro-
cesses, and their level of expression may play a precise role in
the early diagnosis and prognosis of cancer. These small
molecules have been detected in a wide variety of human
biological specimens including blood, serum, urine, ejaculate,
and tissues, which could be utilized as clinically useful bio-
marker in early detection and prognosis of prostate cancer.
The chapter summarizes the current knowledge about miRNA
involved in GSTP1 regulation in prostate cancer and their
potential as useful biomarkers of the disease for early

detection and prognosis, along with challenges and limitations
in this development.
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Abbreviations
3′UTR 3′ Untranslated region
8-OHdG 8-Oxo-2′-deoxyguanosine
CDC42 Cell division cycle 42
CDK Cyclin-dependent kinase
FOXO Forkhead box O
GSTP1 Glutathione S-transferase P1
GSTs Glutathione S-transferases
HDAC Histone deacetylases
HGPIN High-grade intraepithelial neoplasia
miRNA MicroRNA
mTOR Mammalian target of rapamycin
PIA Proliferative inflammatory atrophy
PIN Prostatic intraepithelial neoplasia
PSA Prostate-specific antigen
PTPRN Protein tyrosine phosphatase receptor type N
RBPs RNA-binding proteins
RHOA Ras homolog gene family member A

Introduction

Prostate cancer remains the most common form of cancer in
males in the USA [1]. According to an estimate by the Amer-
ican Cancer Society, in 2014 approximately 233,000 new
cases of prostate cancer will be diagnosed and about 29,480
men will die from this disease [1, 2]. Early diagnosis of tumor
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and timely detection of prostate cancer progression following
either surgery or radiation therapy are critical for its effective
and beneficial clinical outcome. The widespread use of serum-
based total prostate-specific antigen (PSA) has led to detection
of prostate cancer at a potentially curable stage; however, its
use as a screening tool remains controversial due to the
absence of a true tPSA cutoff point for identifying prostate
cancer risk [3, 4]. First, approximately one third of prostate
cancers detected at a PSA level at or above 4 ng/mL have
already spread to the prostate capsule or beyond, and approx-
imately 15% ofmen with a PSA level <4 ng/mL have prostate
cancer that is detectable by needle biopsy [5–7]. Specifically,
the Prostate Cancer Prevention Trial reported that in men who
underwent an empiric biopsy at PSA levels of ≤0.5 ng/mL,
0.6–1.0 ng/mL, 1.1–2.0 ng/mL, 2.1–3.0 ng/mL, and 3.1–
4.0 ng/mL, the prostate cancer detection rates were 6.6,
10.1, 17.0, 23.9, and 26.9 %, respectively [8]. Using current
recommended guidelines to determine the need for confirma-
tory biopsy, false positive rates of 55–75 % and false negative
rates of at least 15 % have been reported which limit the
sensitivity and specificity of serum total PSA test as an effec-
tive population-based cancer detection tool [9, 10]. More
recent concepts to improve specificity include use of age-
adjusted PSA, PSA velocity, volume-adjusted PSA, and
percent-free PSA concentration [11, 12]. However, the diag-
nostic accuracy and predictive values for tests using quantita-
tive serum PSA assays remain controversial. There is a need
of more sensitive and specific biomarker to detect prostate
cancer.

Glutathione S-Transferases

Glutathione S-transferases (GSTs) comprise of a multi-gene
enzymes family of phase II detoxifying enzymes of the xeno-
biotic metabolism [13]. The members of this family of dimeric
enzymes are identified on the basis of their substrate specific-
ity and amino acid sequences. GSTs catalyze the reactions in
which reduced glutathione is conjugated to toxic oxidizing
compounds. These compounds are produced either due to
normal cellular activity of the cell or due to exposure of cells
to xenobiotics and environmental pollutants such as carcino-
gens, pesticides, drugs, and to endogenous molecules [14].
This conversion significantly detoxifies them by reducing
their ability to react to cellular macromolecules. GSTs are
ubiquitously present in every cell and in every living species
examined, including both eukaryotes and in prokaryotes.
Though most of these enzymes are composed of cytosolic
proteins, a small family of microsomal and mitochondrial
(kappa) GSTs is also characterized. GSTs are considered as
cell housekeepers due to their ability to detoxify both endog-
enous as well as exogenous cell substances. In some mamma-
lian and rodent organs, cytosolic GSTs can constitute as high

