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Abstract
Diagnosis of autism spectrum disorder (ASD) is typically performed using traditional tools based on behavioral observations. 
However, these diagnosis methods are time-consuming and can be misleading. Integrating machine learning algorithms with 
technological screening tools within the typical behavioral observations can possibly enhance the traditional assessment and 
diagnostic process. In the last two decades, to improve the accuracy and reliability of autism detection, many clinicians and 
researchers began to develop new screening methods by means of advanced technology like machine learning (ML). These 
methods include artificial neural networks (ANN), support vector machines (SVM), a priori algorithms, and decision trees 
(DT). Mostly, these methods have been applied to pre-existing datasets, derived from the standard diagnostic and assessment 
tools, to implement and test predictive models. On the other hand, the detection of new objective behavioral measures such as 
biomarkers could lead to a significant strengthening of existing screening tools. In the present study, we carried out a critical 
review of the literature about the latest findings in this field. The aim was to shed light about the effectiveness of using ML 
systems for motion analysis to enhance both clinical assessment and diagnostic processes. Specifically, we discussed the 
contribution of ML systems in promoting early diagnosis of ASD. The literature review showed that motion patterns ML 
analysis predicts ASD classification as accurately as that of classical gold standard tools. However, the application of these 
methods is still challenging, as discussed in this review.

Keywords  Machine learning · Autism spectrum disorder · Early diagnosis · Biomarkers · Wearable sensors

Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental 
disorder which includes deficits in social communication 
and social interaction with the presence of restricted and 
repetitive behaviors. These behaviors are referred to as ste-
reotyped or repetitive motor movements, insistence on same-
ness, difficulties with changes in routine and rigid patterns of 
behavior, restricted interest, and unusual response to sensory 

aspects. Although motor impairments have been generally 
observed in ASD, their importance is not taken into account. 
Importantly, motor impairments in ASD significantly impact 
the quality of life and social development of ASD (Lai et al., 
2014). Motor abnormalities in ASD can occur very early in 
development (Brian et al., 2008; Teitelbaum et al., 1998), 
they become more evident over the years (Fournier et al., 
2010) and they may evolve into a pervasive feature of the 
disorder. Several manifestations of these motor abnormali-
ties have been detected and they can include abnormalities 
in walking patterns (e.g., Gong et al., 2020; Nobile et al., 
2011; Rinehart & McGinley, 2010), hand movements such 
as reaching and grasping (e.g., Bäckström et al., 2021; Forti 
et al., 2011), and eye-hand coordination (e.g., Crippa et al., 
2013). Considering the need of a more reliable and earlier 
diagnostic process for ASD, motion features could represent 
an effective precursor.

In the field of neurodevelopmental disorders, early 
detection can lead to early intervention, which is gen-
erally crucial for both children and families. Recently, 
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researchers highlighted the importance of early identifi-
cation to improve the impact and effectiveness of interven-
tions (Koegel et al., 2014). However, currently, the diag-
nostic process involves a series of tests that may take hours 
of clinical examination, and their validity is provided after 
the child is 3 years old (e.g., Autism Diagnostic Observa-
tion Schedule, ADOS; Lord et al., 1999). Moreover, the 
variability of symptoms makes ASD identification even 
more complicated. In that regard, computer technologies 
have been embraced to provide useful guidance through 
the assessment and diagnostic process. The gold stand-
ard for ASD diagnosis has been formalized with clinical 
symptom judgment through semi-structured game-based 
behavioral observations (Lord et al., 2000) and standard-
ized interviews or questionnaires. Recent studies have 
begun to explore the predictive role of some behavioral 
measures such as eye-gaze or motion patterns as potential 
objective measures of the disorder, aiming at identifying 
a well-defined phenotype and enabling a computer-aided 
diagnosis perspective. These studies typically implement 
classification methods based on machine learning (ML) 
algorithms to predict or classify individuals of different 
groups by maximizing the distance between groups of 
data sets. Specifically, they seek to identify the patterns or 
distinctive traits that clearly separate the different groups 
of individuals within the dataset, to provide an accurate 
classification.

Recent literature suggests that motor abnormalities could 
be a consistent marker of ASD (Dowd et al., 2012). In fact, 
some studies have shown that the severity of motor deficits 
is related to the degree of social withdrawal and with the 
severity of symptoms in general (Freitag et al., 2007). Fur-
thermore, it appeared that motor disorders in children with 
ASD differ in specific characteristics from those of children 
with other neurodevelopmental disorders (e.g., attention 
deficit/ hyperactivity-ADHD; Ament et al., 2015; Izawa 
et al., 2012).

Other evidence in that regard has been provided using 
wearable sensors or video analysis systems for motion detec-
tion integrated with artificial intelligence (AI) systems (e.g., 
Perego et al., 2009; Vabalas et al., 2019). They reported that 
it could be possible to observe and quantitatively define the 
motor abnormalities and the underlying problems of interac-
tion with the surrounding world. Recent advances in com-
puter-assisted analysis such as ML have been applied to the 
clinical field for ASD assessment and detection with the aim 
of enhancing the accuracy, time, and quality of the diagnos-
tic process. ML methods include artificial neural network 
(ANN), supporting vector machine (SVM), a priori algo-
rithms, and decision trees (DT), most of which have been 
applied to autism-related datasets to build predictive models.

