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Background: With improvements in next-generation DNA sequencing technology, lower cost is needed to collect
genetic data. More machine learning techniques can be used to help with cancer analysis and diagnosis.
Methods:We developed an ensemble machine learning system named performance-weighted-voting model for cancer
type classification in 6,249 samples across 14 cancer types. Our ensemble system consists of five weak classifiers
(logistic regression, SVM, random forest, XGBoost and neural networks). We first used cross-validation to get the
predicted results for the five classifiers. The weights of the five weak classifiers can be obtained based on their
predictive performance by solving linear regression functions. The final predicted probability of the performance-
weighted-voting model for a cancer type can be determined by the summation of each classifier’s weight multiplied by
its predicted probability.
Results: Using the somatic mutation count of each gene as the input feature, the overall accuracy of the performance-
weighted-voting model reached 71.46%, which was significantly higher than the five weak classifiers and two other
ensemble models: the hard-voting model and the soft-voting model. In addition, by analyzing the predictive pattern of
the performance-weighted-voting model, we found that in most cancer types, higher tumor mutational burden can
improve overall accuracy.
Conclusion: This study has important clinical significance for identifying the origin of cancer, especially for those
where the primary cannot be determined. In addition, our model presents a good strategy for using ensemble systems
for cancer type classification.

Keywords: cancer type classification; ensemble method; performance-weighted-voting model; linear regression; single-
nucleotide polymorphism

Author summary: The identification of the cancer of unknown primary is of clinical significance, and can provide
important cancer behavioral therapeutic strategies. To achieve this, we developed an ensemble machine learning system
called the performance-weighted-voting model for cancer type classification. The ensemble system can integrate weak
classifiers and train the weights of the weak classifiers based on their predictive performance. The model has achieved the
highest overall accuracy among the models mentioned in this study. Furthermore, the model can theoretically promote any
combination of weak classifiers with a high degree of accuracy.

INTRODUCTION

It is generally accepted that tumorigenesis is a process of

cell renewal, replacement and accumulation of a series of
oncogenes, tumor suppressor genes and genetic instability
[1], resulting in the collapse of controlling cell division
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and apoptosis. Studies of cancer genetics have shown that
a few driver mutations are enough to cause cancer [2]. In
addition to the driver mutations, neutral mutations (or
“passenger” mutations) are believed to be common as
well [3,4]. The accumulation of driver and passenger
mutations is a marker that documents the evolutionary
history of cancer [5].
The identification of tumorigenesis and the type of

cancer is important. Once a cancer type is classified, the
diagnosis can be determined from the prior experience.
Studies have shown that cancer cell metastasis can occur
at the early stages of cancer progression [6–8]. In
addition, about 3% to 9% of all cancer diagnoses are
cancer of unknown primary (CUP) [9]. Misclassification
of a cancer type or misidentification of cancer of unknown
primary usually results in a poor prognosis. Though full
of challenges, the definition of the primary of cancer is
important. In particular, it will provide significant
information on therapeutic strategies that could improve
the survival of patients.
Two decades ago, only clinical information was

available regarding cancer type classification. Accompa-
nied by the improvements in next-generation DNA
sequencing technology, genomic data is growing rapidly.
The recent large-scale whole-exome sequencing (WES)
and whole-genome sequencing (WGS) projects have
displayed different patterns of mutations across cancer
types [10–12]. A recent study analyzed an extensive
catalog of somatic mutations from 30 most common
cancer types and uncovered 20 distinct mutational
signatures, as a consequence of the intrinsic slight
infidelity of the DNA replication machinery, exogenous
or endogenous mutagen exposures, enzymatic modifica-
tion of DNA, or defective DNA repair [13]. The
prevalence of different mutational patterns makes cancer
type classification and therapeutic strategies more accu-
rate.
Due to the complexity and high intra-tumor hetero-

