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Abstract

Diagnosis of autism spectrum disorder (ASD) is typically performed using traditional tools based on behavioral observations.
However, these diagnosis methods are time-consuming and can be misleading. Integrating machine learning algorithms with
technological screening tools within the typical behavioral observations can possibly enhance the traditional assessment and
diagnostic process. In the last two decades, to improve the accuracy and reliability of autism detection, many clinicians and
researchers began to develop new screening methods by means of advanced technology like machine learning (ML). These
methods include artificial neural networks (ANN), support vector machines (SVM), a priori algorithms, and decision trees
(DT). Mostly, these methods have been applied to pre-existing datasets, derived from the standard diagnostic and assessment
tools, to implement and test predictive models. On the other hand, the detection of new objective behavioral measures such as
biomarkers could lead to a significant strengthening of existing screening tools. In the present study, we carried out a critical
review of the literature about the latest findings in this field. The aim was to shed light about the effectiveness of using ML
systems for motion analysis to enhance both clinical assessment and diagnostic processes. Specifically, we discussed the
contribution of ML systems in promoting early diagnosis of ASD. The literature review showed that motion patterns ML
analysis predicts ASD classification as accurately as that of classical gold standard tools. However, the application of these
methods is still challenging, as discussed in this review.
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Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental
disorder which includes deficits in social communication
and social interaction with the presence of restricted and
repetitive behaviors. These behaviors are referred to as ste-
reotyped or repetitive motor movements, insistence on same-
ness, difficulties with changes in routine and rigid patterns of
behavior, restricted interest, and unusual response to sensory
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aspects. Although motor impairments have been generally
observed in ASD, their importance is not taken into account.
Importantly, motor impairments in ASD significantly impact
the quality of life and social development of ASD (Lai et al.,
2014). Motor abnormalities in ASD can occur very early in
development (Brian et al., 2008; Teitelbaum et al., 1998),
they become more evident over the years (Fournier et al.,
2010) and they may evolve into a pervasive feature of the
disorder. Several manifestations of these motor abnormali-
ties have been detected and they can include abnormalities
in walking patterns (e.g., Gong et al., 2020; Nobile et al.,
2011; Rinehart & McGinley, 2010), hand movements such
as reaching and grasping (e.g., Bickstrom et al., 2021; Forti
et al., 2011), and eye-hand coordination (e.g., Crippa et al.,
2013). Considering the need of a more reliable and earlier
diagnostic process for ASD, motion features could represent
an effective precursor.

In the field of neurodevelopmental disorders, early
detection can lead to early intervention, which is gen-
erally crucial for both children and families. Recently,
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researchers highlighted the importance of early identifi-
cation to improve the impact and effectiveness of interven-
tions (Koegel et al., 2014). However, currently, the diag-
nostic process involves a series of tests that may take hours
of clinical examination, and their validity is provided after
the child is 3 years old (e.g., Autism Diagnostic Observa-
tion Schedule, ADOS; Lord et al., 1999). Moreover, the
variability of symptoms makes ASD identification even
more complicated. In that regard, computer technologies
have been embraced to provide useful guidance through
the assessment and diagnostic process. The gold stand-
ard for ASD diagnosis has been formalized with clinical
symptom judgment through semi-structured game-based
behavioral observations (Lord et al., 2000) and standard-
ized interviews or questionnaires. Recent studies have
begun to explore the predictive role of some behavioral
measures such as eye-gaze or motion patterns as potential
objective measures of the disorder, aiming at identifying
a well-defined phenotype and enabling a computer-aided
diagnosis perspective. These studies typically implement
classification methods based on machine learning (ML)
algorithms to predict or classify individuals of different
groups by maximizing the distance between groups of
data sets. Specifically, they seek to identify the patterns or
distinctive traits that clearly separate the different groups
of individuals within the dataset, to provide an accurate
classification.

Recent literature suggests that motor abnormalities could
be a consistent marker of ASD (Dowd et al., 2012). In fact,
some studies have shown that the severity of motor deficits
is related to the degree of social withdrawal and with the
severity of symptoms in general (Freitag et al., 2007). Fur-
thermore, it appeared that motor disorders in children with
ASD differ in specific characteristics from those of children
with other neurodevelopmental disorders (e.g., attention
deficit/ hyperactivity-ADHD; Ament et al., 2015; Izawa
et al., 2012).

Other evidence in that regard has been provided using
wearable sensors or video analysis systems for motion detec-
tion integrated with artificial intelligence (Al) systems (e.g.,
Perego et al., 2009; Vabalas et al., 2019). They reported that
it could be possible to observe and quantitatively define the
motor abnormalities and the underlying problems of interac-
tion with the surrounding world. Recent advances in com-
puter-assisted analysis such as ML have been applied to the
clinical field for ASD assessment and detection with the aim
of enhancing the accuracy, time, and quality of the diagnos-
tic process. ML methods include artificial neural network
(ANN), supporting vector machine (SVM), a priori algo-
rithms, and decision trees (DT), most of which have been
applied to autism-related datasets to build predictive models.

Thus, the assessment of motor functions in ASD and their
analysis through ML may clarify the neurobiological basis
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of the disease and improve the diagnostic process, especially
for the early diagnosis perspective.

This literature review aims at collecting and critically dis-
cussing recent findings on ML application for ASD detec-
tion through motion analysis. The studies analyzed the use
of different technological devices and different assessment
settings and tasks for a new perspective diagnostic model.