as 4–10 % of cytosolic proteins. Soluble cytosolic GSTs exist
as dimeric protein with an active site composed of two distinct
functional groups including (i) hydrophilic, catalytically inde-
pendent active G-site which binds to glutathione and (ii)
physiological substrate of GSTs and an adjacent H-site which
provides a hydrophobic environment for binding of electro-
philic substrates with diverse structures [15, 16].While G-site,
which is in the amino terminal domain, is highly conserved
among GSTs due to its high specificity for glutathione (GSH),
the H-site, which is in the carboxy-terminal domain, can be
very divergent among GSTs, exhibiting broad and variable
specificity to substrate binding [17]. GSTs catalyze the conju-
gation of reduced GSH via a sulfhydryl group to electrophilic
centers on substrates with variable binding specificity. This
activity detoxifies several reactive, endogenously produced
molecules such as α, β-unsaturated keto prostaglandins (i.e.,
PGA2), endogenous fatty acid oxidation products including 4-
hydroxy-2-nonenal, peroxidized lipids, and xenobiotics [18].

The mammalian GSTsuperfamily consists of seven classes
of cytosolic GSTs which possess amino acid sequence simi-
larity, substrate specificity, and immunological cross-
reactivity [16, 17]. They are named as GSTα (alpha)/GSTA,
GSTμ (mu)/GSTM, GSTπ (pi)/GSTP, GSTσ (sigma)/GSTS,
GSTθ (theta)/GSTT, GSTω (omega)/GSTO, and GSTζ (ze-
ta)/GSTZ [18–20]. As functional GST enzymes are dimeric
and the GSTα (GSTA) and GSTμ (GSTM) can form hetero-
dimers in addition to homodimers, the number of isoenzymes
in each class is large. One of the highly conserved classes of
cytoplasmic GST is glutathione S-transferase pi (GSTP1) that
was found to be the predominant isoenzyme. It is mapped to
chromosome 11q13, and the genes of this class are about 3 kb
long and contained seven exons. GSTP1 protects cells from
cytotoxic and carcinogenic agents [21]. It is expressed at
variable levels in different cell types in normal tissues, and
its altered activity and expression has been found to play an
important role in determining susceptibility to different types
of cancers, inflammatory disorders, asthma, and neurodegen-
erative disorders [22–24]. The role of pi class GST (GSTP1) is
of particular interest in cancer biology. In humans, early loss
of GSTP1 has been associated with cancer initiation and
progression and suggested to possess tumor suppressor func-
tions [25–27]. For example, GSTP−/− mice display a strong
tendency to develop skin papillomas and lung cancer follow-
ing carcinogen exposure, and loss of GSTP markedly en-
hances colon tumorigenesis in Apc(Min) mice [28–30]. On
the contrary, the over-expression of pi-class GST has been
associated with tumor progression and drug resistance [31,
32]. GSTP1 over-expression has been reported in many hu-
man tumors and has been shown to be correlated with ad-
vanced stage, disease aggressiveness, drug resistance, and
poor survival [32]. A vast majority of human tumor cell lines
over-expresses GSTP1, including cells selected in vitro for
resistance to agents used for chemotherapy. In fact, in 58 of
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the 60 human tumor cell lines used in the Drug Screen
Program of the National Cancer Institute, GSTP1 was found
to be the predominant isoenzyme (as high as 2.7 % of the total
cytosolic protein). A significant quantitative correlation
among enzyme activity, protein, and messenger RNA
(mRNA) was shown particularly in those cell lines selected
for resistance to alkylating agents [33]. Such comparable
correlation was much less apparent for over-expression of
GSTA and GSTPM.