geneity (ITH) within cancer cells [14], it is not easy to
determine a cancer type directly. Fortunately, a variety of
machine learning techniques and deep-learning algo-
rithms have been widely applied in the last three decades
for cancer analysis [15–18]. Most of these studies apply
methods for the definition of tumorigenesis, modeling the
progression of cancer and determining informative factors
that are utilized in the early detection of cancer [19,20].
Since the nineties of the 20th century, machine learning
models have become widely used for molecular classifi-
cation through microarray and oligonucleotide chip gene
expression data [21–24]. In the meantime, more advanced
methods use microarray data to select effective genes for
cancer type classification [25–27]. Accompanied by the
development of The Cancer Genome Atlas (TCGA)
project, more related studies directly targeted WES [28]

and RNA sequencing data [29], as well as the studies that
utilized epigenetic profiling to classify cancer of unknown
primary [30]. Zeng et al. used non-smooth non-negative
matrix factorization (nsNMF) and support vector machine
(SVM) to study the associations between somatic
mutations and cancers [28]. Liang et al. used sparse
logistic regression with an L-1/2 penalty for gene
selection in cancer classification problems, and proposed
a coordinate descent algorithm with a new univariate half
thresholding operator to solve the L-1/2 penalized logistic
regression [27]. Marquard et al. used a random forest
method and multiple cancer genetic features to identify
the primary site of the cancers of unknown primary origin
[31]. More recently, Jiao et al. use neural networks model
that integrate different features including single nucleo-
tide variation (SNV), copy number alteration (CNA),
structural variation (SV) from WGS data to classify the
primary and metastasis of cancer cells [32].
Ensemble systems, also called multiple classifier

systems, are becoming more and more popular as
machine learning methods. They have demonstrated
themselves to be very effective and extremely versatile
in a broad spectrum of problem domains and real-world
applications [33]. Ensemble systems are integrations of
multiple machine learning classifiers whose decisions are
combined [34]. In this study, we developed an ensemble
machine learning model named performance-weighted-
voting model based on the voting model. Our ensemble
system consisted of five classifiers: logistic regression
(LR), SVM, random forest (RF), extreme gradient
boosting (XGBoost) and multilayer perceptron (MLP)
neural network (NN). Unlike the basic voting model, the
weights of the performance-weighted-voting model differ
across the weak classifiers (Fig. 1). What’s more, each
classifier’s weights across cancer types are different. The
weights of the five weak classifiers can be obtained based
on their predictive performance by solving linear
regression functions. We applied our model to learn and
predict 6,249 samples across 14 cancer types from the
TCGA somatic mutation data and finally achieved an
average accuracy of 71.46%, which was the among the
eight models mentioned in our study. In addition, our
model can theoretically promote any combination of
weak classifiers with a high degree of accuracy.

RESULTS

Data learning using five machine learning classifiers

We used mutation count per gene as the input feature to
train the classifiers. The classifiers calculated the prob-
ability that belongs to each of the 14 cancer types through
discriminative functions and output the cancer type that
achieved the highest probability (see “Materials and
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Methods”). Figure 2 displays the overall predictive
performance of the test set by the five classifiers with
optimal parameters. Among the five classifiers, the
logistic regression classifier (mean = 68.67%, SD =
1.21%) and the neural networks classifier (mean =
68.07%, SD = 0.94%) performed best, and the SVM
(mean = 63.74%, SD = 0.72%) and XGBoost classifiers
(mean = 62.89%, SD = 1.43%) followed closely. In con-
trast, the overall accuracy of the random forest classifier
was only 54.79% (SD = 1.64%) that performed worse
than the other classifiers.
The precision, recall and F1-score among the five

classifiers are similar to their overall accuracies (Supple-

mentary Table S1). The logistic regression classifier
(precision = 71.13%, recall = 68.08%, F1-score =
68.84%) and neural networks (precision = 69.80%,
recall = 67.65%, F1-score = 68.14%) achieved higher
scores than SVM (precision = 70.73%, recall = 62.28%,
F1-score = 64.39%), XGBoost (precision = 64.83%,
recall = 61.50%, F1-score = 62.40%) and random forest
(precision = 60.47%, recall = 54.36%, F1-score =
53.00%). In particular, in most cancer types, the average
F1-scores of logistic regression classifier and neural
network classifier are the top two highest. Additionally,
the F1-scores vary largely among different cancer types.
Three cancer types, LGG, SKCM and THCA, achieved

Figure 1. The workflow of the performance-weighted-voting model. The performance-weighted-voting model integrates five
classifiers including logistic regression, SVM, random forest, XGBoost and neural networks. We first used cross-validation to get the
predicted results for the five classifiers. The weights of the five weak classifiers can be obtained based on their predictive performance

by solving linear regression functions. The final predicted probability of the performance-weighted-voting model for a cancer type can
be determined by the summation of each classifier’s weight multiplied by its predicted probability.