Specifically, in this literature review, the focus has been
on studies that applied ML models to measures derived from
both body movement and eye movement. As these studies
are relatively recent, there is not yet an established gold
standard for the standardized application of these methods.
Researchers are still struggling to find the most appropriate
features, technological tool, and ML methods for optimal
efficacy.

Therefore, the present work aims at critically describe the
potentials and limitations of these new approaches, trying
to summarize the different features, methods, and tools con-
sidered so far, while also critically considering the necessity
for future research to evaluate the interaction of different and
more specific motion features. This is crucial for achieving
a more comprehensive and nuanced understanding of the
underlying processes of ASD and its associated diagnostic
frameworks.

Machine Learning Application in Clinical Dataset

Supervised ML commonly refers to all procedures that
train a computer algorithm to identify a complex pattern of
data (i.e., “features”) that can then be used to predict group
membership of new subjects (e.g., patients vs. controls).
The procedure to diagnose ASD mainly involves identifying
the right class, namely ASD or typically developing (TD),
depending on input features. The classification procedure is
a predictive work that uses intelligent, automated methods
to diagnose whether a child fits with ASD criteria or not.
The automated tool uses the input data to perform learning,
and its efficiency is measured by the extent to which it can
predict the diagnostic class. ML techniques require a well-
defined dataset for the training phase to extract the classifi-
cation algorithm that best separates the groups, whereas, in
the testing phase, the classification algorithm can be used to
predict the class membership of a participant not involved
in the previous training phase. It is important to specify that
we can distinguish at least two different approaches in the
field of ML, the one described so far refers to supervised
ML approach. On the other hand, unsupervised ML is a
type of learning where the model is trained on input data
without corresponding labels. In this case, the main goal
is to discover patterns or hidden structures within the data.
The model attempts to group the data based on similarities
or find recurring patterns. Unsupervised learning is useful
when there are no output labels available to train the model
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or when you want to explore the data to identify interest-
ing patterns or clusters of similar data. Some examples of
unsupervised learning algorithms include principal com-
ponent analysis (PCA), clustering (such as k-means), and
dimensionality reduction. We could therefore summarize
that supervised learning requires labeled input data to train
the model to make accurate predictions, while unsupervised
learning aims to discover hidden structures or groupings in
unlabeled input data (Milano et al, 2023).

In this scenario, the use of pattern recognition methods to
predict group membership should not be conceived merely
in a potentially ‘‘diagnostic’’ perspective but also as a useful
tool to identify new objective measures for each individual,
leading to a phenotypic redefinition of the disorder.

In contrast to traditional programming, ML attempts to
extrapolate algorithms from data exclusively. The develop-
ment of ML can be broadly organized into supervised or
unsupervised models. The main goal of supervised classi-
fication is to learn rules from examples in different groups
and use these rules to predict unseen cases into prospec-
tive classes as accurately as possible. Predictive models are
developed based on observed characteristics from examples
in each class. The model is first trained using labeled sam-
ples. A set of input feature variables is used as input and a
desired class value is used as output. The obtained classifier
model is then used to recognize new samples and categorize
their class. On the other hand, unsupervised ML uses train-
ing data that do not include any output information (i.e.,
labels). Unsupervised models (e.g., clustering and associa-
tion rules) can provide descriptive knowledge to help under-
stand the inherent structure or properties of the data.

The reliability of the classification typically depends
on the learning algorithm used by the classifier, the size
and quality of the training data (Sarker, 2021). Since high-
dimensional datasets retain irrelevant, noisy, and redundant
traits, the more the data dimensionality is, the more the opti-
mization of features will get slower. For this reason, feature
selection methods are used to decrease data dimensionality,
choosing the most relevant features to enhance classification
accuracy and minimize computational cost.

Evaluation metrics are used to measure the performances
of ML predictive models. The most popular evaluation met-
rics for predicting ASD are (i) accuracy: it finds the number
of test cases that have been appropriately classified from
the absolute number of test cases; (ii) sensitivity: it detects
the proportion of actual positive test cases that have been
correctly identified; and (iii) specificity: it indicates the per-
centage of actual negatives test cases correctly identified.

One of the major risks in using ML is overfitting. Specifi-
cally, overfitting is a phenomenon where a predictive model
becomes excessively complex and starts to memorize the
noise or random fluctuations present in the training data,
rather than learning the underlying patterns that generalize

well to unseen data. This leads to poor performance on new
data because the model is overly specialized to the idiosyn-
crasies of the training set.

In order to control these risks cross-validation methods
are used to assess the predictive ability of a model and gen-
erate its efficiency. Specifically, cross-validation uses differ-
ent portions of the data to test and train a model on different
iterations.

The most used cross-validation methods are (i) the k-fold
cross-validation method, according to this strategy, the data-
set is divided into k subsets of the same size. One of them
is selected as a test set, and the other k — 1 composes the
training set. Each set becomes a test set for one time, and
thus, this process is repeated k times; (ii) the leave-one-out
(LOO) cross-validation consisting in applying the algorithm
once for each instance, using all other instances as a training
set and using the selected instance as a single-item test set;
and (iii) the leave-one-subject-out (LOSO) cross-validation
method is a technique used in the field of cross-validation to
assess the performance of a predictive model. Specifically, it
involves excluding a complete subject from the training set
and using it as the test set for each iteration. This process
is repeated for all available subjects, allowing for a reliable
estimation of the model’s generalization abilities.