Glutathione S-Transferase pi and Prostate Cancer

One of the most common epigenetic alterations described in
human prostate cancer is the loss of expression of the GSTP1
which occurs in vast majority (>90 %) of prostate tumors
regardless of grade or stage [34]. Studies in human prostate
tumor specimens and cancer cell lines have shown that the
GSTP1 gene is silenced due to epigenetic modifications [35].
Importantly, the loss of GSTP1 function appears to be the
characteristic of prostatic intraepithelial neoplasia (PIN) and
proliferative inflammatory atrophy (PIA) lesions, throughout
to represent prostate cancer precursors [36]. It has been pro-
posed that GSTP1 is a caretaker gene, protecting cells against
genomic damage mediated by oxidants and electrophiles from
inflammation or dietary exposures [37]. Reports suggest that
loss of GSTP1 shifts the prooxidant–antioxidant balance to-
ward an oxidative state, resulting in increased inflammation
and oxidative stress to prostate epithelial cells [38••]. Studies
have suggested age-related structural changes in the DNA of
prostate tissue which is likely a result of oxidative damage
induced by hydroxyl radicals [39]. Age-related oxidative
DNA damage and increased accumulation of 8-oxo-2′-
deoxyguanosine (8-OHdG) have been shown to be more
pronounced in prostate neoplasms than in benign prostate
tissue [40]. We have recently demonstrated that chronic
intraprostatic inflammation causes premalignant and malig-
nant changes in prostatic epitheliumwhichmay be due at least
in part to accumulation of oxidative DNA products as a result
of loss of GSTP1 expression in prostate epithelial cells [38••,
41]. Since GSTP1 is epigenetically silenced in early-stage
prostate cancer, the elements of epigenetic GSTP1 regulation
could serve as a better biomarker for detection and prognosis
of prostate cancer.

Epigenetics and Gene Regulation

Gene expression is intricately regulated through the epigenetic
modifications such as DNA methylation, post-translational
modifications of histone proteins, and transcriptional regula-
tion of gene expression by non-coding regulatory microRNA
[42, 43]. Numerous studies have demonstrated that the

regulatory sequences near the GSTP1 gene are commonly
inactivated by DNA hypermethylation during the early stages
of prostate carcinogenesis [44, 45]. Extensive methylation of
deoxycytidine nucleotides distributed throughout the 5′CpG
island region of GSTP1 is not detected in benign prostate
tissue but has been detected in high-grade intraepithelial neo-
plasia (HGPIN) and prostate adenocarcinoma in the tissue and
fluids including plasma, serum prostatic ejaculates, and urine
specimens [46–48].

Histone modification is closely associated with DNA
methylation in prostate cancer [49]. Studies have dem-
onstrated that class I histone deacetylases (HDACs) are
frequently over-expressed in prostate cancer [50]. Stud-
ies demonstrate that HDAC1 contributes to aggressive
tumor behavior and poor prognosis, whereas HDAC2
expression is associated with shortened relapse-free sur-
vival time in prostate cancer patients [51]. HDAC1–3
are highly expressed in prostate cancer and in corre-
sponding HGPIN lesions coincide with the loss of
GSTP1 expression in tumor specimens [51, 52]. Li
et al. demonstrated that the inhibition of HDAC1 by
maspin, a tumor-suppressing serpin, increases GSTP1
expression in human prostate cancer cells, endorsing
that HDAC1 plays a critical role in maspin-mediated
GSTP1 re-expression [53].