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020 349

A new ensemble machine learning algorithm for cancer type classification



F1-scores greater than 80% in at least one classifier. In
contrast, another three cancer types, HNSC, PRAD and
STAD, performed poorly in all five classifiers, with no
classifier achieving an F1-score greater than 60%.

Data learning using upgraded machine learning
models

To improve the predictive accuracy, we considered to use
ensemble methods by integrating the five classifiers for
further prediction. We first applied two well-known
models: the hard-voting model and the soft-voting
model. Comparing the predictive performance of the
two voting models with the five classifiers, the overall
accuracy of both hard-voting model (69.06%; SD =
1.33%) and the soft-voting model (69.66%; SD =
1.37%) were significantly higher (P-value< 0.05, Wil-
coxon rank-sum test) than any of the five classifiers. In
both the two voting models, their weight to the weak
classifiers are equal. To address this issue, we developed a
weighted voting model: the performance-weighted-voting
model. The performance-weighted-voting model can
strengthen the power of the weak classifier that has better
predictive performance by allocating a higher weight (see
“Materials and Methods”). The average overall accuracy
of the performance-weighted-voting model reaches
71.46% (SD = 1.02%), which is significantly higher (P-
value = 2.5�10–3, Wilcoxon rank-sum test) than the soft-
voting model, the second highest model (Table 1 and
Supplementary Fig. S1). The average precision, recall and
F1-score of the performance-weighted-voting model are
72.67%, 70.97% and 72.02%, which is also significantly
higher than the hard-voting model (72.25%, 68.35%,
69.24%), soft-voting model (72.08%, 68.49%, 69.36%)

and five weak classifiers (Supplementary Table S1). In
particular, the F1-score of the performance-weighted-
voting model reached 60% across all cancer types except
STAD.
Theoretically, the hard-voting and the soft-voting

models perform well only when all weak classifiers can
achieve high overall accuracies. In contrast, the perfor-
mance-weighted-voting model only relies on the highest
accuracy of the weak classifiers in each specific cancer
type. The model can filter the classifiers automatically by
allocating different weights using a linear regression
model. The performance-weighted-voting model would
perform better if more weak classifiers were integrated.

Predictive pattern analysis of
performance-weighted-voting model across
cancer types

To evaluate the causes of misclassification predicted by
the performance-weighted-voting model, we compared
the different mutation count per sample between the
correctly classified group and the misclassified group. The
average mutation count per sample of the correctly
classified group (215.18) is significantly higher (P-value
= 5.4�10–3, Wilcoxon rank-sum test) than the misclassi-
fied group (142.27). More specificity, in 10 of 14 cancer
types the average mutation count per sample of correctly
classified groups was significantly higher (P-value<
0.05, Wilcoxon rank-sum test) than misclassified groups
(Fig. 3). By contrast, in only 3 cancer types the average
mutation count per sample of correctly classified groups
was significantly lower (P-value< 0.05, Wilcoxon rank-
sum test) than misclassified groups. The different
mutation count between two groups implies that tumor
mutation burden (TMB) as a cancer type-specific feature
reveals a positive correlation to the predictive accuracy
[35]. A deeper understanding and utilization of the inner
relationships will help to improve the predictive accuracy
of our model.
We explored the confusion matrix for the performance-

Figure 2. The predictive performance for the five classi-
fiers with optimal parameters. Five classifiers, logistic
regression (LR, green box), neural networks (NN, blue box),

support vector machine (SVM, brown box), extreme gradient
boosting (XGBoost, purple box) and random forest (RF, steel
blue box) were selected. Three-fold cross-validation was used
to optimize the top parameters of each classifier. Each model

was trained and predicted 10 times independently.

