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Background: The Genotype-Tissue Expression (GTEx) Project has collected genetic and transcriptome profiles from
a wide spectrum of tissues in nearly 1,000 ceased individuals, providing an opportunity to study the regulatory roles
of genetic variants in transcriptome activities from both cross-tissue and tissue-specific perspectives. Moreover,
transcriptome activities (e.g., transcript abundance and alternative splicing) can be treated as mediators between
genotype and phenotype to achieve phenotypic alteration. Knowing the genotype associated transcriptome status,
researchers can better understand the biological and molecular mechanisms of genetic risk variants in complex traits.
Results: In this article, we first explore the genetic architecture of gene expression traits, and then review recent
methods on quantitative trait locus (QTL) and co-expression network analysis. To further exemplify the usage of
associations between genotype and transcriptome status, we briefly review methods that either directly or indirectly
integrate expression/splicing QTL information in genome-wide association studies (GWASs).
Conclusions: The GTEx Project provides the largest and useful resource to investigate the associations between
genotype and transcriptome status. The integration of results from the GTEx Project and existing GWASs further
advances our understanding of roles of gene expression changes in bridging both the genetic variants and complex
traits.

Keywords: the Genotype-Tissue Expression Project; quantitative trait loci (QTL); transcriptome-wide association studies;
genome-wide association studies

Author summary: In the genetic area, people have made extensive efforts to investigate the associations between genetic
variants and disease traits. However, we are lacking the knowledge of underlying biological mechanisms through which the
genetic factors could affect the phenotypic outcome. Genotype-Tissue Expression (GTEx) Project provided us several angles
to think about this question, including quantitative trait locus, alternative spicing patterns, and tissue-specific effect of genetic
variants, and so on. In this article, we are providing a comprehensive review of their methods and results, and also suggest
several down-stream analysis methods (e.g., TWAS, co-expression network) by which we can go deeper into the regulatory
mechanisms triggered by genetic factors.
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INTRODUCTION

To characterize and interpret the function of genetic risk
variants across the human genome remains essential in the
post genome-wide association studies (GWASs). More
efforts are required to interrogate the regulatory roles of
genetic variants in complex traits [1–4]. There are several
downstream processes that could be affected by genetic
variants, such as DNA methylation, histone modification,
transcription factor binding, isoform splicing, gene
expression change. Usually, we can treat these processes
as mediators between genetic variants and phenotype.
Nowadays, several projects have been built to compre-
hensively study these mediators and annotate the
functional elements in human genome across tissues
and cell types, e.g., ENCODE Project [5] and Roadmap
Epigenomics Project [6], and the Genotype-Tissue
Expression (GTEx) Project [7]. Both ENCODE and
Roadmap projects primarily focus on whole blood or
blood cell types due to the ease of accessibility and
culturabilty. In contrast, the GTEx Project have collected

a wide spectrum of tissues from ceased individuals and
focused on investigating the associations between
genotype and transcriptome status, including gene/iso-
form expression, allele specific expression, splicing
pattern and others. Here, we use transcriptome QTL to
represent this class of associations. In the most recent V8
release, the GTEx Project provides genetic profiles for
948 individuals and collects gene expression in 54 tissues
from these individuals [8], as shown in Fig. 1.
Expression quantitative trait loci (eQTLs) are genomic

loci that explain all or a fraction of variations in
expression levels of mRNAs [9] and eQTL mapping
offers a simple but powerful tool for identifying genetic
variants which can affect gene expression [10]. Two
major methods that could be used to conduct single-tissue
eQTL analysis are Matrix eQTL [11] and FastQTL [12].
Several studies suggest that eQTLs are tissue-specific
[13,14]. That means a genetic variant might have different
regulatory effects on gene expression in different tissues.
Multi-tissue eQTLs were not available until the launch of
the GTEx Project. Compared to the single-tissue eQTLs,

Figure 1. GTEx data framework. Data collection framework on the GTEx: genotypes and gene expression data across different tissue
types, such as liver tissue, lung tissue, stomach tissue, are collected from donors.
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eQTLs from multiple tissues provide us an opportunity to
examine the influence of shared and tissue-specific
regulatory effects of a single variant. More recently, a
variety of methods have been proposed to analyze eQTLs
from multiple tissues, e.g., Meta-Tissue [15], MT-eQTL
[16] and multivariate adaptive shrinkage (mash) [17].
Additionally, other types of transcriptome QTL can also
be easily accessed in the GTEx data, e.g., allele specific
expression (ASE) and splicing quantitative trait locus
(sQTL). Moreover, GTEx V8 release provides haplotype-
level ASE as complementary to other eQTL data, where
they reported a high correlation between the effect sizes of
eQTL and those from both SNP-level and haplotype-level
ASE [18].
Recent eQTL studies suggest that gene expression