Thus, the assessment of motor functions in ASD and their 
analysis through ML may clarify the neurobiological basis 

of the disease and improve the diagnostic process, especially 
for the early diagnosis perspective.

This literature review aims at collecting and critically dis-
cussing recent findings on ML application for ASD detec-
tion through motion analysis. The studies analyzed the use 
of different technological devices and different assessment 
settings and tasks for a new perspective diagnostic model.

Specifically, in this literature review, the focus has been 
on studies that applied ML models to measures derived from 
both body movement and eye movement. As these studies 
are relatively recent, there is not yet an established gold 
standard for the standardized application of these methods. 
Researchers are still struggling to find the most appropriate 
features, technological tool, and ML methods for optimal 
efficacy.

Therefore, the present work aims at critically describe the 
potentials and limitations of these new approaches, trying 
to summarize the different features, methods, and tools con-
sidered so far, while also critically considering the necessity 
for future research to evaluate the interaction of different and 
more specific motion features. This is crucial for achieving 
a more comprehensive and nuanced understanding of the 
underlying processes of ASD and its associated diagnostic 
frameworks.

Machine Learning Application in Clinical Dataset

Supervised ML commonly refers to all procedures that 
train a computer algorithm to identify a complex pattern of 
data (i.e., “features”) that can then be used to predict group 
membership of new subjects (e.g., patients vs. controls). 
The procedure to diagnose ASD mainly involves identifying 
the right class, namely ASD or typically developing (TD), 
depending on input features. The classification procedure is 
a predictive work that uses intelligent, automated methods 
to diagnose whether a child fits with ASD criteria or not. 
The automated tool uses the input data to perform learning, 
and its efficiency is measured by the extent to which it can 
predict the diagnostic class. ML techniques require a well-
defined dataset for the training phase to extract the classifi-
cation algorithm that best separates the groups, whereas, in 
the testing phase, the classification algorithm can be used to 
predict the class membership of a participant not involved 
in the previous training phase. It is important to specify that 
we can distinguish at least two different approaches in the 
field of ML, the one described so far refers to supervised 
ML approach. On the other hand, unsupervised ML is a 
type of learning where the model is trained on input data 
without corresponding labels. In this case, the main goal 
is to discover patterns or hidden structures within the data. 
The model attempts to group the data based on similarities 
or find recurring patterns. Unsupervised learning is useful 
when there are no output labels available to train the model 
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or when you want to explore the data to identify interest-
ing patterns or clusters of similar data. Some examples of 
unsupervised learning algorithms include principal com-
ponent analysis (PCA), clustering (such as k-means), and 
dimensionality reduction. We could therefore summarize 
that supervised learning requires labeled input data to train 
the model to make accurate predictions, while unsupervised 
learning aims to discover hidden structures or groupings in 
unlabeled input data (Milano et al, 2023).

In this scenario, the use of pattern recognition methods to 
predict group membership should not be conceived merely 
in a potentially ‘‘diagnostic’’ perspective but also as a useful 
tool to identify new objective measures for each individual, 
leading to a phenotypic redefinition of the disorder.

In contrast to traditional programming, ML attempts to 
extrapolate algorithms from data exclusively. The develop-
ment of ML can be broadly organized into supervised or 
unsupervised models. The main goal of supervised classi-
fication is to learn rules from examples in different groups 
and use these rules to predict unseen cases into prospec-
tive classes as accurately as possible. Predictive models are 
developed based on observed characteristics from examples 
in each class. The model is first trained using labeled sam-
ples. A set of input feature variables is used as input and a 
desired class value is used as output. The obtained classifier 
model is then used to recognize new samples and categorize 
their class. On the other hand, unsupervised ML uses train-
ing data that do not include any output information (i.e., 
labels). Unsupervised models (e.g., clustering and associa-
tion rules) can provide descriptive knowledge to help under-
stand the inherent structure or properties of the data.

The reliability of the classification typically depends 
on the learning algorithm used by the classifier, the size 
and quality of the training data (Sarker, 2021). Since high-
dimensional datasets retain irrelevant, noisy, and redundant 
traits, the more the data dimensionality is, the more the opti-
mization of features will get slower. For this reason, feature 
selection methods are used to decrease data dimensionality, 
choosing the most relevant features to enhance classification 
accuracy and minimize computational cost.

Evaluation metrics are used to measure the performances 
of ML predictive models. The most popular evaluation met-
rics for predicting ASD are (i) accuracy: it finds the number 
of test cases that have been appropriately classified from 
the absolute number of test cases; (ii) sensitivity: it detects 
the proportion of actual positive test cases that have been 
correctly identified; and (iii) specificity: it indicates the per-
centage of actual negatives test cases correctly identified.

One of the major risks in using ML is overfitting. Specifi-
cally, overfitting is a phenomenon where a predictive model 
becomes excessively complex and starts to memorize the 
noise or random fluctuations present in the training data, 
rather than learning the underlying patterns that generalize 

well to unseen data. This leads to poor performance on new 
data because the model is overly specialized to the idiosyn-
crasies of the training set.

In order to control these risks cross-validation methods 
are used to assess the predictive ability of a model and gen-
erate its efficiency. Specifically, cross-validation uses differ-
ent portions of the data to test and train a model on different 
iterations.