Non-coding RNAs have emerged as a new class of key
regulators of genes [54, 55]. MicroRNAs (miRNAs) are short
(∼20–24 nucleotides) non-coding RNAs that regulate gene
expressionmostly by facilitating the cleavage of target mRNA
in plants [56]. Interestingly, miRNAs affect the expression of
their target gene mostly by translational repression in animals.
miRNAs target mRNAs by imperfect complimentary base-
pairing to the 3′ untranslated region (3′UTR) to downregulate
target’s protein synthesis either by deadenylation of the
targeted message or by repressing the translation at the active-
ly translating ribosomes [57, 58]. Currently, miRBase has a
compilation of 2,588 mature human miRNAs from human
genome assembly (GRCh 38) to the GenBank [59]. These
many miRNAs are predicted to target >45,000 sites that
account for >60 % of human genes.

Numerous studies in various organismal systems show that
miRNAs play important roles in cellular processes such as
development, differentiation, proliferation, apoptosis, and me-
tabolism [60]. Furthermore, strong evidence demonstrates that
aberration in miRNAs’ expression and their targeting activi-
ties have been implicated in human diseases, including can-
cers [61]. The aberrant and deregulated expression of
miRNAs has been identified in the stages of carcinogenesis,
development of resistance to therapeutics, and in metastasis
[61–63]. In addition, the differential expression of miRNAs
appears to play a significant role in the prognosis of various
cancers including prostate cancer [61, 64, 65]. Studies of
miRNAs show that over 50 % of the miRNA genes are coded
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in the human genome at or near the sites of frequent deletion
and amplification as well as at the CpG island methylation
[66]. It is also becoming increasingly clear that miRNAs are
transcriptionally silenced in various human cancers by
epigenetic mechanisms including hypermethylation. These
features of miRNA suggesting that deregulated expression
of miRNAs play an important role in tumorigenesis in
nearly all types of cancers and may be linked with spe-
cific clinical-pathological parameters, risk, aggressiveness,
staging, and disease outcome [67, 68, 69••].

Potential Regulation of GSTP1 by miRNAs

Several computational and experimental approaches have
been used to identify miRNAs and their targeting genes
[70••, 71]. For this study we used computational approaches
to identify miRNAs potentially targeting and regulating
GSTP1 expression (Table 1). These miRNAs include miR-
133a/b, miR-144/144*, miR-153-1/2, and miR-590-3p/5p. In
this chapter a short description of these miRNAs and their
involvement in cancer and GSTP1 regulation is highlighted.

miR-133a/b

A search for TargetScan Human database identified miR-
133a/b as a candidate miRNA regulator of GSTP1 by poten-
tially targeting nucleotides 2736–2750 in the 3′UTR (Fig. 1).
The miR-133a1/a2-3p and miR-133b are transcribed from
chromosome numbers 18, 20, and 6, respectively [72]. miR-
133a and miR-133b differ only in one base at the 3′-end of the
molecule (G→A). This position is furthest away from the
seed region which is essential for miR:target interaction and
its resultant effect on target mRNA translational repression.
Therefore, it is likely that miR-133a and miR-133b will per-
form similar, if not, identical cellular function by regulating
the expression of a common pool of target genes [73]. Inter-
estingly, GENECODIS analysis revealed that miR-133a and
miR-133b might supplement each other in many cancer path-
ways [74]. GSTP1 displays one single miR-133a and miR-
133b binding site in its 3′UTR region (Fig. 1). The downreg-
ulation of miR133a/b has been reported in various human
cancers including head and neck squamous cell carcinoma,
esophageal squamous cell carcinoma, non-small cell lung
cancer, and bladder, cervical, gastric, and colorectal cancers
[75–79]. The over-expression of miR-133a/b has been shown
to inhibit tumor cell proliferation and induce apoptosis in
various human cancer cell types [78, 80]. Specifically, miR-
133b has been found to be involved in the regulation of cell
death through death receptor-mediated apoptosis in human
prostate cancer PC-3 cells [81]. It is a target of androgen
receptor (AR) and required for androgen’s mediated stimula-
tion in LNCaP cells and is also known to regulate CDC2L5,