These methods help in constraining the model com-
plexity, generating synthetic data, and evaluating the mod-
el’s performance on multiple subsets of the limited data,
respectively.

Method

Extensive research was carried out by the properly trained
reviewer (R.S.) on Pubmed. The search strategy consisted
of the following keywords algorithm: (((autism[Title/
Abstract]) AND (“machine learning”[Title/Abstract]))
NOT (review[Title/Abstract])) NOT (meta-analysis[Title/
Abstract]).

Articles were included if:

a. The sample included individuals with a clinical diag-
nosis of autism, infantile autism, ASD, PDD-NOS, or
Asperger’s Syndrome (AS) with and without an intel-
lectual disability.

b. ML was used for data analysis.

c. Features selected for the analysis included eye or body
patterns of movements.

Articles were excluded if:
a. The dataset includes qualitative behavioral data, tradi-

tional tools results or parent-report measures, medical
or genetic data, patterns of vocal production.
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b. The study was a prospective validation, preliminary pilot
study, or single-subject study.

c. ML was used to analyze rehabilitation effects.

d. ML was used to detect specific symptoms or behavior
(e.g., self-injury behavior).

e. Analysis was applied on biomarkers data recorded dur-
ing tasks or activities that required previous acquisition
(e.g., eye-movement during a text reading task).

The titles and abstracts of the search results were then
screened, and the relevant papers were identified. As shown
in Fig. 1, database searches produced 447 records. After
the screening of titles and abstracts, 64 full-text articles
were obtained for further analysis, and 25 articles met our
inclusion criteria. Selected articles were primarily divided
based on the type of features used for classification (e.g.,
eye motion-related features, body motion-related features),
then organized according to the task (e.g., imitation task, and
reach and grasp tasks) and to the specific body part analyzed
(e.g., finger, and skeletal keypoints).

Results

Results of our review have been organized into two separate
sections:

i. Body motion-related features extraction, which
includes studies that analyzed measures of body

movements collected using different tools (e.g., smart
tablet device; motion sensor) and during specific tasks
(e.g., reach and grasp tasks; imitation tasks). All these
studies are collected in Table 1;

ii. Eye motion-related feature extraction, which includes
all the studies that used eye-gaze measures to classify
ASD. These studies are collected in Table 2.

Body Motion-Related Features Extraction

The symptomatology related to ASD syndrome essentially
derives from an impairment of learning processes that nor-
mally occur early in childhood. Several studies showed
that the processes of active perception are compromised in
ASD, which could lead to abnormalities in planning pro-
cesses, serial and prospective coordination (von Hofsten
& Rosander 2012). An ineffective information processing
from the outside world may result in cognitive and language
developmental delay and therefore in social interaction.
Thus, by properly tracing the way of moving of ASD people
within the environment, it is possible to detect the specific
motor patterns that characterize their interaction with the
world. ML systems can identify typical motor patterns of
the disorder and effectively support the diagnostic process.
In particular, the potential of identifying such invisible and
objective features enables early diagnosis of the disorder.

Fig.1 Adapted from the
PRISMA flow diagram (Moher
et. al., 2009), showing the
steps of the selection process

Records identified through
database search

(n=447)

undergone by the studies in this
review

l

Records selected by title and abstract after
duplicates removal

Records excluded
(n =48)

(n=112)

!

Full-text articles assessed

Full-text articles excluded, with

[ Eligibility ] [ Screening ] [ Identification]

for eligibility _ reasons
(n=64) (n=39)
Task characteristics = 5
Sample characteristics = 3
Features characteristics = 13

No classification purpose = 18

Studies included in the

review
(n=25)
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The studies listed in Table 1 analyzed such motion fea-

=3
RN = g 5 . . . .
§ -2gs8 ; § tures. The following sections describe these studies grouped
h= I == —_— . .
2855 o = according to the task and the type of motion features
S5EEEZ < ined
o >~ 8= examined.

G o= o L=
LT
E 02 3 & =

s |[288E5E% == Reach and Grasp Tasks

Z | E E8=37 C 4

tl2szn&8 =ie . . .

~ = £ % Four studies collected and analyzed kinematic measures dur-
2438 £ § 7; ing a reach and grasp task. Authors used different tools to
sA<:s g 33z record the data and different classification models. Crippa
o= EZ ¢ 2 pp
s 2 g = % = et al., (2015), identified 17 kinematic measures of a reach
wn > O = = R= g _

5|87 —% Z Eg £ % and grasp movements and. recorded them through an opto

2lEesn 2% g e electronic system and passive markers. They applied a SVM

S |25 2 ¢ . . Sy

2 = E R~ g 2 5 § 5 § classifier method with leave-one-out (LOO) cross-validation

§ 28 a3 @% E g § strategy and a Fisher discriminant ratio (FDR)-based tech-
= z . . .

50 nique (Padilla et al., 2012) was used for feature selection.