Table 1 The predictive results for the eight models

Classifier Accuracy

Logistic regression 68.67%a�1.21%b

SVM 63.74%�0.72%

Random forest 54.79%�1.64%

XGBoost 62.89%�1.43%

Neural network 68.07%�0.94%

Hard-voting 69.06%�1.33%

Soft-voting 69.66%�1.37%

Performance-weighted-voting 71.46%�1.02%
a The average number of 10 repeats. b The standard deviation of 10

repeats.
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weighted-voting model to analyze the patterns of
misclassification (Table 2). Based on the confusion
matrix, the model is most confused in distinguishing
between BRCA ~ PRAD, LUSC ~ LUAD and HNSC ~
LUSC, which at least eight samples were misclassified to
the other cancer type in both of the two cancer types. The
confusions in distinguishing between GBM ~ LGG and
TRAD ~ PHCA are intermediate. Some of these
confusions are informative. The LUAD and LUSC are
both lung cancers and the LGG and GBM are both brain

cancers, these cancer cells share common developmental
origins [36]. Though BRCA and PRAD cancer cells arise
in organs that are different, they are more similar than
different and driven by steroid hormone signaling [37,38].
In addition, we found that the proportion of the patients
who are current smoker or current reformed smoker for no
more than 15 years of the misclassified samples in
misclassified samples is significantly higher (P-value =
0.0249, Chi-squared test) than correctly classified sam-
ples between HNSC and LUSC cancer pair, and similarly

Figure 3. Mutation count comparison between correctly classified samples and misclassified samples. In 10 of the 14
cancer types, the average mutation count of correctly classified samples is significantly higher than misclassified samples (red
asterisks above the bars). In contrast, in 3 of the 14 cancer types, the average mutation count of correctly classified samples is
significantly lower than misclassified samples (blue asterisks above the bars). The height of each bar represents the average

mutation count, and the error bar is the 95% confidence interval. *: P<0.05, **: P< 0.01, ***: P<0.001.

Table 2 The confusion matrix of the test set using performance-weighted-voting modela
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BLCA 47 3 0 10 0 0 4 1 2 5 0 6 1 1

BRCA 1 106 2 8 1 1 9 2 0 19 0 2 6 5

GBM 0 2 36 2 0 6 0 0 0 2 2 0 0 0

HNSC 3 4 1 68 0 1 1 1 10 5 1 6 0 1

KIRC 2 3 1 0 50 0 1 0 0 12 1 0 0 1

LGG 0 1 9 1 0 78 0 1 0 0 0 0 1 0

LIHC 1 5 0 6 4 3 47 0 0 5 0 2 0 2

LUAD 1 4 1 9 1 3 1 55 11 12 0 3 2 0

LUSC 2 1 1 9 0 0 2 8 65 0 0 6 3 0

PRAD 0 10 2 1 0 2 0 0 0 80 0 3 6 0

SKCM 0 0 3 0 0 0 1 1 0 3 60 2 2 0

STAD 2 6 0 2 1 0 6 2 1 3 0 43 0 0

THCA 0 1 0 0 0 0 0 0 0 6 1 0 81 0

UCEC 3 8 0 1 0 0 0 1 1 2 0 2 0 70
a Each row corresponds to the true cancer type; each column corresponds to the class predictions from performance-weighted-voting model.
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for LUSC ~ LUAD cancer pair (P-value = 0.0076, Chi-
squared test). Tobacco smoking as an externality can
change the characteristics and mutation signature [39] of
these cancer types which may interfere with the prediction
of classifiers.
We analyzed the final predictive probability across 14

cancer types for each of the samples, with 10 misclassified
samples achieving a prediction probability greater than
70%. Among the 10 misclassified samples, four samples
were GBM but predicted as LGG, three samples were
LUAD but predicted as LUSC and three samples were
HNSC but predicted as LUSC. We also scanned the
predicted outcomes of five weak classifiers. To our
surprise, in nearly 14% (52) of the misclassified cases, all
five classifiers offered the same prediction (Supplemen-
tary Table S1). In particular, of the 52 samples, six HNSC
samples were derived into LUSC, four GBM samples
were derived into LGG, four LGG samples were derived
into GBM and three LUAD samples were derived into
LUSC. These errors are consistent with the results of
confusion matrix.