changes play a key role in bridging both the genetic
variants and complex traits [19,20]. Aside from conven-
tional eQTL analysis, multi-tissue data sets from the
GTEx Project have been used as a resource to enhance the
understanding of the genetic basis in complex traits either
directly or indirectly. On the one hand, transcriptome-
wide association studies (TWASs) were proposed to
leverage the genetic regulatory information from eQTL
directly in widely available GWAS results [21]. Many
TWAS methods have been proposed to model the genetic
effects on phenotype outcome through the gene expres-
sion based on either a single tissue or multiple tissues,
e.g., PrediXcan [21], TWAS [22], CoMM [23] for single-
tissue TWAS, and MultiXcan [24], UTMOST [25], and
TisCoMM [26] for multi-tissue TWAS. On the other
hand, as genetic risk variants are not distributed equally
across the genome, gene expression can serve as an
indirect resource in GWAS analysis by putting more
weights onto expression associated variants. Many
methods have been proposed in this category including
conditional FDR [27], GPA [28], EPS [29], and LSMM
[30].
In this article, we first conduct empirical studies to

demonstrate the genetic architecture of gene expression,
showing the sparsity of gene expression traits and the
heritability estimates across different tissues. We then
briefly review single-tissue and multi-tissue eQTL
methods followed by examining the gene co-expression
network in the GTEx data. To illustrate the importance of
leveraging transcriptome QTL information in GWASs, we
review methods that integrate transcriptome information
in GWASs either directly or indirectly. We briefly review
PrediXcan, CoMM and TisCoMM to show the direct
usage of eQTL information, where PrediXcan and CoMM
is built for single-tissue analysis but TisCoMM is built for
multi-tissue analysis as well as the examination of tissue
specific effects. Finally, we briefly review GPA as an
indirect use of eQTL information followed by a real data
analysis using eSNPs in muscle skeletal tissue.

GENETIC ARCHITECTURE OF GENE
EXPRESSION TRAITS

The GTEx data

The GTEx Project was launched in 2010 aiming to
provide a resource to scientific community with which to
examine human gene expression and how it could be
regulated by genetic variation in multiple human tissues.
This project collects biospecimens from 54 human tissues
from nearly 1,000 postmortem donors who are both
densely genotyped and subjected to RNA sequencing,
and creates standards and protocols for optimizing
postmortem tissue collection and donor recruitment
[31,32], biospecimen processing [31], and data sharing
(refer to the website:www.gtexportal.org/).
There are two types of eQTLs in terms of the distance

between loci and target gene: cis-eQTLs (local eQTLs)
and trans-eQTLs (distant eQTLs) [10], where cis-eQTLs
are in close proximity (typically within 1 Mb) to the target
gene and trans-eQTLs are typically located >1 Mb away
from the target gene. Considering the relatively smaller
sample sizes, most human eQTL studies have focused on
how cis-eSNPs affect gene expression because of the
reduced multiple testing burden. More importantly, the
cis-SNPs located in the gene promoter region could have
direct regulatory effects on the nearby gene, whereas the
transSNPs may affect gene expression in an indirect
manner. As we can see from the cis-eQTL results in
GTEx, the number of significant eQTLs decreases with
increasing distance between eSNP and its corresponding
eGene (Fig. 2A). This phenomenon suggests that eSNPs
are trend to be enriched in the promoter region of its
related eGene.
To better understand the genetic architecture of gene

expression traits, we conducted empirical studies for
GTEx tissues from two perspectives, one from sparsity of
eSNPs and the other from heritability of each gene across
genome. Despite the fact that many complex traits are
highly polygenic [4,33], the genetic architecture of gene
expression traits are not well studied. Lots of variants with
small effects contributing to gene expression variability is
defined as polygenic architecture, while a small amount of
variants with large effects contributing to variability is
defined as sparse one. Following the survey [34], we use
Bayesian sparse linear mixed model (BSLMM) [35] to
evaluate the sparse and polygenic components of an
expression trait. BSLMM assumes the genetic effects
come from a mixture of two normal distributions, one for
the sparse component and the other for the polygenic
contributions. The effect sizes from the polygenic
component is smaller than the ones from the sparse
component. BayesR [36] extended the mixture of two
components to the one with multiple components.
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Figure 2. Distribution of cis-eQTL andworkflow of FastQT. (A) Distributions of cis-eQTL in threeGTEx tissues (muscle skeletal, whole blood