The most used cross-validation methods are (i) the k-fold 
cross-validation method, according to this strategy, the data-
set is divided into k subsets of the same size. One of them 
is selected as a test set, and the other k − 1 composes the 
training set. Each set becomes a test set for one time, and 
thus, this process is repeated k times; (ii) the leave-one-out 
(LOO) cross-validation consisting in applying the algorithm 
once for each instance, using all other instances as a training 
set and using the selected instance as a single-item test set; 
and (iii) the leave-one-subject-out (LOSO) cross-validation 
method is a technique used in the field of cross-validation to 
assess the performance of a predictive model. Specifically, it 
involves excluding a complete subject from the training set 
and using it as the test set for each iteration. This process 
is repeated for all available subjects, allowing for a reliable 
estimation of the model’s generalization abilities.

These methods help in constraining the model com-
plexity, generating synthetic data, and evaluating the mod-
el’s performance on multiple subsets of the limited data, 
respectively.

Method

Extensive research was carried out by the properly trained 
reviewer (R.S.) on Pubmed. The search strategy consisted 
of the following keywords algorithm: (((autism[Title/
Abstract]) AND (“machine learning”[Title/Abstract])) 
NOT (review[Title/Abstract])) NOT (meta-analysis[Title/
Abstract]).

Articles were included if:

a.	 The sample included individuals with a clinical diag-
nosis of autism, infantile autism, ASD, PDD-NOS, or 
Asperger’s Syndrome (AS) with and without an intel-
lectual disability.

b.	 ML was used for data analysis.
c.	 Features selected for the analysis included eye or body 

patterns of movements.

Articles were excluded if:

a.	 The dataset includes qualitative behavioral data, tradi-
tional tools results or parent-report measures, medical 
or genetic data, patterns of vocal production.
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b.	 The study was a prospective validation, preliminary pilot 
study, or single-subject study.

c.	 ML was used to analyze rehabilitation effects.
d.	 ML was used to detect specific symptoms or behavior 

(e.g., self-injury behavior).
e.	 Analysis was applied on biomarkers data recorded dur-

ing tasks or activities that required previous acquisition 
(e.g., eye-movement during a text reading task).

The titles and abstracts of the search results were then 
screened, and the relevant papers were identified. As shown 
in Fig. 1, database searches produced 447 records. After 
the screening of titles and abstracts, 64 full-text articles 
were obtained for further analysis, and 25 articles met our 
inclusion criteria. Selected articles were primarily divided 
based on the type of features used for classification (e.g., 
eye motion-related features, body motion-related features), 
then organized according to the task (e.g., imitation task, and 
reach and grasp tasks) and to the specific body part analyzed 
(e.g., finger, and skeletal keypoints).

Results

Results of our review have been organized into two separate 
sections:

	 i.	 Body motion-related features extraction, which 
includes studies that analyzed measures of body 

movements collected using different tools (e.g., smart 
tablet device; motion sensor) and during specific tasks 
(e.g., reach and grasp tasks; imitation tasks). All these 
studies are collected in Table 1;

	 ii.	 Eye motion-related feature extraction, which includes 
all the studies that used eye-gaze measures to classify 
ASD. These studies are collected in Table 2.

Body Motion‑Related Features Extraction

The symptomatology related to ASD syndrome essentially 
derives from an impairment of learning processes that nor-
mally occur early in childhood. Several studies showed 
that the processes of active perception are compromised in 
ASD, which could lead to abnormalities in planning pro-
cesses, serial and prospective coordination (von Hofsten 
& Rosander 2012). An ineffective information processing 
from the outside world may result in cognitive and language 
developmental delay and therefore in social interaction. 
Thus, by properly tracing the way of moving of ASD people 
within the environment, it is possible to detect the specific 
motor patterns that characterize their interaction with the 
world. ML systems can identify typical motor patterns of 
the disorder and effectively support the diagnostic process. 
In particular, the potential of identifying such invisible and 
objective features enables early diagnosis of the disorder.

Fig. 1   Adapted from the 
PRISMA flow diagram (Moher 
et. al., 2009), showing the 
steps of the selection process 
undergone by the studies in this 
review
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The studies listed in Table 1 analyzed such motion fea-
tures. The following sections describe these studies grouped 
according to the task and the type of motion features 
examined.

Reach and Grasp Tasks

Four studies collected and analyzed kinematic measures dur-
ing a reach and grasp task. Authors used different tools to 
record the data and different classification models. Crippa 
et al., (2015), identified 17 kinematic measures of a reach 
and grasp movements and recorded them through an opto-
electronic system and passive markers. They applied a SVM 
classifier method with leave-one-out (LOO) cross-validation 
strategy and a Fisher discriminant ratio (FDR)-based tech-
nique (Padilla et al., 2012) was used for feature selection. 
Results revealed a maximum classification accuracy of 
96.7% using 7 of the 17 features extracted. Authors pointed 
out that all these 7 kinematic features are related to the sec-
ond part of the movement in which the child transported the 
ball from a support to the target hole where the ball was to be 
dropped, suggesting that goal-oriented movements may be 
critical in separating children with ASD from typical devel-
oping (TD) children.