The predictive performance across different
mutation type subsets

The MAF file contains 16 types of somatic mutations
flagged by various calling software packages. Typically,
most driver mutations are nonsynonymous mutations.
These mutations are believed to have greater effects than
synonymous mutations for tumorigenesis and cell evolu-
tion. To assess whether using different mutation types can
improve the accuracy in cancer type classification, we
used four different subsets of mutations (“missense

mutation group”, “synonymous nonsynonymous muta-
tion group”, “high impact mutation group” and “total
mutation group”) as input features based on their different
impacts on cancer evolution (see “Materials and
Methods”).
Figure 4 presents the predictive results for the four

cancer type groups. The overall accuracy of the “missense
mutation group” as well as the “synonymous nonsynon-
ymous mutation group” are significantly lower than the
other two groups. The overall accuracies of the eight
classifiers range from 44.31% to 57.86% in “missense
mutation group” and from 49.39% to 63.84% in
“synonymous nonsynonymous mutation group”. The
distributions of the “high impact mutation group”
(55.64% – 68.86%) are very close to the “total mutation
group” (54.79% –71.46%), but still lower. In general, the
test results have demonstrated that using more mutation
types helps to improve the predictive accuracy. One
interpretation is that though some passenger mutations
(e.g., synonymous mutations) do not affect cancer growth
directly, they still provide useful information for cancer
type classification through hitchhiking effect. Usually, a
driver mutation provides a fitness advantage to cancer
cells. The frequency of the adaptive mutation can be high
because of the positive selection. In the meantime, the
frequencies of the genetically linked passenger mutations
are also increased accompanied by the driver mutation
due to the linkage disequilibrium [40], which will
strengthen the genetic characteristics of a cancer type.
Furthermore, the overall accuracies of the eight classifiers
reveal that the performance-weighted-voting model
performed better than the other classifiers across all
mutation type groups (Fig. 4).

Figure 4. The overall accuracy of the input features using different groups of mutation types. Four groups of mutation
types, “missense mutation group” (red bar), “synonymous nonsynonymous mutation group” (green bar), “high impact mutation
group” (blue bar) and “total mutation group” (orange bar), were selected as input features for cancer type classification. Each of the

four groups of mutation types were used as input features predicted by the eight classifiers. The height of each bar represents the
average number, and the error bar is the standard deviation.
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The predictive performance using driver gene set

Studies are trying to use gene panels instead of total genes
for cancer research. This trial will potentially enable cost-
effective assessment of much larger numbers of samples
for deeper biological and predictive insights. To this end,
we aimed to test whether we can use less genes to improve
the predictive performance of cancer type classification.
Cancer driver genes are the genes whose mutations drive
tumor growth. Herein, we used the mutation count of each
of the 201 driver genes rather than the whole genes (see
“Materials and Methods”) as input features. Unfortu-
nately, all five weak classifiers, as well as the three voting
models, failed to improve the overall accuracy. As the
highest number of the eight classifiers, the overall
accuracy models of performance-weighted-voting model
(mean = 61.35%, SD = 0.50%) is more than ten percent
below the accuracy using the mutation count of each of
the total genes as input features (Fig. 5).

DISCUSSION

This study used machine learning methods for cancer type
classification for 6,249 samples across 14 cancer types.
We attempt to assess, compare and analyze the perfor-
mance of several classifiers that have been applied to,
including logistic regression, support vector machine,
random forest, neural networks and XGBoost. We used
three-fold cross-validated grid-search over a parameter
grid to optimize the parameters of the classifiers. To
improve accuracy, we also employed three ensemble