and skin sun exposed) centered at the transcription starting site of the eGenes. Here we only plotted the distribution for SNPs and discarded all
the INDELs. (B) Workflow of FastQTL.
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Nonetheless, since it is of interest to explore the sparse
structure of gene expression, we conducted the analysis
using two components only. The linear mixed model
(LMM) method estimates the heritability based on the
assumption that effect sizes are normally distributed,
which infers that estimated heritability of LMM repre-
sents the polygenic genetic architecture. For BSLMM,
estimated heritability represents the sum of polygenic and
sparse genetic architecture. Specifically, we conducted an
analysis using both BSLMM and LMM to obtain
estimates of heritability on 1,000 random selected genes
across nine tissues. Figure 3 shows the violin plots of the
estimated heritability for these 1,000 genes using both
BSLMM and LMM. The estimates of heritability for
BSLMM are higher than that for LMM across nine
tissues, indicating that more sparse architecture may have
more statistical power. Therefore, the genetic architecture

of gene expression traits is more sparse rather than
polygenic.

QTL discovery

The GTEx Project, in the most recent v8 release, provides
DNA sequencing and other transcriptome measurements
to conduct analysis for eQTL, allelic specific expression
(ASE), and splicing QTL (sQTL). In this review, as the
correlation between eQTL effect size and effect size
measured using ASE data for a single genetic variant is
quite large (r = 0.838) [18], we only focus on eQTL
analysis. We note that the ASE data set from the GTEx
Project is the largest to date and it makes haplotype-level
data publicly available. It is, therefore, anticipated to have
a larger impact on the understanding of regulatory
variation across tissues in future studies.

Figure 3. The sparse architecture of cis-eQTL in GTEx data. The comparison of estimated heritability between BSLMM and LMM by

applying violin plots to show the sparse architecture of cis-eQTL in GTEx data.
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eQTL analysis aims to identifying associations between
genetic variants and gene expression across the genome
[37]. Conventional eQTL analysis was performed by
applying a large number of linear regressions across the
genome, treating gene expression as the response variable
and genotype as the predictor variable. A variety of
methods have been developed to map QTL, including
PANAMA [38], WASP [39], Matrix eQTL [11], FastQTL
[12]. Before FastQTL was proposed, Matrix eQTL was
considered as a gold standard that completes thousands of
association tests in an acceptable amount of time.

Single-tissue based eQTL mapping

Due to an efficient implementation of linear regressions,
less number of permutation steps and rapid data retrieval
from indexed files, FastQTL was even faster and applied
in many GTEx analysis [12]. Here, we roughly present the
pipeline to conduct eQTL mapping and all the results are
shared in GTEx portal (refer to the website: www.
gtexportal.org/).
As illustrated in Fig. 2B, gene expressions and genetic

variants are the two major inputs for performing FastQTL
analysis as well as all the other eQTL mappings. Begin
with the raw gene expressions calculated directly from
RNA sequencing results, three sample filters were applied
to remove the replicated samples, outlier samples, and
samples with very low sequencing depth (< 10 million
reads). After that, one more gene filter was applied to keep
the expressed genes only by requiring that gene
expression > 0.1 transcripts per million (TPM) and
read count ≥ 6 in at least 20% of the samples. Then the
sample-wise normalization was applied on the remaining
gene expression values using weighted trimmed mean of
M-values [40], and gene-wise normalization was per-
formed using an inverse normal transformation. This
normalized gene expressions were used as the response
variables in the following FastQTL analysis. On the other
hand, the second major input for eQTL mapping is
genetic variants. Begin with the genotypes generated from
whole genome sequencing results, only the common
variants with minor allele frequency (MAF) ≥ 1% were
kept and used as predictors in FastQTL. As we know that
there exist a lot of confounding factors between genetic
variants and gene expressions, a set of covariates were
identified and incorporated into the linear model.
Sequencing protocol and sequencing platform were
included to correct for the batch effects, sex was included
to correct for the gender effect, and top five genetic
principle components (PCs) were included to correct for
the population stratification. In addition to all of these,
hidden confounding factors could be also identified from
the normalized gene expression by PEER [41], and
different number of PEER factors could be selected for

different data sets according to their sample sizes.
The association between gene expression and genotype