Cavallo et al. (2021) also collected kinematic measures 
of a reach and grasp movement through a camera motion 
capture and hand markers. Analyses were based on a SVM 
model that used a Gaussian kernel (SVM-G) to compute the 
hyperplane that best separated the different trials in each 
diagnosis group. Models were trained, validated, and tested 
using a record-wise cross-validation data split. Classification 
accuracy was computed as the fraction of correctly clas-
sified trials for each cross-validation iteration reaching an 
accuracy of 75%.

Emanuele et al. (2021) used an optoelectronic motion 
capture system and ten passive markers attached symmetri-
cally to the upper limbs and one to the manubrium of the 
sternum to record reach and grasp movement during a reach 
and grasp task. They applied a SVM algorithm reaching up 
to 95% of accuracy. In Perego et al.’s study (2009), kine-
matic variables of reach-and-throw movement were recorded 
by eight infrared cameras, during an experimental task con-
sisting in grasping a rubber ball placed over a support and 
throwing it in a see-through squared basket. A SVM has 
been applied with a 10 k-fold cross-validation method and 
92.5% of accuracy was achieved.

Imitation Task

Vabalas et al., (2019, Vabalas et al. 2020) and Li et al. (2017) 
analyzed finger movement while participants were engaged in 
a pointing imitation task. The researchers collected data using 
a motion sensor attached to the distal phalange of the index Ta
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finger and eye movement data with a remote eye tracker. Kin-
ematic features of finger movement were based on velocity, 
acceleration, jerk, and amplitude of movement. The authors 
used a SVM algorithm with nested cross-validation for both 
datasets. Results revealed that the classification accuracy 
increased to 78% when the two datasets were combined. An 
accuracy of 73% was achieved for movement data, and 70% 
for eye-gaze data (Vabalas et al., 2019, Vabalas et al. 2020).

Li et al. (2017) extracted 40 features of finger movement 
based on position, velocity, and acceleration, and applied 
different classification methods (Naive Bayes; SVM; DT; 
Random Forest (RF)); They used three features selection 
methods (SVM weights; leave-one-parameter-out; PCA 
weights) the highest accuracy was reached when the SVM 
was applied on features reduced from 40 to 9 (accuracy of 
86.7%). Authors highlighted that the most suitable model 
must be sought for each specific dataset and it can affect the 
accuracy of the classification (Li et al., 2017).

Smart Tablet‑Based Feature Extraction

Some studies in this review shed light on the potential of 
using ecological tools, widely used in everyday life, such 
as smart-table device, to obtain significant classification 
results. Anzulewicz et al. (2016) and Simeoli et al. (2021) 
reported significant classification results assessing children 
during game-play activities. The remarkable advantage is 
that it is possible to do classification without using sophis-
ticated tools that require a certain degree of expertise from 
researchers and clinicians. In particular, Anzulewicz et al. 
(2016) used touch screen and inertial sensors inside a smart 
tablet device to record finger kinematics during a game-
play. Authors collected 262 kinematic data and analyzed 
the dataset with different algorithms, reaching a classifica-
tion accuracy of 93%. Simeoli et al. (2021) also collected 
finger motion coordinates during a simple cognitive task 
administered through a smart tablet device. Authors used 12 
motion features based on acceleration, velocity, straightness, 
directional changes, etc., and applied a feedforward multi-
layer perceptron ANN, obtaining a classification accuracy 
of 93% (Simeoli et al., 2021).

Pose Estimation Features Extraction

Several studies in this review reported results of classifica-
tion using features of movement of different parts of the 
body (e.g., pose in real-time, skeletal keypoints, and center 
of pressure (COP)). For example, Raya et al., (2020a, 2020b) 
used an RGB-D camera to estimate the pose in real-time of 
the body. The authors analyzed 25 joints divided in different 
parts of the body, during a virtual experience enriched by 
visual, auditory, and olfactive stimuli delivered as differ-
ent conditions. A SVM with leave-one-subject-out (LOSO) 

cross-validation procedure was applied to the data and 
results revealed an accuracy of 82.98% using the head and 
trunk parameters, independently by the stimuli conditions.

Robles et al. (2022) also extracted a total of 27 features, 
including hand, head, and gaze behavior, recorded using the 
HTC VIVE Pro Eye VR System and the Tobii XR SDK, 
respectively. Logistic regression (LR), SVM, and an ANN 
were used to analyze the data and each algorithm was evalu-
ated applying fivefold cross-validation. Authors stressed the 
difference in classification accuracy obtained on random and 
matched dataset, where matched dataset means grouped for 
comparable age and IQ scores. In fact, the highest accuracy 
was reached when the random dataset was used. In particu-
lar, the ANN on the random dataset achieved an accuracy of 
93.3%, whereas an accuracy of 86.70% was reached on the 
matched dataset (Robles et al., 2022).

Kojovic et al. (2021) used a multi-person 2D pose estima-
tion OpenPose technology to extract several skeletal key-
points during an interaction with the experimenter provid-
ing an ADOS. A Convolutional Neural Network (CNN) was 
applied on the dataset achieving an accuracy of 80.9%.