models, the hard-voting model, the soft-voting model and
the performance-weighted-voting model, integrating the
five weak classifiers. Relying on the performance-based
methods to train the different weights of each weak
classifier in the ensemble system, the overall accuracy of
the performance-weighted-voting model reached 71.46%,
which was significantly higher than the other classifiers.
We used different mutation types based on their effect on
cancer evolution for cancer type classification, and
concluded that only using all mutation types yielded the
highest accuracy (Fig. 4). We also attempted to use a set of
driver genes [41] as the input feature, but found no
improvement to the overall accuracy (Fig. 5). Our work
on cancer type classification is similar to previous studies
[32,42], but the two types of studies are different in a
couple aspects. First, the machine learning classifiers they
used (random forest, neural networks and soft-voting) are
existing models, while we developed a new classifier and
first proposed the performance-based idea to weight weak
classifiers in the ensemble system. Second, the perfor-
mance-weighted-voting model, as an improved voting
model, has demonstrated to be superior to the two
standard voting models (the hard-voting model and the
soft-voting model) within the same dataset.
To analyze the patterns of misclassification in the

performance-weighted-voting model, we divided the
predicted data into correctly classified and misclassified
subsets and compared the mutation count per sample
between the two subsets. The average mutation count of
the correctly classified subset is significantly higher than
the misclassified subset. More specifically, the average
mutation count of correctly classified samples is sig-
nificantly higher than misclassified samples in 10 of 14
cancer types (Fig. 3). We also discovered that some
misclassifications are possibly due to the common
developmental origin (LUAD ~ LUSC and GBM ~
LGG) [36], steroid hormone signaling (BRCA ~ PRAD)
[37,38], and tobacco smoking (LUAD ~ LUSC and
HNSC ~ LUSC) [39]. Others may be due to the
algorithms of the classifiers. To address this problem,
we need to build more detailed training subsets or
integrate more genetic or phenotypic data for cancer type
classification.
Cancer of unknown primary site is a heterogeneous

group of cancers for which the anatomical site of origin
remains occult after detailed investigation [43]. The
identification of the cancer of unknown primary, as well
as the origin of metastasis, is important but challenging
[44]. This study has important clinical significance for
identifying the origin of cancer, especially for those where
the primary cannot be determined [45]. Considering the
occurrence of cancer cell dissemination at the early stages
of cancer progression [6,46–49], our model can help to
identify the primary of metastatic cancer cell types that are

Figure 5. The overall accuracy of the input features
using driver genes and total genes. 201 driver genes (red

bar) were extracted in comparison with total genes (blue bar).
Both of the two gene sets were used as input features to predict
the cancer types by the eight models. The height of each bar

represents the average number, and the error bar is the
standard deviation.
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present in the cancer cell genome. In other fields,
including circulating tumor cells (CTC) research for
cancer metastatic detection, our model also presents the
potential for cell detection and predicts the risk of cancer
remission [50,51]. In addition, our finding of a positive
correlation between TMB and prediction accuracy
provides cancer type-specific features [35]. These features
may be used to interpret the immunotherapy variances in
different cancer types [52,53], which may provide new
strategies for cancer therapy.

MATERIALS AND METHODS

TCGA mutation data

The MAF file containing WES somatic mutations from
10,295 samples across 33 cancer types was downloaded
from TCGA. Mutations were called by seven software
packages (MuTect, MuSE, VarScan2, Radia, Pindel,
Somatic Sniper and Indelocator) from Multi-Center
Mutation Calling in Multiple Cancers (MC3) working
group [54]. All PASS somatic variants referred by two or
more variant calling software packages were extracted.
344 hypermutator samples were excluded as artifactual
sensitivity to high background mutation rates might
perturb the prediction of classifiers. 705 samples marked
as “mutation call filter”, 167 samples marked as
“pathology review” and 75 samples marked as “RNA
degradation” referred by Bailey et al. [41] were also
excluded. To ensure a high quality of the learning dataset,
we preferred a minimum cutoff of 300 samples per cancer
type. Ultimately, our cancer type classification dataset
consisted of 1,174,111 SNPs from 6,249 samples across
14 cancer types.