R R §§ © Results revealed a maximum classification accuracy of

=1 »n 2 = . .
g2 EER-E-RN 63 96.7% using 7 of the 17 features extracted. Authors pointed
CEEESSES | Q5L 8 P
&= g & wg 2= § 23 out that all these 7 kinematic features are related to the sec-
- QO —

S5 s 3 E kS K “2 8 ond part of the movement in which the child transported the
=T 0~ 31 <A =]
w|2eSEESEE § = .5 P g ball from a support to the target hole where the ball was to be
S I EEg X5 E S5 © bp .
Li < 2 & g E -;D 2 E E 5 é dropped, suggesting that goal-oriented movements may be
gle-°-T==%"7 =85 critical in separating children with ASD from typical devel-
9 £ g é oping (TD) children.
%ﬁg 9 Ej z2 8 Cavallo et al. (2021) also collected kinematic measures
S E v S A4 of a reach and grasp movement through a camera motion
v 8.8 22 e grasp &
25z £Q § capture and hand markers. Analyses were based on a SVM
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22 L2 8%< model that used a Gaussian kernel (SVM-G) to compute the
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&8 3F ¢|> &9 hyperplane that best separated the different trials in each
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L g% i -wi -validati lit. Classification
E S § using a record-wise cross-validation dflta split.
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4 Q =] . . . . . . .
s = 28 = sified trials for each cross-validation iteration reaching an
5 = g
< 8% 3 Bl 2 accuracy of 75%

E g .= g = & ’ . .
8§85t g Emanuele et al. (2021) used an optoelectronic motion
Feo@csg 29 g P

ER G % 2 a2 2 ;i > capture system and ten passive markers attached symmetri-
El&52 = 8 "g ; = _§ cally to the upper limbs and one to the manubrium of the
=5 = < .

& é =S atg s E _§ sternum to record reach and grasp movement during a reach
) 'g e and grasp task. They applied a SVM algorithm reaching up
£ E é to 95% of accuracy. In Perego et al.’s study (2009), kine-
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£ %2 matic variables of reach-and-throw movement were recorded
a l“ g g § by eight infrared cameras, during an experimental task con-
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2 la s S E= sisting in grasping a rubber ball placed over a support and

N z 8 S

&la %D g4 8 throwing it in a see-through squared basket. A SVM has
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& |8 < S 28 92.5% of accuracy was achieved.
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= = 4§ 8o analyzed finger movement while participants were engaged in
- = S .. . .
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finger and eye movement data with a remote eye tracker. Kin-
ematic features of finger movement were based on velocity,
acceleration, jerk, and amplitude of movement. The authors
used a SVM algorithm with nested cross-validation for both
datasets. Results revealed that the classification accuracy
increased to 78% when the two datasets were combined. An
accuracy of 73% was achieved for movement data, and 70%
for eye-gaze data (Vabalas et al., 2019, Vabalas et al. 2020).

Li et al. (2017) extracted 40 features of finger movement
based on position, velocity, and acceleration, and applied
different classification methods (Naive Bayes; SVM; DT;
Random Forest (RF)); They used three features selection
methods (SVM weights; leave-one-parameter-out; PCA
weights) the highest accuracy was reached when the SVM
was applied on features reduced from 40 to 9 (accuracy of
86.7%). Authors highlighted that the most suitable model
must be sought for each specific dataset and it can affect the
accuracy of the classification (Li et al., 2017).

Smart Tablet-Based Feature Extraction

Some studies in this review shed light on the potential of
using ecological tools, widely used in everyday life, such
as smart-table device, to obtain significant classification
results. Anzulewicz et al. (2016) and Simeoli et al. (2021)
reported significant classification results assessing children
during game-play activities. The remarkable advantage is
that it is possible to do classification without using sophis-
ticated tools that require a certain degree of expertise from
researchers and clinicians. In particular, Anzulewicz et al.
(2016) used touch screen and inertial sensors inside a smart
tablet device to record finger kinematics during a game-
play. Authors collected 262 kinematic data and analyzed
the dataset with different algorithms, reaching a classifica-
tion accuracy of 93%. Simeoli et al. (2021) also collected
finger motion coordinates during a simple cognitive task
administered through a smart tablet device. Authors used 12
motion features based on acceleration, velocity, straightness,
directional changes, etc., and applied a feedforward multi-
layer perceptron ANN, obtaining a classification accuracy
of 93% (Simeoli et al., 2021).

Pose Estimation Features Extraction

Several studies in this review reported results of classifica-
tion using features of movement of different parts of the
body (e.g., pose in real-time, skeletal keypoints, and center
of pressure (COP)). For example, Raya et al., (2020a, 2020b)
used an RGB-D camera to estimate the pose in real-time of
the body. The authors analyzed 25 joints divided in different
parts of the body, during a virtual experience enriched by
visual, auditory, and olfactive stimuli delivered as differ-
ent conditions. A SVM with leave-one-subject-out (LOSO)

@ Springer

cross-validation procedure was applied to the data and
results revealed an accuracy of 82.98% using the head and
trunk parameters, independently by the stimuli conditions.

Robles et al. (2022) also extracted a total of 27 features,
including hand, head, and gaze behavior, recorded using the
HTC VIVE Pro Eye VR System and the Tobii XR SDK,
respectively. Logistic regression (LR), SVM, and an ANN
were used to analyze the data and each algorithm was evalu-
ated applying fivefold cross-validation. Authors stressed the
difference in classification accuracy obtained on random and
matched dataset, where matched dataset means grouped for
comparable age and IQ scores. In fact, the highest accuracy
was reached when the random dataset was used. In particu-
lar, the ANN on the random dataset achieved an accuracy of
93.3%, whereas an accuracy of 86.70% was reached on the
matched dataset (Robles et al., 2022).