Zhao et  al. (2022) also used an OpenFace 2.0 and 
extracted the time series of the participant’s head movement 
from the video clip while they were engaged in a conversa-
tion. Head rotation range, the amount of rotation per minute 
in the pitch (head nodding direction), yaw (head shaking 
direction), and roll (lateral head inclination) were recorded, 
and five classifiers were used (SVM; Linear Discriminant 
Analysis (LDA); DT; RF). The maximum classification 
accuracy of 92.11% was achieved with the DT classifier and 
two features. Differently, Li et al. (2020) used a force plate 
to extract 12 features of COP. The authors tested different 
ML classifiers (discriminant analysis, K-nearest neighbor, 
naïve Bayes, DT, SVM, RF), and all these methods suc-
cessfully identified ASD postural control patterns with an 
average accuracy of 80%. Among them, the naïve Bayes 
method was the optimal means with the highest accuracy of 
90%. The second-best algorithm was the K-nearest neighbor 
method with an accuracy of 86% (Li et al., 2020).

Eye Motion‑Related Feature Extraction

Eye tracking technology has received particular attention in 
the context of ASD, as ocular gaze abnormalities have been 
recognized as one of the hallmarks of the disorder (Frazier 
et al., 2017). It can be described as the process of captur-
ing, tracking, and measuring eye movements or the absolute 
point of gaze (POG), which refers to the point where the eye 
gaze is focused in the visual scene. This technology allows 
an objective and quantitative method for recording the char-
acteristics of eye movement. Eye trackers capture three basic 
categories of eye movements: fixation, saccade, and blink. A 
fixation is the moment that occurs while pausing the gaze on 
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an object so that the brain can perform the perception pro-
cess. Accurate perception requires constant scanning of the 
object with rapid eye movements, which are called saccades. 
On the other hand, a blink is often a sign that the system has 
lost track of the eye gaze. Eye-tracking scan-paths have been 
commonly used as a practical means of representing gaze 
behavior. A scan-path represents a sequence of consecutive 
fixations and saccades over time and across space.

This literature review section describes results from 
recent studies that tried to disentangle the question about 
how ML analytics can help identify and classify ASD based 
on eye movement (Table 2). Several authors analyzed the 
visual fixation time on different areas-of-interest (AOI). 
Some of these authors restricted the field of observation to 
specific face-areas (Jiang et al., 2019; Liu et al., 2016; Wan 
et al., 2019; Zhao et al., 2021). In particular, Zhao et al. 
(2021) analyzed the percentage of visual fixation time on 
different AOIs using a head-mounted eye tracker during 
a face-to-face conversation. The authors applied differ-
ent classification methods (SVM, LDA, DT, and RF) and 
results revealed that the maximum classification accuracy of 
92.31% was achieved by the SVM classifier by combining 
features on both visual fixation and session length (Zhao 
et al., 2021). The classification accuracy of combined fea-
tures was higher than that obtained using visual fixation fea-
tures (84.62%) or session length (84.62%) separately. Liu 
et al. (2016) observed face-scanning eye movement patterns 
of fixation during a face recognition task. They adopted a 
data-driven feature extraction method and a SVM for the 
classification. The model achieved an accuracy of 88.51% 
and the most discriminative facial areas able to explain the 
79.31% of accuracy were identified. Particularly, the TD 
group looked longer than the ASD group in the right eye, 
and the area slightly above the month, while the ASD group 
looked longer than the TD group at the area slightly below 
the left eye (Liu et al., 2016).

Jiang et al. (2019) combined task, face, and gaze features 
to classify individual fixations. A RF classification method 
was applied, and results revealed that task features only had 
very low sensitivity, but in combination with gaze and face 
features, the sensitivity increased to 91.3%, which suggested 
the important role of eye-tracking data in distinguishing 
subjects with ASD (Jiang et al., 2019). Wan et al. (2019) 
also observed fixation time on specific face areas through a 
remote eye-tracker tool, while the children were engaged in 
watching a video of a woman speaking. A SVM method was 
applied and classification accuracy of 85.1% was achieved.

Based on the assumption that the social saliency within 
the image content can lead to different eye responses 
between TD and ASD individuals, some other authors 
collected eye-fixation data considering wider scenarios 
(Alcañiz et al., 2022; Cilia et al., 2021; Elbattah et al., 2019; 
Liaqat et al., 2021; Tsuchiya et al., 2021).

Liaqat et al. (2021) analyzed coordinates and duration of 
eye fixation while participants were engaged in free-viewing 
tasks of natural images. Authors found that the ASD predic-
tion accuracy reaches 67.23% using a classical multilayer 
perceptron (MLP) network. Alcañiz et al. (2022) observed 
fixation on specific AOI, during a virtual experience. They 
identified four eye-tracking variables: number of frames in 
which the participant did not see anything defined as an AOI; 
number of frames in which the participant did see something 
defined as an AOI; number of frames in which the partici-
pant saw any defined character; and number of frames in 
which the participant saw any defined item. SVM methods, 
reached 86% of classification accuracy in the recognition 
of autistic children when using all eye-tracking variables.

Elbattah et al. (2019) analyzed eye movement scan-path 
as a sequence of consecutive fixations and saccades traced 
through time and space using an autoencoder to extract fea-
tures from the dataset and K-means models to classify their 
data. The clustering experiments empirically confirmed 
that eye-tracking scan-paths could be grouped into coherent 
clusters, which largely resembled the original grouping of 
samples. Tsuchiya et al., (2021), demonstrated that, using a 
Gazefinder to capture eye gaze patterns and a specific best-
fit diagnostic algorithm, it was possible to discriminate 
between school-aged children and adolescents with ASD 
from typically developing individuals of the same age range. 
Two types of eye gaze indices were collected: the AOI rate 
score (the percentage of gaze fixation time allocated to each 
AOI divided by the duration of each movie clip) and the AOI 
count score (the representation of the presence or absence 
of a fixed gaze over each AOI, regardless of the duration of 
the eye gaze). The proposed algorithm was based on age and 
rate/count score measures. The best-fit algorithm is derived 
from merging, for the younger individuals, the final AOI rate 
score algorithm, and for the older individuals, the final AOI 
count score algorithm. The classification accuracy reached 
was 78%, while sensitivity and specificity were respectively 
74% and 80% (Tsuchiya et al., 2021).