was determined by regressing the normalized expression
on genotype and several confounding factors. As a result,
a set of nominal association p-values was reported for
each gene. It is known that the minimum nominal p-value
for each gene follows a Beta distribution, and the
distribution can be estimated by 1,000 permutations
only [12]. Then the gene-level p-value could be obtained
by locating the observed minimum p-value onto the
estimated Beta distribution. In a traditional permutation
test, we have to perform 10,000 permutations to get a p-
value of 10–4. However using the beta approximation in
FastQTL, any p-value can be calculated using only 1,000
permutations. To correct for multiple testing, gene-level
FDR was then calculated using Storey & Tibshirani
correction [42]. Significant eGenes were selected if gene-
level FDR £0.05. Gene-level p-value corresponding to
FDR threshold 0.05 was then used as a global cut-off to
fetch out all the significant eSNPs for each eGene.
Specifically, for every eGene, its significant eSNPs were
selected if the nominal association p-value £F –1

β (gene

level p-value cut-off; α, β), where F –1
β is the inverse

function of Beta cumulative distribution, and α and β are
two estimated parameters for Beta distribution.
In addition to cis-eQTLs, GTEx Project also reported

trans-eQTL discoveries [42]. Focusing on the variants and
genes located on different chromosomes or≥5 Mb apart,
they identified 126 trans-eGenes based on 10% FDR cut-
off. By comparing across tissues, testis was highlighted as
a more important tissue carrying most trans-eGenes. And
another interesting observation of trans-eQTL is that it
had higher tissue-specificity compared to ciseQTLs and
thus are generally harder to replicate across studies.

Multi-tissue based eQTL mapping

Since the GTEx Project measured RNA sequencing for
multiple postmortem tissues from donors, an ad-hoc
analysis for such datasets is to perform single-tissue
analysis across all tissues and then make comparisons for
significant findings among them. However, such an
analysis strategy does not make full use of the sharing
patterns among multiple tissues and thus misses the power
gains that come from sharing information at both common
study individuals and shared cell types across tissues.
Thus, performing joint multi-tissue eQTL that explicitly
take advantages of sharing patterns is optimal to study
both tissue-specific and shared patterns across tissues.
Unlike linear models in tissue-by-tissue methods, Meta-
Tissue [15] not only harnessed results from LMM to
account for correlations of tissues from the overlapped
samples and adjusted their effect sizes but also utilized the
random-effects model to account for heterogeneity. On

6 © Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Xu Liao et al.



the other hand, several methods have been proposed to
allow for tissue-specific effects, sharing patterns among
tissues, and heterogeneity in shared effects [16,17,43,44].
Among them, MT-eQTL used an empirical Bayes
approach to explicitly model the patterns of effect sizes
across multiple tissues and to perform inferences [16]
while mash [17] is more flexible to combine the most
attractive features of existing methods to improve effect
estimates but overcome their major limitations. Overall,
Table 1 summarizes the major methods for eQTL analysis
either in single tissue or multiple tissues.
Multivariate adaptive shrinkage [17] is a computation-

ally tractable method for dozens of tissues in the GTEx
application by generating candidate covariance matrices
in both data-driven and canonical ways to assess effect-
size heterogeneity among tissues. In the empirical
Bayesian framework, correlations and effects among
different tissues are captured by a mixture model of
multivariate normal distribution. The true effects for an
eQTL across T tissues denoted by μ are modeled with the
mixture model,

pðμ; π,UÞ=
XK

k=1

XL

l=1

πk,lNT ðμ; 0,ωlUkÞ, (1)

where NT ($ ; 0, ωl Uk ) denotes the multivariate Gaussian
density in T dimensions with mean 0 and variance-
covariance matrix ωl Uk ; U = (U1, ..., UK ) are series of
covariance matrices which can be divided into data-driven
type and canonical type to capture patterns of effects; each
ωl is a coefficient to scale a effect size; the weight πk,l
represents the contribution of each Gaussian component.
Typically, ω = (ω1, ..., ωL) are set values on a fixed dense
grid from a small value to a large enough value.
In the model of mash, there are two major parameters,

U and π. The parameterU can be constructed not only in a
data-driven way based on principal components analysis
(PCA) and sparse factor analysis (SFA), but also in a
canonical type by harnessing identity matrix, rank – 1
matrix 11T and other typical matrices. With the generated
parameter U, π can be estimated by maximizing like-
lihood from tissue-by-tissue results. We implemented