PTPRK, RB1CC1, and CPNE3 in prostate cancer cell lines
[82]. Other putative targets of miR-133a/b are the Ras homo-
log gene family member A (RHOA), cell division cycle 42
(CDC42), FSCN1, LASP1, and c-METoncogenic genes [83].
The association of miR-133b with prostate cancer progression
and its potential as a diagnostic marker are also demonstrated
by its downregulation observed in prostate secretion samples
from patients; it has greater power (AUC 0.950) than PSA
(AUC 0.463) to distinguish prostate cancer from benign pros-
tate hyperplasia [84, 85].

miR-144/miR-144*

The gene encoding miR-144 is located on chromosome 17
and has a passenger strand (miR-144*). In silico analysis of
miRNA-target mRNA prediction algorithm revealed single
miR-144 and miR-144* binding sites in the GSTP1 3′UTR
region with Watson-Crick match at miRNA positions 2736–
2757 and 2759–2771, respectively. These sites raise the pos-
sibility that miR-144/144* are involved in the regulation of
GSTP1 expression and possibly in detoxification aspect of the
gene function. miR-144 is dysregulated and involved in the
many human tumors including osteosarcoma, mesothelioma,
and gastric and nasopharyngeal carcinomas [86–89]. Deregu-
lation of miR-144 in colorectal cancer cells has been shown to
activate mammalian target of rapamycin (mTOR) signaling,
and its downregulation was associated with poor prognosis
[90]. The miR-144 expression level has been shown to be
significantly decreased in bladder cancer, and its downregula-
tion increased bladder cancer cell proliferation by targeting
histone-lysineN-methyltransferase EZH2 [91]. Similarly, gas-
tric cancer stage IV patients also exhibit diminished expres-
sion of miR-144 where it promotes upregulation of ZFX
proteins and subsequent cancer progression [88]. Notably, it
has been demonstrated that the expression of miR-144 was
reduced in thyroid cancer [92]. Recently, a comprehensive
meta-analysis of miRNA expression microarray data sets re-
vealed that miR-144 was downregulated in hepatocellular
carcinoma, lung cancer, and prostate cancer [93, 94, 95••].
However, no information about the function or molecular
mechanism(s) of miR-144 regulating GSTP1 has been report-
ed. miR-144 was found to be over-expressed in high Gleason
score (8 and 9) prostate tissue samples [94, 95••]. Moreover,
miR-144* was significantly upregulated when compared to
miR-144 in both metastatic and non-metastatic tumor xeno-
graft models [95••].

miR153-1/2

miR-153-1 and miR-153-2 are encoded in the intron of protein
tyrosine phosphatase, receptor type N (PTPRN) gene on the
chromosome 2 [96]. On other hand, miR-153-2 was found to
be encoded in the intron of PTPRN 2 on chromosome 7 where
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the targeting site of miR-153-1/2 spans around nucleotides
2737–2756 in the GSTP1 3′UTR (Fig. 1). In general, miR-153
has been observed to be over-expressed in tumors compared to
normal tissue at higher levels in metastatic compared with non-
metastatic tumors [97]. Studies conducted using various human
prostate cancer cell lines demonstrate that miR-153 represses
phosphatase and tensin homolog (PTEN) expression to activate
AKT kinase and downregulate the transcriptional activity of
Forkhead box O (FOXO)1, leading to the upregulation of the
G1/S transitional promoter cyclin D1 and downregulation of the
cyclin-dependent kinase (CDK) inhibitor p21 [98]. In contrast,

miR-153 levels are shown to be reduced in human glioblastoma
multiforme [99]. miR-153 induces apoptosis in these tumors by
targeting Bcl-2 and Mcl-1, suggesting that miR-153 functions as
a tumor suppressor [100]. Studies have revealed a tendency
toward downregulation of miR-153 in relation to lymph node
metastasis in ovarian epithelial tumors [101] and downregulation
of miR-153 in high-risk medulloblastomas [99]. Therefore, miR-
153may function as a tumor suppressor or an oncogene depend-
ing on the tissue. However, no information about the function or
molecular mechanism of miR-153-1/2 regulating GSTP1 has
been reported.