Cilia et al. (2021) used a CNN to analyze POG while 
children were engaged in watching photographs and videos. 
Their results showed a classification accuracy of 71%.

On the other hand, Kanhirakadavath and Chandran (2022)
did not focus on fixation data but analyzed velocity, acceler-
ation, and jerk of eye movement. They applied a deep neural 
network (DNN) that achieved an accuracy of 78.6%. Authors 
underlined that, after a data augmentation process, used to 
populate the original images dataset, the resulting scores 
showed a significant improvement of 23.4% (Kanhirakada-
vath & Chandran 2022).

Unlike previous studies focused on ASD prediction, Lin 
et al. (2022) proposed a novel technique that combined eye‐
movement data and ML algorithms for predicting high levels 
of autistic traits. They engaged children in a virtual reality 
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experience and analyzed features based on fixation on spe-
cific regions of the scene. Authors applied several classifica-
tion models, but results revealed that the highest accuracy of 
70% belonged to the RF model, DT, and gradient boosting 
decision tree (GBDT), during the preliminary experiment. 
However, the RF model showed the highest value even in 
the test experiment (Lin et al., 2022).

Discussion

Traditionally, ASD diagnosis and assessment include a 
series of explicit qualitative and quantitative measures 
characterized by semi-structured behavioral tasks’ observa-
tions in which the examiner rates and scores an individual’s 
response to prompted situations (e.g., the Autism Diag-
nostic Observation Schedule, ADOS; Lord et al., 1999). 
These instruments principally focus on social behavior and 
communication analysis. Assessment of sensory process-
ing, motor abnormalities, and general interaction with the 
environment remains restricted and unworked.

Although classical gold-standard tools have been widely 
adopted in ASD clinical practice, several limitations remain 
(Volkmar et al., 2009) and among them are (i) the absence of 
explicit sensory functioning assessment; (ii) the subjective 
evaluation and the examiner’s expertise; (iii) the ecological 
validity of the assessment setting.

The studies reported in this review shed light on the 
advantages of using ML models and non-invasive technolog-
ical tools to measure ASD symptoms in ecological situations 
and assessment settings. Indeed, these studies showed that it 
is possible to classify ASD and TD individuals within more 
ecological settings than the classical assessment laboratories 
and administer tasks more generalizable to different ASD 
severity degree and developmental age (Crippa et al., 2015).

Contemporaneously summarizing the innovations in the 
field, this literature review focused on studies that have ana-
lyzed both eye and body movement data collected through 
different technological tools. Tables 3 and 4 summarize the 
different ML models and the different types of data and tech-
nological tools used for analysis. Since, it is not possible to 
establish a direct comparison between the various methods 
proposed, considering the extreme variability of conditions, 
settings, types of data and tasks, and analysis models, we 
provide an overview of the trend in research within the field.

While examining these studies, it becomes apparent that 
certain ones illustrate how it is possible to leverage the 
enjoyment of using serious games and smart table devices 
to gather information useful for diagnosis, obtaining a 
good level of classification accuracy (Anzulewicz et al., 
2016; Simeoli et al., 2021). Such studies shed light on the 
potential of identifying objective and invisible measures 
that do not require behavioral or social skills or previous 

communications competencies, to increase the chances of 
working in the direction of early diagnosis.

It is worth noting that the research progressing in this 
direction, in addition to enhancing diagnostic procedures, 
has the potential to enhance our understanding of the disor-
der. The way these individuals move in space can provide 
further insights into the etiopathogenesis of the disorder, 
and this literature is moving in this direction, focusing on 
identifying specific motion features to be associated with 
symptoms’ severity of ASD.

For example, Vabalas and Freeth (2016) observed that 
people with elevated autistic symptoms exhibited shorter 
and less frequent saccades. On the other hand, Liberati et al. 
(2017) showed greater saccade amplitude and higher fre-
quency in children with ASD. However, the authors of these 
two studies used two distinct eye-tracking tools with a dif-
ferent sampling rate. Therefore, this issue is far to be disen-
tangled, largely depending on the equipment and data used. 
Furthermore, another variable is the type of condition and 
stimulation provided during data collection. In fact, other 
studies showed that eye-tracking was useful to identify chil-
dren diagnosed with ASD based on the duration of fixations 
and the number of saccades depending on the type of images 
displayed (Pierce et al., 2011). These evidences suggest that 
methods (i.e., materials and procedure) should be more con-
sistent across the studies. Our review highlighted that when 
the AOI for the analysis was restricted to face area, classifi-
cation reached higher level of accuracy (Jiang et al., 2019; 
Liu et al., 2016; Wan et al., 2019; Zhao et al., 2021).