mash with eQTL results from GTEx V7 data based on
FastQTL which are available on the GTEx Portal. The
estimated effect sizes and corresponding standard errors
of cis-eQTL from 16,851 genes across nine tissues
(Fig. 4A) were the input of mash. For each gene, eQTL
data with the largest absolute Z-Statistic was selected as
the input of the model. Therefore, 16, 851� 9 effect sizes
and standard errors were used in our experiment. In order
to show the comparison between mash and the single-
tissue method (FastQTL in our experiment), we randomly
selected 20 genes and presented their effect sizes and
standard errors across nine tissues in Fig. 4A. According
to Fig. 4A, it can be concluded that mash has a corrective
effect on the input effect sizes and has a contraction effect
on the standard errors of the input. Additionally, we
further provide Fig. 4B and Fig. 4C, to illustrate the
pairwise sharing patterns among nine tissues based on the
effect sizes estimated from FastQTL and mash. Each cell
of the heatmap demonstrates the pairwise proportion of
effect sizes that is within factor 2 in size and in the same
sign. The pairwise pattern for the original eQTL results is
shown in Fig. 4B, and the pairwise proportions across
tissues are not as large as that of mash results which are
shown in Fig. 4C. The pairwise pattern obtained by mash
is consistent with basic biological mechanisms. For
example, the pairwise proportions among brain brain-
caudate, brain-cortex, and brain-nucleus are close to 1,
revealing different parts of the brain are highly correlated.

Co-expression network analysis

Reconstruction of gene co-expression networks is a
powerful tool to better understand the co-regulation
patterns among thousands of genes [45]. The network
can be represented as undirected graphical models
(UGM). Let nodes represent genes and connected nodes
represent significantly corelated gene pairs. The co-
expression network is not only useful in identifying
gene-gene interactions, but also help us to build the
possible regulatory pathways of trans-eSNPs. For exam-
ple, if a trans-eSNP for gene A is also a cis-eSNP for
transcription factor B, and A and B are co-expressed in

Table 1 Single-tissue and multi-tissue methods of eQTL analysis on the GTEx data
Approach Method/algorithm Software Languages

Single-tissue methods

Matrix eQTL Matrix multiplication http://www.bios.unc.edu/research/genomic software/Matrix eQTL/ R, Matlab

FastQTL Adaptive permutation http://fastqtl.sourceforge.net R, C++

Multi-tissue methods

Meta-tissue Efficient mixed-model

association (EMMA)

http://genetics.cs.ucla.edu/metatissue/ Java

MT-eQTL Hierarchical Bayes https://github.com/reagan0323/MT-eQTL Matlab

mash Empirical Bayes https://github.com/stephenslab/mashr R
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the network, it is possible that the SNP affects the
expression of A through the regulation of its transcription
factor B.
WGCNA [46] is a popular R package that builds co-

expression network based on genegene correlation.
WGCNA provides construction for both weighted and
unweighted networks with hard and soft threshold. The
flowchart and illustration of gene co-expression network
analysis using WGCNA can be found in the tutorial [47].

On the other hand, Gaussian graphical model is usually
used to recover edges in UGM, e.g., GeneNet [48] and
graphical Lasso [49]. Gaussian graphical model assumes
gene expression levels for each individual come from a
multivariate Gaussian distribution with mean μ and
covariance matrix S. If the ij-th component of (S–1) is
zero, then the i-th gene and the j-th gene are conditionally
independent. Denote K the inverse covariance matrix,
also known as the precision matrix. Thus, the sparsity

Figure 4. Sharing patterns among multiple tissues. (A) The comparison of effect sizes and standard errors between mash and FastQTL

(the input for mash) across nine tissues. (B) Pairwise sharing of nine tissues according to the effect size estimated from original eQTL data.
(C) Pairwise sharing of nine tissues according to the effect size estimated from mash. The element of heatmap represents the pairwise
proportion of effect sizes which is within factor 2 and in the same sign.
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level of precision matrix corresponds to the complexity of
the network, sparser graphs indicates simpler networks
with less edges in UGM. Graphical Lasso considers
estimating sparse graphs by a Lasso penalty applied to the
precision matrix [49]. Suppose we have n observations of
dimension p (genes) frommultivariate normal distribution
with mean μ and covariance S. Graphical Lasso can be
formulated as

logdetðKÞ – trðSKÞ – �jjKjj1, (2)

where S is the empirical covariance matrix, det($) denotes
determinant of a square matrix, tr($) is trace operator, and
jjKjj1 is the L1 norm — the sum of the absolute values of
the elements in S–1.
Here, we performed the analysis of co-expression