Machine learning classifiers

Five well-known machine learning classifiers were
employed for cancer type classification, including logistic
regression, support vector machine, random forest,
extreme gradient boosting, and multilayer perceptron
neural networks.
The logistic regression classifier is a classification

method used to assign observations to a discrete set of
classes. It builds a regression model to predict the
probability that a given data entry belongs to the category
using the sigmoid function. The dimension of the input
vector is known as features or predictors. The model was
implemented using the Python package sklearn with the
LogisticRegression function.
Unlike the logistic classifier, a support vector machine

[55] classifier can use a kernel function to map the input
vectors into high-dimensional feature spaces implicitly

and compute a maximum-margin hyperplane decision
surface that separates the classes. This hyperplane has
numerous statistical characteristics. Capabilities of SVM
classifiers can be further expanded by kernel tricks by
creating nonlinear decision boundaries [56]. The model
was implemented using the Python package sklearn with
the SVC function.
Random forest classifier [57] is a strong classifier

named forest consisting of many weak decision trees that
can obtain better performance than a single tree. Each
decision tree is trained using a new training data set which
is produced by random sampling with replacement from
the original data set, i.e., a case may be sampled many
times in a new training data set. The final decision is made
via a majority vote from the decision trees in the forest.
The model was implemented using the Python package
sklearn with the RandomForestClassifier function.
Extreme gradient boosting [58] classifier is also a

strong learner that combines a set of weak decision trees,
but differs from random forest. In the random forest
classifier, the training data set is randomly sampled as a
replacement from the original data set. In contrast, in the
extreme gradient boosting classifier, the training data set
of the new decision tree is the residual between the
predictive result of the previous decision trees and the
correct result. The extreme gradient boosting is a
computationally efficient variant of the gradient boosting
algorithm. The model was implemented using the Python
package xgboost with the XGBClassifier function.
Multilayer perceptron neural network classifier is a

nonlinear model consisting of multiple neurons that can
learn and generate a class of functions from the training
data set. Each neuron weights the input nodes and
generates the output by employing nonlinear activation
mathematical functions. The linear combination is formed
by perceptron through the computation of an output
neuron from multiple real-valued inputs [59]. The model
was implemented using the Python package sklearn with
the MLPClassifier function.

Model training and parameter optimization

The 6,249 cases were split into a training set and a test set
with a ratio of 80% to 20%. The training set was used for
training the classifiers and optimizing the parameters
while the test set was only used for final prediction. A
three-fold cross-validated grid-search over a parameter
grid was applied to optimize the parameters of a classifier.
The training set was split into three subsets, two were
used as training subsets and one was used as a validating
subset by turns. The final prediction of the test set was
based on the optimal parameters. The optimization was
calculated using the Python package sklearn with the
GridSearchCV function.
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Evaluation metrics of classification performance

To evaluate the performance of the models, overall
accuracy, precision, recall (sensitivity), and F1-score were
applied to quantitatively assess the predictive perfor-
mance. Accuracy measures the proportion of cases in
correct assignments. Recall (also called true positive rate)
measures the proportion of actual positives that are
correctly identified to that type. Precision measures the
proportion of samples assigned to a type that is correctly
identified as that type. The F1-score is the harmonic
means of recall and precision that combines precision and
recall in a statistically more meaningful way. Let TP, TN,
FP and FN denote the number of true positives, true
negatives, false positives and false negatives, respec-
tively. The evaluation metrics can be expressed as:

Accuracy=ðTPþ TNÞ=ðTPþ FNþ TNþ FPÞ

Recall  ðsensitivityÞ=TP=ðTPþ FNÞ

Precision=TP=ðTPþ FPÞ

F1-score=2ðrecall� precisionÞ=ðrecallþprecisionÞ

Upgraded ensemble machine learning models

An ensemble model can integrate multiple weak learning
classifiers with the aim of obtaining better predictive
performance than any of the constituent weak learning
classifiers alone. Five classifiers, logistic regression,
SVM, random forest, XGBoost and neural networks,
were chosen as the weak classifiers in our ensemble
model. The two voting models (hard-voting and soft-
voting) were first considered as an ensemble classifier for
cancer type classification. In both of the two voting
models, the weights of the five classifiers are equal,
indicating that we cannot make full use of the different
predictive performances of the weak classifiers across the
14 cancer types. To address this issue, we developed a
new ensemble model called the performance-weighted-
voting model. The weights of the performance-weighted-
voting model differ among the weak classifiers based on
their predictive performance. Specifically, each weak
classifier is allocated to different weights across the 14
cancer types, and each weight is dependent on the specific
predictive performance of the corresponding cancer types.
The performance-weighted-voting model consists of