Results from our literature review showed that ML algo-
rithm applied on biomarker dataset can achieve a classifi-
cation accuracy comparable to classic gold standard tools. 
However, the use of these methods leads to several contro-
versial issues that future research will have to untangle.

Firstly, the sample size is one of crucial limitation 
claimed by most author. In fact, a consistent part of the 
studies collected data from a small sample to test the clas-
sification with an independent untrained dataset (Cavallo 
et al., 2021; Crippa et al., 2015; Vabalas et al., 2020). Small 
sample size can lead to different problems, among them, 
training overfittings is one of the most critical in ML. Spe-
cifically, a small sample size can exacerbate the risk of 
overfitting due to limited representation of the underlying 
population. When the available data is scarce, the model 
has fewer diverse examples to learn from, making it easier 
for it to inadvertently fit noise or outliers in the training set. 
With insufficient data, the model may erroneously attribute 
importance to random variations or outliers, resulting in an 
overly complex representation that fails to generalize.

Moreover, a small sample size can lead to high variance 
in the estimated model parameters. The model may exces-
sively respond to individual training examples, causing fluc-
tuations in its predictions. This sensitivity to small changes 
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in the training data can lead to overfitting, as the model tries 
to capture every detail, including random fluctuations spe-
cific to the limited training sample.

To mitigate overfitting with a small sample size, tech-
niques such as regularization (e.g., Anzulewicz et al., 2016), 
data augmentation (e.g., Kanhirakadavath and Chandran 
2022), and cross-validation are commonly employed.

Most of the studies in this review report a lack in sample 
size (e.g., Tsuchiya et al., 2021; Cilia F, et al., 2021; Alcañiz 
M, et al., 2022). In order to address this issue, authors pro-
posed different solutions such as data augmentation method 
(e.g., Kanhirakadavath and Chandran 2022), involving an 
independent dataset (the second control group) to be tested, 
and applying cross-validation strategy.

Cross-validation is required not only for checking the pre-
dictive validity, but also for achieving optimal diagnostic 
performance. In this review, one of the most used cross-
validation strategies was the LOO that is assumed to perform 
better than other cross-validation methods because it allows 
a less biased estimation of generalization error. Specifi-
cally, since the LOO method trains the model on all sam-
ples except one and evaluates on that excluded sample, the 
estimation of generalization error is less biased compared 
to techniques like k-fold cross-validation, where training is 
done on smaller subsets and evaluation is performed on a 
limited number of samples. This makes the LOO method 
more accurate for estimating the model’s generalization abil-
ity (Pontil, 2002).

On the other hand, we can address to LOO also a minimal 
data loss, since that, for each iteration, a single sample is 
excluded as the test set, and all other samples are used as 

the training set. This maximizes the utilization of the avail-
able data, avoiding significant information loss compared to 
other cross-validation methods that may divide the dataset 
into larger portions.

The studies that evaluated reach and grasp movements 
showed a high accuracy (average ± 90%) using SVM method 
(Emanuele et al. 2021; Perego et al. 2009; Crippa et al., 
2015; Cavallo et al., 2021). Cavallo et al. (2021) highlighted 
the different accuracy reached depending on the different 
methods used to arrange the dataset for classification.

However, being able to choose the appropriate classifica-
tion method and the corresponding cross-validation model 
based on the type of data at hand becomes essential to advance 
research in this field, and reliable feature selection methods 
are also valid strategies to overcome the high dimensionality 
issue. (e.g., Alcañiz Raya et al., 2020a, 2020b).

Furthermore, models developed with small samples and 
high dimensional data are prone to noise. For example, 
Vabalas et al., (2019, 2020) and Li et al. (2017) examined 
finger movement during an imitation task and using a SVM 
algorithm, resulting in a classification accuracy of 76% and 
87%, respectively. Importantly, the 87% of accuracy was 
reached when features were reduced from 40 to 9. These 
results pointed out the importance of finding the best fit 
between model, data dimensionality, and sample size.

In general, a larger sample should allow the model to 
be tested, and recruiting participants with various presenta-
tions (e.g., different degrees of severity, different cultural 
and biological settings) might be considered to ensure the 
generalizability of the ML model and therefore, improve the 
generalization of the results.

Table 3   Eye motion data results. The table presents the overall results of the studies related to eye motion analysis. Results are arranged based 
on the ML method used (SVM; ANN; others) and the type of features analyzed (AOI; scanpath)

N.B. For articles that reported results from various ML models, we have considered for this table only the model that achieved the highest accu-
racy level

Eye motion data SVM ANN OTHERS

Features AOI Scanpath AOI Scanpath AOI Scanpath

Num. of studies 3 1 0 3 1 3
Accuracy range 85%–92% 88% - 67%–90% 78 70%–74%

Table 4   Body motion data results. The table presents the overall results of the studies related to body motion analysis. Results are arranged 
based on the ML method used (SVM; ANN; others) and the type of recording tool method (camera; motion sensor)

N.B. For articles that reported results from various ML models, we have considered for this table only the model that achieved the highest accu-
racy level