Kojovic et al. (2021) used a multi-person 2D pose estima-
tion OpenPose technology to extract several skeletal key-
points during an interaction with the experimenter provid-
ing an ADOS. A Convolutional Neural Network (CNN) was
applied on the dataset achieving an accuracy of 80.9%.

Zhao et al. (2022) also used an OpenFace 2.0 and
extracted the time series of the participant’s head movement
from the video clip while they were engaged in a conversa-
tion. Head rotation range, the amount of rotation per minute
in the pitch (head nodding direction), yaw (head shaking
direction), and roll (lateral head inclination) were recorded,
and five classifiers were used (SVM; Linear Discriminant
Analysis (LDA); DT; RF). The maximum classification
accuracy of 92.11% was achieved with the DT classifier and
two features. Differently, Li et al. (2020) used a force plate
to extract 12 features of COP. The authors tested different
ML classifiers (discriminant analysis, K-nearest neighbor,
naive Bayes, DT, SVM, RF), and all these methods suc-
cessfully identified ASD postural control patterns with an
average accuracy of 80%. Among them, the naive Bayes
method was the optimal means with the highest accuracy of
90%. The second-best algorithm was the K-nearest neighbor
method with an accuracy of 86% (Li et al., 2020).

Eye Motion-Related Feature Extraction

Eye tracking technology has received particular attention in
the context of ASD, as ocular gaze abnormalities have been
recognized as one of the hallmarks of the disorder (Frazier
et al., 2017). It can be described as the process of captur-
ing, tracking, and measuring eye movements or the absolute
point of gaze (POG), which refers to the point where the eye
gaze is focused in the visual scene. This technology allows
an objective and quantitative method for recording the char-
acteristics of eye movement. Eye trackers capture three basic
categories of eye movements: fixation, saccade, and blink. A
fixation is the moment that occurs while pausing the gaze on
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an object so that the brain can perform the perception pro-
cess. Accurate perception requires constant scanning of the
object with rapid eye movements, which are called saccades.
On the other hand, a blink is often a sign that the system has
lost track of the eye gaze. Eye-tracking scan-paths have been
commonly used as a practical means of representing gaze
behavior. A scan-path represents a sequence of consecutive
fixations and saccades over time and across space.

This literature review section describes results from
recent studies that tried to disentangle the question about
how ML analytics can help identify and classify ASD based
on eye movement (Table 2). Several authors analyzed the
visual fixation time on different areas-of-interest (AOI).
Some of these authors restricted the field of observation to
specific face-areas (Jiang et al., 2019; Liu et al., 2016; Wan
et al., 2019; Zhao et al., 2021). In particular, Zhao et al.
(2021) analyzed the percentage of visual fixation time on
different AOIs using a head-mounted eye tracker during
a face-to-face conversation. The authors applied differ-
ent classification methods (SVM, LDA, DT, and RF) and
results revealed that the maximum classification accuracy of
92.31% was achieved by the SVM classifier by combining
features on both visual fixation and session length (Zhao
et al., 2021). The classification accuracy of combined fea-
tures was higher than that obtained using visual fixation fea-
tures (84.62%) or session length (84.62%) separately. Liu
et al. (2016) observed face-scanning eye movement patterns
of fixation during a face recognition task. They adopted a
data-driven feature extraction method and a SVM for the
classification. The model achieved an accuracy of 88.51%
and the most discriminative facial areas able to explain the
79.31% of accuracy were identified. Particularly, the TD
group looked longer than the ASD group in the right eye,
and the area slightly above the month, while the ASD group
looked longer than the TD group at the area slightly below
the left eye (Liu et al., 2016).

Jiang et al. (2019) combined task, face, and gaze features
to classify individual fixations. A RF classification method
was applied, and results revealed that task features only had
very low sensitivity, but in combination with gaze and face
features, the sensitivity increased to 91.3%, which suggested
the important role of eye-tracking data in distinguishing
subjects with ASD (Jiang et al., 2019). Wan et al. (2019)
also observed fixation time on specific face areas through a
remote eye-tracker tool, while the children were engaged in
watching a video of a woman speaking. A SVM method was
applied and classification accuracy of 85.1% was achieved.

Based on the assumption that the social saliency within
the image content can lead to different eye responses
between TD and ASD individuals, some other authors
collected eye-fixation data considering wider scenarios
(Alcaiiiz et al., 2022; Cilia et al., 2021; Elbattah et al., 2019;
Liaqat et al., 2021; Tsuchiya et al., 2021).

@ Springer

Liaqat et al. (2021) analyzed coordinates and duration of
eye fixation while participants were engaged in free-viewing
tasks of natural images. Authors found that the ASD predic-
tion accuracy reaches 67.23% using a classical multilayer
perceptron (MLP) network. Alcafiiz et al. (2022) observed
fixation on specific AOI, during a virtual experience. They
identified four eye-tracking variables: number of frames in
which the participant did not see anything defined as an AOI,
number of frames in which the participant did see something
defined as an AOI; number of frames in which the partici-
pant saw any defined character; and number of frames in
which the participant saw any defined item. SVM methods,
reached 86% of classification accuracy in the recognition
of autistic children when using all eye-tracking variables.