Table 1 miRNAs’ potential to target GSTP1
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miR-590-3p/5p

microRNA target databases, such as TargetScan andmiRanda,
predicted that miR-590-3p/5p could regulate GSTP1 mRNA,
and/or protein expression miR-590-3p forms an 7mer at posi-
tions 57–63 of GSTP1 3′UTR. An examination of the mRNA
sequence of GSTP1 revealed that miR-590-3p/5p potential
target sites are found at nucleotides 2748–2748 in the 3′UTR
region (Fig. 1). miR-590-3p/5p has been shown to be upreg-
ulated in some human cancers including hepatocellular carci-
noma, clear cell renal cell carcinoma, myeloid leukemia, and
cervical cancer [102–105]. The upregulation of miR-590-5p
has been shown to promote proliferation and invasion of clear
cell renal cell carcinoma cells by downregulation of p21
(Waf1/Cip1) expression [103]. It is also shown to be differen-
tially expressed in castrate-resistant prostate cancer compared
to benign prostatic hyperplasia [106]. TargetScan predicted
PTEN as the potential target genes of miR-590-3p/5p and was
found to activate PI3K-AKT signaling pathway by downreg-
ulating PTEN to promote AKT1-S473 phosphorylation [107],
which may play an important role in the regulation of GSTP1
in prostate cancer.

Conclusion, Limitations, and Future Direction

The measurement of serum PSA levels do not adequately
detect prostate cancer or predict prognosis after definitive
therapy. Therefore, there is a significant challenge to develop
new non-invasive biomarker identification strategies to pre-
cisely detect and predict progression of prostate cancer.
miRNAs are important regulators of oncogene and tumor
suppressor genes that intercept various signaling pathways
and pathological processes associated with tumorigenesis.

Numerous publications have reported the potential of miRNA
as a class of novel biomarkers in diagnosis and disease prog-
nosis [63–68, 69••]. Our in silico analysis suggest that
miRNAs can exert their functions by potentially regulating
GSTP1 expression and play an important role in prostate
carcinogenesis (Table 1; Fig. 1). With the identification of
listed putative miRNAs that regulate GSTP1, a more detailed
regulatory role may be deciphered which might be applicable
in the early detection and prognosis of prostate cancer.

However, some limitations remain in their development
and replacement to conventional biomarkers. This includes
lack of established endogenous miRNA control to normalize
for miRNA levels in body fluids. In this regard, U6 small
nuclear RNA is frequently utilized to normalize miRNA
levels; however, its unstable nature and degradation in serum
do not qualify it as an ideal standard control. Another limita-
tion is the release of miRNA into body fluids, and its func-
tional role and consequences remain unknown and/or limited
inconsistencies in the analysis of the function of miRNA in
prostate cancers. Furthermore, the exact cause-effect mecha-
nism(s) has not been established for many miRNAs in prostate
cancer despite significant efforts into such research. Therefore,
further studies are needed to understand the role and conse-
quences of miRNA in prostate cancer through novel high-
throughput techniques. Another caveat to consider is that the
post-transcriptional gene regulation of miRNA as well as its
target mRNA is further modulated by RNA-binding proteins
(RBPs). Numerous RBP have been characterized recently and
many play a role in the both miRNA and mRNA stabilities.

In conclusion, technical advancement in the detection of
miRNAs regulating GSTP1 expression and function may
have great promise as molecular biomarkers for prostate can-
cer. Further development and application of these miRNA-
regulating GSTP1 assays to clinical specimens including
blood, urine, ejaculate, and prostate biopsy for cancer

Fig. 1 Schematic representation
of miR-133-a/b, miR-153-1/2,
miR-590-3P/5P, and miR-144/
144* target sites on GSTP1 3′
UTR
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screening and early detection may have great promise as
candidate clinical tests. A new series of studies critically
assessing the predictive values of miRNAs in prostate cancer
are needed.
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