Body motion data SVM ANN OTHERS

Tools Camera Sensor Camera Sensor Camera Sensor

Num. of studies 5 2 2 1 0 4
Accuracy range 75%–100% 70%–73% 80%–93% 93% - 67%–93%
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Another important remark is that the high specificity of 
the samples could limit the generalizability of the classifi-
cation. Most of the studies analyzed in this review chose to 
measure very specific and homogeneous samples, carefully 
selecting specific sets of inclusion and exclusion criteria to 
rule out potential confounders. However, models based on 
homogeneous samples are less likely to generalize to real-life 
clinical settings. As ASD is a heterogeneous condition, the 
possibility of training the models with larger groups, would 
be useful to improve the generalization to a wide condition 
range of the syndrome. Considering that autistic traits exist on 
a spectrum, moving the research in this field could lead to find 
measures that can identify autism regardless of its position on 
the spectrum. Specifically, although there may be variability 
within the spectrum itself, this variability should be a specific-
ity compared with typically developing population, given that 
we expect there to be specific motor pattern typical for all the 
autistic spectrum. This hypothesis is based on specific theo-
ries and scientific research of recent years (Friston and Kiebel, 
2009; De Jaegher, 2013; Torres et al., 2013) that focused on 
sensory processing models and general body-world interac-
tion as the foundation for the entire autistic symptomatology 
and as an underlying explanation to support the idea that there 
may be a distinctiveness in autistic motor patterns that char-
acterizes all individuals on the spectrum, differentiating them 
from the rest of the population.

Delving deeper into this topic is necessary to demonstrate 
this specificity analyzing these manifestations around the 
entire spectrum and also exploring the difference with 
other neurodevelopmental conditions and disorders. 
Also, including other neurodevelopmental disorders 
with movement impairments (e.g., the attention deficit 
hyperactivity disorder (ADHD), could be valuable for ML 
to determine if these groups present similar body movements 
that are distinct for the different neurodevelopment 
conditions. Nevertheless, in many cases the experimental 
groups were not matched on measures related to the 
intelligence quotient performance, cognitive abilities, 
and motor comorbidities (e.g., dyspraxia), limiting the 
confidence that the experimental differences observed in 
the experiment were due to a diagnosis of ASD, and not to 
differences in other cognitive or non-cognitive factors (e.g., 
Anzulewicz et al., 2016; Cavallo et al., 2021; Simeoli et al., 
2021). Results from Robles et al. (2022) stressed this aspect. 
The authors compared the accuracy reached with matched 
vs. random dataset, revealing that matching the dataset 
according to IQ measure leads to a decrease in accuracy. 
This result confirms the need to control these variables in 
order to verify the classification validity.

Furthermore, for almost all studies the classification 
model did not give any indication about the severity of 
the symptoms except for the study conducted by Lin et al. 
(2022). In general, these studies show a lack in indicating 

whether the indices collected were associated with clinical 
correlates, severity, or prognosis (e.g., Tsuchiya et al., 2021). 
Future studies should include other neurodevelopmental dis-
orders involving social and communication impairments, 
such as ADHD, in order to improve discrimination between 
groups compared with TD children and identify with greater 
precision the degrees of severity in each disorder, highlight-
ing patterns, similarities, and differences.

Another aspects that seem to be related to the ASD abnor-
malities are sensory dysfunctions. Multiple studies inves-
tigated the relationship between ASD and electrodermal 
activity (EDA). The evidence from these studies is contro-
versial: some research found no differences in EDA levels in 
response to sensory stimuli (e.g., McCormick et al., 2014), 
whereas others confirm these differences (e.g., Schoen et al., 
2009). Raya et al., (2020a, 2020b) analyzed electrodermal 
activity (EDA) during different virtual experiences charac-
terized by the presentation of different sensory stimuli (audi-
tory, visual, olfactive) and analyzed these data using ML 
methods. Authors used SVM with a LOSO cross-validation 
procedure. Results revealed the potential of classifying 
ASD according to these parameters highlighting the need 
for future research in this field (Raya, et al., 2020).

Future ML studies are encouraged to generate as many 
features as possible to allow for specification of the globally 
optimal set of features for ASD identification (Zhao et al., 
2021). These methods could be improved with more sophis-
ticated models to determine which and how many (at least) 
features could be identified to be used in the clinical practice 
to identify children with ASD. For example, measure of the 
scanning eye movement patterns should be combined with 
other types of psychological and physiological measures 
(e.g., brain activities, skin conductance, speech, motions, 
body gestures, and facial expressions) to obtain a more com-
prehensive multimodal measure of the risk of ASD and aid 
the process of diagnosis and early detection.

Conclusion

Although, in recent years, research on ASD biomarkers has 
grown exponentially, and the integration of technological 
aids in assessment procedures is almost certain, it is worth 
noting that such biomarkers should still be deemed as sup-
plementary data. However, the results of this review high-
light that ML methods and technological tools can improve 
and refine the diagnostic process, providing additional 
information about such “invisible” traits of the disorder. 
Research in the field is still needed to investigate the cor-
relations between certain biomarkers and specific symptoms 
of the disorder. Anyway, one of the greatest advantages that 
research in this field can provide is the potential of identify-
ing additional biomarkers as potential predictors of ASD and 
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ensuring new prospective for early diagnosis. One revolu-
tionary aspect of using these methods lies in the ability to 
move beyond mere categorical diagnosis and instead utilize 
them to gain further insights into the disorder. While current 
research using these methods may be focused on the accu-
racy of classifications based on an existing diagnosis, future 
studies could shift towards a more exploratory approach to 
the disorder. This approach could refine the assessment 
towards a phenotypic description of the disorder.
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