network for gene expression from muscle skeletal tissue
in the GTEx data using both WGCNA and graphical
Lasso. The adjacency heatmap and correlation heatmap
for 100 random selected protein coding genes are shown
in Fig. 5A and Fig. 5B. As shown in Fig. 5A, WGCNA
can provide the visualization of gene dendrogram,
module assignment and gene expression with heatmap
where each cell represents topological overlap between
two genes. Genes with the same color were designated as
the same module by clustering. With the overlap score
among genes, the co-expression network was established
to investigate and leverage relationships among selected
genes. The selected gene names and their corresponding
modules are listed in Table 2. Comparison of correlation
heatmaps with (the lower triangle) and without (the upper
triangle) graphical Lasso regularization is shown in
Fig. 5B. Due to the regularization of graphical Lasso,
the correlation heatmap patttern is more sparse than the
original one. In that case, utilizing graphical Lasso
regularization is conducive to prune the whole co-
expression network to find out the core genes (hub
nodes in the network). To further explore the sharing and
specific patterns of co-expression networks across multi-
ple tissues in the GTEx data, several studies were
conducted, including GNAT [50], eMAGMA [51] and
others. We resort their original articles for the analysis
results.

ANALYSIS THAT LEVERAGES
GENETICALLY REGULATORY
INFORMATION

Direct use of transcriptome information in GWAS

Recent studies indicate the importance of gene expression
changes in mediating the influence of genetic variants on
complex traits. eQTL data sets from the GTEx Project can
be taken as a reference data set to reflect the regulatory
roles of genetic variants on gene expression in multiple

tissues. Various methods for TWASs have been proposed
to leverage the SNP-gene associations identified in a
single tissue to infer significant gene-trait associations,
e.g., PrediXcan [21], TWAS [22], and CoMM [52]. To
make full use of publicly available GWAS results
calculated from large cohort studies, S-PrediXcan [53]
and CoMM-S2 [23] extend PrediXcan and CoMM to take
GWAS summary statistics as the input, respectively. The

Figure 5. Co-expression network by applying WGCNA and
graphical Lasso. (A) Gene dendrogram, module assignment and
gene expression heatmap. In the cell of heatmaps, the darker color

represents higher overlap between genes. (B) Correlation heat-
maps with (the lower triangle) and without (the upper triangle)
graphical Lasso regularization. To better visualize the heatmap, the

overlap score was set to be zero for the same gene, and the
correlation of the same gene was set to be 1.
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major difference of CoMM and PrediXcan is that CoMM
considers the imputation uncertainty in gene expression
and thus improves the statistical power in an unified
probabilistic model. To leverage the substantial sharing of
eQTLs across tissues in the GTEx data sets, several
methods have been proposed, i.e., MultiXcan [24],
UTMOST [25] and TisCoMM [26]. In the following
subsections, we briefly discuss PrediXcan, CoMM and
TisCoMM and resort their papers for technical details.

PrediXcan

Denote D1 = {Y,X1} the reference eQTL data that
contains expression matrix Y 2 ℝn1�G and genotype
matrix X1 2 ℝn1�M , where n1 is the sample size, G is
the number of genes, and M is the number of genotypes.
Denote D2 = {z,X2} the GWAS data that contains an

n2�1 vector of phenotypic values z and genotype matrix
X2 2ℝn2�M , where n2 is the GWAS sample size, and M is
the number of variants genotyped in the GWAS.
Generally, in the TWAS, samples in D1 and D2 are
disjoint and the genome-wide scan is performed for each
gene. Suppose we work on gene g and let Mg be the
number of variants within the g-th gene, yg2ℝn1�1 is the
g-th column of expression matrix Y representing the
expression of in gene g across all the eQTL samples, and
X1g2ℝn1�Mg denotes the corresponding genotype matrix
for this gene in the eQTL data set. Similarly, let
X2g2ℝn2�Mg denotes the corresponding genotype matrix
for gene g in the GWAS data. Without loss of generality,
we assume z denotes centered phenotypic vector, X1g and
X2g denote standardized genotype data, and yg denotes
expression data adjusted for confounding factors. Basi-
cally, there are three steps in PrediXcan.

Table 2 Selected 100 gene names and corresponding modules
Module Color Count Gene name

Module 1 Purple 2 ORC3, ANAPC4

Module 2 Grey 23 LINGO4, ARHGAP10, CCDC18, WDR61, FAM49A, RAR-RES3, FGF17, RDH16,

COX20, TRMT9B, CDYL2, NECAB2, KANTR, TERF2IP, CALHM6, GCFC2,

TMEM68, MUC6, ETV2, RHBDF1, EIF1B, NHLH1, CATSPER1

Module 3 Brown 9 AHR, SRGAP1, RAB27A, CYP4F12, AFAP1, SH2D4A, GSN, MYMX, CHST11

Module 4 Green 9 PTPRN2, EMP3, CRISPLD1, TP53I3, B3GALNT1, P2RX7, PNMA8A, DLG3,

SORCS1

Module 5 Midnightblue 1 CST7

Module 6 Black 1 RTL3

Module 7 Greenyellow 1 SURF1

Module 8 Yellowgreen 1 OIP5

Module 9 Turquoise 19 NUFIP2, CAVIN3, PET117, STAT5A, AQP11, ATG3, MAN2B1, MAFG, IKZF2,