three steps: parameter optimization, weights optimization
and final prediction (Fig. 1). The first two steps can be
learned by the training set and the final prediction is tested
by the test set. In the parameter optimization step, we used
the grid-search method by setting hyperparameters for
each classifier and selecting the combination with the

highest accuracy. To achieve the optimal weights of the
five classifiers, we built a linear regression model. Let
xi, j, n and yi, j, n denote the predicted probability and true
state of classifier j, cancer type i and sample n,
respectively. Here, 0£xi, j, n£1 and yi, n∈f0,1g is a
one-hot matrix where yi, n=1 represents sample n belongs

to cancer type i and for any n,
X

i
yi, n=1. Let wi, j as the

weight of classifier j and cancer type i. To obtain the five
weights to cancer type i, we expect the weights satisfy
linear regression functions,

X

j

wi, jxi, j, n=yi, n

X

j

wi, j=1

8
>><

>>:
,

for all sample n in training set and all i in cancer types.
Using the least square method to solve the functions,
the weight vector, Wi=ðwi, LR,wi, SVM ,wi,RF ,wi,XGBoost,
wi,NN Þ, of cancer type i can be expressed as

Wi=ðXT
i XiÞ – 1X T

i Yi=Zi:

The vector Yi=ðyi, 1, yi, 2, :::, yi,N Þ, where N is the sample

size. The vector Xi= x
↕ ↓

i, 1, x
↕ ↓

i, 2, :::, x
↕ ↓

i,N

� �
, where x

↕ ↓

i, n=

ðxi,LR, n, xi, SVM , n, xi,RF, n, xi,XGBoost, n, xi,NN , nÞ. And Zi is the
normalization factor. The third step is the final prediction
the test set. Denote pi, j as predicted probability of
classifier j and cancer type i in test set. The score of the
predicted cancer sample that belongs to cancer type i is

Si=wi, LR pi, LR þ wi, SVMpi, SVM þwi,RFpi,RF

þwi,XGBoost pi,XGBoost þwi,NNpi,NN

The predictive probability of the performance-weighted-
voting model yields pi=Si=S, where S=

X
Si is the

summation of the scores that belong to the 14 cancer
types.

Different mutation type subsets as input features

The MAF file contains 16 types of somatic mutations
(Missense_Mutation, Silent, Nonsense_Mutation, Intron,
3′UTR, 5′UTR, Splice_Site, RNA, Frame_Shift_Ins,
Frame_Shift_Del, In_Frame_Ins, Nonstop_Mutation,
In_Frame_Del, 3′Flank, 5′Flank, Translation_Start_Site)
flagged by variant calling software packages. Consider
that most driver mutations are nonsynonymous mutations,
and in most cases nonsynonymous mutations play more
important roles than synonymous mutations in tumor-
igenesis. To evaluate whether these mutation types have
positive or negative effects on cancer type classification,
we selected four different subsets of mutations as input
features according to their mutation types for cancer type
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classification. The four groups were “missense mutation
group” (Missense_Mutation), “synonymous nonsynon-
ymous mutation group” (Missense_Mutation, Silent,
Nonsense_Mutation), “high impact mutation group”
(Missense_Mutation, Nonsense_Mutation, Translation_
Start_Site, Frame_Shift_Del, Nonstop_Mutation,
Frame_Shift_Ins, In_Frame_Del, Splice_Site, In_Fra-
me_Ins) and “total mutation group”.

Driver gene extraction as an input feature

The txt file (Mutation.CTAT.3D.Scores.txt) that charac-
terizes the cancer driver genes of the mutations in the
MAF file was downloaded from Bailey et al. [41]. Genes
that were flagged as having at least two of the three
columns “New_Linear (functional) flag”, “New_Linear
(cancer-focused) flag” and “New_3D mutational hotspot
flag” were selected as driver genes. A total of 201 genes
met the requirement.

DATA AVAILABILITY

The TCGA MC3 Public MAF file and the txt file are
available at https://gdc.cancer.gov/about-data/publica-
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