Elbattah et al. (2019) analyzed eye movement scan-path
as a sequence of consecutive fixations and saccades traced
through time and space using an autoencoder to extract fea-
tures from the dataset and K-means models to classify their
data. The clustering experiments empirically confirmed
that eye-tracking scan-paths could be grouped into coherent
clusters, which largely resembled the original grouping of
samples. Tsuchiya et al., (2021), demonstrated that, using a
Gazefinder to capture eye gaze patterns and a specific best-
fit diagnostic algorithm, it was possible to discriminate
between school-aged children and adolescents with ASD
from typically developing individuals of the same age range.
Two types of eye gaze indices were collected: the AOI rate
score (the percentage of gaze fixation time allocated to each
AOI divided by the duration of each movie clip) and the AOI
count score (the representation of the presence or absence
of a fixed gaze over each AOI, regardless of the duration of
the eye gaze). The proposed algorithm was based on age and
rate/count score measures. The best-fit algorithm is derived
from merging, for the younger individuals, the final AOI rate
score algorithm, and for the older individuals, the final AOI
count score algorithm. The classification accuracy reached
was 78%, while sensitivity and specificity were respectively
74% and 80% (Tsuchiya et al., 2021).

Cilia et al. (2021) used a CNN to analyze POG while
children were engaged in watching photographs and videos.
Their results showed a classification accuracy of 71%.

On the other hand, Kanhirakadavath and Chandran (2022)
did not focus on fixation data but analyzed velocity, acceler-
ation, and jerk of eye movement. They applied a deep neural
network (DNN) that achieved an accuracy of 78.6%. Authors
underlined that, after a data augmentation process, used to
populate the original images dataset, the resulting scores
showed a significant improvement of 23.4% (Kanhirakada-
vath & Chandran 2022).

Unlike previous studies focused on ASD prediction, Lin
et al. (2022) proposed a novel technique that combined eye-
movement data and ML algorithms for predicting high levels
of autistic traits. They engaged children in a virtual reality
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experience and analyzed features based on fixation on spe-
cific regions of the scene. Authors applied several classifica-
tion models, but results revealed that the highest accuracy of
70% belonged to the RF model, DT, and gradient boosting
decision tree (GBDT), during the preliminary experiment.
However, the RF model showed the highest value even in
the test experiment (Lin et al., 2022).

Discussion

Traditionally, ASD diagnosis and assessment include a
series of explicit qualitative and quantitative measures
characterized by semi-structured behavioral tasks’ observa-
tions in which the examiner rates and scores an individual’s
response to prompted situations (e.g., the Autism Diag-
nostic Observation Schedule, ADOS; Lord et al., 1999).
These instruments principally focus on social behavior and
communication analysis. Assessment of sensory process-
ing, motor abnormalities, and general interaction with the
environment remains restricted and unworked.

Although classical gold-standard tools have been widely
adopted in ASD clinical practice, several limitations remain
(Volkmar et al., 2009) and among them are (i) the absence of
explicit sensory functioning assessment; (ii) the subjective
evaluation and the examiner’s expertise; (iii) the ecological
validity of the assessment setting.

The studies reported in this review shed light on the
advantages of using ML models and non-invasive technolog-
ical tools to measure ASD symptoms in ecological situations
and assessment settings. Indeed, these studies showed that it
is possible to classify ASD and TD individuals within more
ecological settings than the classical assessment laboratories
and administer tasks more generalizable to different ASD
severity degree and developmental age (Crippa et al., 2015).

Contemporaneously summarizing the innovations in the
field, this literature review focused on studies that have ana-
lyzed both eye and body movement data collected through
different technological tools. Tables 3 and 4 summarize the
different ML models and the different types of data and tech-
nological tools used for analysis. Since, it is not possible to
establish a direct comparison between the various methods
proposed, considering the extreme variability of conditions,
settings, types of data and tasks, and analysis models, we
provide an overview of the trend in research within the field.

While examining these studies, it becomes apparent that
certain ones illustrate how it is possible to leverage the
enjoyment of using serious games and smart table devices
to gather information useful for diagnosis, obtaining a
good level of classification accuracy (Anzulewicz et al.,
2016; Simeoli et al., 2021). Such studies shed light on the
potential of identifying objective and invisible measures
that do not require behavioral or social skills or previous

communications competencies, to increase the chances of
working in the direction of early diagnosis.

It is worth noting that the research progressing in this
direction, in addition to enhancing diagnostic procedures,
has the potential to enhance our understanding of the disor-
der. The way these individuals move in space can provide
further insights into the etiopathogenesis of the disorder,
and this literature is moving in this direction, focusing on
identifying specific motion features to be associated with
symptoms’ severity of ASD.

For example, Vabalas and Freeth (2016) observed that
people with elevated autistic symptoms exhibited shorter
and less frequent saccades. On the other hand, Liberati et al.
(2017) showed greater saccade amplitude and higher fre-
quency in children with ASD. However, the authors of these
two studies used two distinct eye-tracking tools with a dif-
ferent sampling rate. Therefore, this issue is far to be disen-
tangled, largely depending on the equipment and data used.
Furthermore, another variable is the type of condition and
stimulation provided during data collection. In fact, other
studies showed that eye-tracking was useful to identify chil-
dren diagnosed with ASD based on the duration of fixations
and the number of saccades depending on the type of images
displayed (Pierce et al., 2011). These evidences suggest that
methods (i.e., materials and procedure) should be more con-
sistent across the studies. Our review highlighted that when
the AOI for the analysis was restricted to face area, classifi-
cation reached higher level of accuracy (Jiang et al., 2019;
Liu et al., 2016; Wan et al., 2019; Zhao et al., 2021).