MOCS1, GID8, DDHD1, ZNF384, UBAP1L, NFX1, SLC19A2, LRIG2, KDM4C,

CLASRP

Module 10 Blue 10 AES, RAB8B, CCND3, PKIB, GAK, NEK3, DYRK1B, FHIT, ACAA1, NME4

Module 11 Yellow 2 TMEM158, CACNG4

Module 12 Lightyellow 1 ABHD16A

Module 13 Pink 2 DERL3, SREK1

Module 14 Darkred 1 P2RX1

Module 15 Saddlebrown 1 EEF1E1

Module 16 Grey60 2 RASGRF2, ITGA6

Module 17 Red 6 POU2F1, C20orf24, SMG5, HDGF, GARNL3, PNMA1

Module 18 Steelblue 1 ATF2

Module 19 Darkgrey 1 ZNF865

Module 20 Lightgreen 1 ISOC1

Module 21 Tan 3 RBM20, ATP6V1E2, RCN2

Module 22 Cyan 1 SMARCA5

Module 23 Salmon 1 FADD

Module 24 White 1 ORAI3

10 © Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Xu Liao et al.



(a) Step 1: It uses elastic net to build the predictive
model,

ð�̂0,μ̂Þ=argmin
�0,μ

jjyg –�0 –X1gμjj2 þ lαjjμjj1

þ lð1 – αÞjjμjj22, (3)

where α = 0.5 (by default) and l is tuned by cross-
validation.
(b) Step 2: Gene expression levels for the individuals in

the GWAS data are predicted as,

ŷ2g =�̂0 þ X2gμ̂,

where X2g is the corresponding genotype matrix in D2.
(c) Step 3: Conducting association analysis between z

and ŷ2g by simple linear regression,

z=β0 þ βŷ2g þ ϵz,

and standard statistical inference can be obtained for the
parameter of interest, β.
PrediXcan has several advantages. First, compared

with methods that identify differentially expressed genes
using only transcriptome data, PrediXcan can be applied
on GWAS data set, in which the sample size is several
orders of magnitude larger than that of a transcriptome
data set, i.e., n2≫n1. Secondly, compared with single-
variant-based approaches, PrediXcan reduces multiple
testing burden from the order of 106 tests at the variant
level to only 104 tests at the gene level. Thirdly, unlike
indirect use of transcriptome information that enhances
the identification of genetic associations between genetic
variants and complex traits, PrediXcan is able to
investigate the associations between genes and complex
traits by leveraging transcriptome data.

CoMM

In trait-gene association scan, PrediXcan simply treated
the predicted expression values ŷ2g as if they were
observed without error. This leads to underestimation of
the coefficient β, known as the attenuation bias in
measurement error models (MEM) [54]. To fix this
issue, CoMM was proposed to jointly fit the predictive
and association models in a principled manner. Focused
on the g gene, the relationship between eQTL and GWAS
data sets can be modeled using the following equations

yg=X1gμþ ϵ1, z=βX2gμþ ϵ2, (4)

where μ is an Mg�1 vector of genetic effects on gene
expression, ϵ1 is an n1�1 vector of independent noises for
gene expression, ϵ2 is an n2�1 vector of independent
noises for trait, and β is a scalar coefficient of interest
representing the genetically regulated gene effect on

phenotype. CoMM considers models (4) with a simple
priori,

μ � N ð0,�2
�IMg

Þ,        ϵ1 � N ð0,�2
ϵ1In1Þ,

ϵ2 � N ð0,�2
ϵ2In2Þ, (5)

where In denotes n � n identity matrix, and f�2
�,�

2
ϵ1 ,�

2
ϵ2g

is the set of unknown variance components to be
estimated. To remove the effects from population
stratification and other confounding factors, such as age
and sex in the GWAS data, models (4) can be extended as,

yg=X1gμþ ϵ1,          z=Wβw þ βX2g�þ ϵ2, (6)

where W denotes the top genetic principal components
(PCs) and other demographic factors, and βw is a vector
containing the coefficients for these covariates. To solve
both models (4) and (6), a parameter-expanded expecta-
tion-maximization (PX-EM) algorithm [55] was devel-
oped to speed up the computation and the statistical
inference for β was achieved by using the likelihood ratio
test (LRT).
We conducted TWAS analysis on the GWAS data from