Results from our literature review showed that ML algo-
rithm applied on biomarker dataset can achieve a classifi-
cation accuracy comparable to classic gold standard tools.
However, the use of these methods leads to several contro-
versial issues that future research will have to untangle.

Firstly, the sample size is one of crucial limitation
claimed by most author. In fact, a consistent part of the
studies collected data from a small sample to test the clas-
sification with an independent untrained dataset (Cavallo
et al., 2021; Crippa et al., 2015; Vabalas et al., 2020). Small
sample size can lead to different problems, among them,
training overfittings is one of the most critical in ML. Spe-
cifically, a small sample size can exacerbate the risk of
overfitting due to limited representation of the underlying
population. When the available data is scarce, the model
has fewer diverse examples to learn from, making it easier
for it to inadvertently fit noise or outliers in the training set.
With insufficient data, the model may erroneously attribute
importance to random variations or outliers, resulting in an
overly complex representation that fails to generalize.

Moreover, a small sample size can lead to high variance
in the estimated model parameters. The model may exces-
sively respond to individual training examples, causing fluc-
tuations in its predictions. This sensitivity to small changes

@ Springer
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in the training data can lead to overfitting, as the model tries
to capture every detail, including random fluctuations spe-
cific to the limited training sample.

To mitigate overfitting with a small sample size, tech-
niques such as regularization (e.g., Anzulewicz et al., 2016),
data augmentation (e.g., Kanhirakadavath and Chandran
2022), and cross-validation are commonly employed.

Most of the studies in this review report a lack in sample
size (e.g., Tsuchiya et al., 2021; Cilia F, et al., 2021; Alcaiiiz
M, et al., 2022). In order to address this issue, authors pro-
posed different solutions such as data augmentation method
(e.g., Kanhirakadavath and Chandran 2022), involving an
independent dataset (the second control group) to be tested,
and applying cross-validation strategy.

Cross-validation is required not only for checking the pre-
dictive validity, but also for achieving optimal diagnostic
performance. In this review, one of the most used cross-
validation strategies was the LOO that is assumed to perform
better than other cross-validation methods because it allows
a less biased estimation of generalization error. Specifi-
cally, since the LOO method trains the model on all sam-
ples except one and evaluates on that excluded sample, the
estimation of generalization error is less biased compared
to techniques like k-fold cross-validation, where training is
done on smaller subsets and evaluation is performed on a
limited number of samples. This makes the LOO method
more accurate for estimating the model’s generalization abil-
ity (Pontil, 2002).

On the other hand, we can address to LOO also a minimal
data loss, since that, for each iteration, a single sample is
excluded as the test set, and all other samples are used as

the training set. This maximizes the utilization of the avail-
able data, avoiding significant information loss compared to
other cross-validation methods that may divide the dataset
into larger portions.

The studies that evaluated reach and grasp movements
showed a high accuracy (average +90%) using SVM method
(Emanuele et al. 2021; Perego et al. 2009; Crippa et al.,
2015; Cavallo et al., 2021). Cavallo et al. (2021) highlighted
the different accuracy reached depending on the different
methods used to arrange the dataset for classification.

However, being able to choose the appropriate classifica-
tion method and the corresponding cross-validation model
based on the type of data at hand becomes essential to advance
research in this field, and reliable feature selection methods
are also valid strategies to overcome the high dimensionality
issue. (e.g., Alcailiz Raya et al., 2020a, 2020b).

Furthermore, models developed with small samples and
high dimensional data are prone to noise. For example,
Vabalas et al., (2019, 2020) and Li et al. (2017) examined
finger movement during an imitation task and using a SVM
algorithm, resulting in a classification accuracy of 76% and
87%, respectively. Importantly, the 87% of accuracy was
reached when features were reduced from 40 to 9. These
results pointed out the importance of finding the best fit
between model, data dimensionality, and sample size.

In general, a larger sample should allow the model to
be tested, and recruiting participants with various presenta-
tions (e.g., different degrees of severity, different cultural
and biological settings) might be considered to ensure the
generalizability of the ML model and therefore, improve the
generalization of the results.

Table 3 Eye motion data results. The table presents the overall results of the studies related to eye motion analysis. Results are arranged based
on the ML method used (SVM; ANN; others) and the type of features analyzed (AOI; scanpath)

Eye motion data SVM ANN OTHERS

Features AOI Scanpath AOI Scanpath AOI Scanpath
Num. of studies 3 1 0 3 1 3
Accuracy range 85%-92% 88% - 67%-90% 78 70%-74%

N.B. For articles that reported results from various ML models, we have considered for this table only the model that achieved the highest accu-

racy level

Table 4 Body motion data results. The table presents the overall results of the studies related to body motion analysis. Results are arranged
based on the ML method used (SVM; ANN; others) and the type of recording tool method (camera; motion sensor)

Body motion data SVM ANN OTHERS

Tools Camera Sensor Camera Sensor Camera Sensor
Num. of studies 5 2 2 1 0 4
Accuracy range 75%-100% 70%-73% 80%—-93% 93% - 67%-93%

N.B. For articles that reported results from various ML models, we have considered for this table only the model that achieved the highest accu-

racy level

@ Springer
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Another important remark is that the high specificity of
the samples could limit the generalizability of the classifi-
cation. Most of the studies analyzed in this review chose to
measure very specific and homogeneous samples, carefully
selecting specific sets of inclusion and exclusion criteria to
rule out potential confounders. However, models based on
homogeneous samples are less likely to generalize to real-life
clinical settings. As ASD is a heterogeneous condition, the
possibility of training the models with larger groups, would
be useful to improve the generalization to a wide condition
range of the syndrome. Considering that autistic traits exist on
a spectrum, moving the research in this field could lead to find
measures that can identify autism regardless of its position on
the spectrum. Specifically, although there may be variability
within the spectrum itself, this variability should be a specific-
ity compared with typically developing population, given that
we expect there to be specific motor pattern typical for all the
autistic spectrum. This hypothesis is based on specific theo-
ries and scientific research of recent years (Friston and Kiebel,
2009; De Jaegher, 2013; Torres et al., 2013) that focused on
sensory processing models and general body-world interac-
tion as the foundation for the entire autistic symptomatology
and as an underlying explanation to support the idea that there
may be a distinctiveness in autistic motor patterns that char-
acterizes all individuals on the spectrum, differentiating them
from the rest of the population.

Delving deeper into this topic is necessary to demonstrate
this specificity analyzing these manifestations around the
entire spectrum and also exploring the difference with
other neurodevelopmental conditions and disorders.
Also, including other neurodevelopmental disorders
with movement impairments (e.g., the attention deficit
hyperactivity disorder (ADHD), could be valuable for ML
to determine if these groups present similar body movements
that are distinct for the different neurodevelopment
conditions. Nevertheless, in many cases the experimental
groups were not matched on measures related to the
intelligence quotient performance, cognitive abilities,
and motor comorbidities (e.g., dyspraxia), limiting the
confidence that the experimental differences observed in
the experiment were due to a diagnosis of ASD, and not to
differences in other cognitive or non-cognitive factors (e.g.,
Anzulewicz et al., 2016; Cavallo et al., 2021; Simeoli et al.,
2021). Results from Robles et al. (2022) stressed this aspect.
The authors compared the accuracy reached with matched
vs. random dataset, revealing that matching the dataset
according to IQ measure leads to a decrease in accuracy.
This result confirms the need to control these variables in
order to verify the classification validity.

Furthermore, for almost all studies the classification
model did not give any indication about the severity of
the symptoms except for the study conducted by Lin et al.
(2022). In general, these studies show a lack in indicating

whether the indices collected were associated with clinical
correlates, severity, or prognosis (e.g., Tsuchiya et al., 2021).
Future studies should include other neurodevelopmental dis-
orders involving social and communication impairments,
such as ADHD, in order to improve discrimination between
groups compared with TD children and identify with greater
precision the degrees of severity in each disorder, highlight-
ing patterns, similarities, and differences.

Another aspects that seem to be related to the ASD abnor-
malities are sensory dysfunctions. Multiple studies inves-
tigated the relationship between ASD and electrodermal
activity (EDA). The evidence from these studies is contro-
versial: some research found no differences in EDA levels in
response to sensory stimuli (e.g., McCormick et al., 2014),
whereas others confirm these differences (e.g., Schoen et al.,
2009). Raya et al., (2020a, 2020b) analyzed electrodermal
activity (EDA) during different virtual experiences charac-
terized by the presentation of different sensory stimuli (audi-
tory, visual, olfactive) and analyzed these data using ML
methods. Authors used SVM with a LOSO cross-validation
procedure. Results revealed the potential of classifying
ASD according to these parameters highlighting the need
for future research in this field (Raya, et al., 2020).

Future ML studies are encouraged to generate as many
features as possible to allow for specification of the globally
optimal set of features for ASD identification (Zhao et al.,
2021). These methods could be improved with more sophis-
ticated models to determine which and how many (at least)
features could be identified to be used in the clinical practice
to identify children with ASD. For example, measure of the
scanning eye movement patterns should be combined with
other types of psychological and physiological measures
(e.g., brain activities, skin conductance, speech, motions,
body gestures, and facial expressions) to obtain a more com-
prehensive multimodal measure of the risk of ASD and aid
the process of diagnosis and early detection.

Conclusion

Although, in recent years, research on ASD biomarkers has
grown exponentially, and the integration of technological
aids in assessment procedures is almost certain, it is worth
noting that such biomarkers should still be deemed as sup-
plementary data. However, the results of this review high-
light that ML methods and technological tools can improve
and refine the diagnostic process, providing additional
information about such “invisible” traits of the disorder.
Research in the field is still needed to investigate the cor-
relations between certain biomarkers and specific symptoms
of the disorder. Anyway, one of the greatest advantages that
research in this field can provide is the potential of identify-
ing additional biomarkers as potential predictors of ASD and
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ensuring new prospective for early diagnosis. One revolu-
tionary aspect of using these methods lies in the ability to
move beyond mere categorical diagnosis and instead utilize
them to gain further insights into the disorder. While current
research using these methods may be focused on the accu-
racy of classifications based on an existing diagnosis, future
studies could shift towards a more exploratory approach to
the disorder. This approach could refine the assessment
towards a phenotypic description of the disorder.
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