the Northern Finland Birth Cohort 1966 (NFBC1966) and
eQTL data from muscle-skeletal tissue in the GTEx
Project using both PrediXcan and CoMM, where
NFBC1966 data contains ten quantitative traits, i.e.,
body mass index (BMI), triglyceride (TG), total choles-
terol (TC), systolic blood pressure (SysBP), low-density
lipoprotein cholesterol (LDL-C), insulin, high-density
lipoprotein cholesterol (HDL-C), glucose, diastolic blood
pressure (DiaBP), and c-reactive protein (CRP), and the
qq-plots of p-values for these ten traits are shown in
Fig. 6A. As shown in Fig. 6B, for most traits CoMM has
higher statistical power than PrediXcan except insulin.
The test statistics may degenerate to zero for CoMM in a
few cases, causing the deflation phenomenon.

TisCoMM

Note that PrediXcan and CoMM can only be applied to
eQTL data in a single tissue. To further increase the
statistical power of target gene identification, multi-tissue
TWAS methods have been proposed by integrating eQTL
data from multiple tissues, e.g., MultiXcan, UTMOST,
and TisCoMM. The hypothesis testings performed in all
these methods aim to prioritize gene-trait associations.
Compared to MultiXcan and UTMOST, TisCoMM not
only accounts for the imputation uncertainty, but also
detects trait associated genes in a tissue specific manner.
By conditioning on the correlated gene expression
patterns in multiple trait-relevant tissues, false positive
detections in single tissue analysis can be largely avoided
using TisCoMM.
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Here, we briefly introduce the TisCoMM method.
Given the g-th gene, TisCoMM considers Yg2ℝn1�T as
the expression matrix for n1 samples across T tissues for
gene g , and Bg2ℝMg�T as the corresponding coefficient
matrix across T tissues. Other notations remain the same
as those in CoMM. The model of TisCoMM can be
written as

Yg=X1gBg þ Eg,        z=X2gBgαg þ ϵz, (7)

where Eg2ℝn1�T is random error matrix from multi-
variate normal distribution N (0,Ve), ϵz � N ð0,In2�2Þ is
an n2�1 vector of independent errors associated with the
trait, and αg2ℝT�1 is an unknown parameter vector for
the gene-trait effects among T tissues in gene g . Some
techniques are utilized to enable TisCoMM computation-
ally feasible, including both the factorization and an
adaptive weighting strategy for Bg . To extract regulatory
information from all the relevant tissues, TisCoMM
assumes that Bg is factorizable. To further make
TisCoMM identifiable, an adaptive weighting strategy is
applied. A parameter expanded EM algorithm was
developed to solve the TisCoMM model and LRT is
used to make statistical inference over the parameters of
interest (αg).
We implemented multi-tissue TWAS analyses for

summary statistics GWAS data for peripheral vascular
disease (PVD) from UK Biobank (the website, cnsge-
nomics.com/data.html). The transcriptome data is from
the GTEx V7 data containing gene expression across six
tissues (muscle-skeletal, lung, adipose subcutaneous,
thyroid, artery tibial, and skin sunexposed lower leg).
The reference panel are European subsamples from the
1000 Genomes Project. To compare the performance of
TisCoMM-S2, S-MultiXcan, and UTMOST, the qq-plot
of these methods is shown in Fig. 6B. The Manhattan plot
for p-values among gene-trait associations is presented in
Fig. 6C.

Indirect use of transcriptome information in GWAS

TWAS-type analysis directly integrates SNP-gene asso-
ciations evaluated in eQTL studies with SNP-trait
associations evaluated in GWASs to prioritize risk genes
for complex traits in a fashion closely related to
instrumental variable analysis or Mendelian randomiza-
tion [56]. Another way to use eQTL results from the
GTEx data is to weight genetic variants according to their
genomic regulatory effects across the genome. For
example, we want to put more weights to the genetic
variants which could have functional impacts on gene
products.
Conventionally, GWAS analysis is conducted without

incorporating any prior information. Recent studies show

that the functional importance of genetic variants may not
be equal [57] and significant GWAS signals are highly
enriched in genomic regulatory regions such as promoters
and enhancers in trait relevant cells or tissues [58]. Hence,
post GWAS analysis that integrates genomic regulatory
information cannot only efficiently increase the statistical
power to prioritize risk variants but also identify trait-
relevant tissues. To perform such analysis, QTLs (e.g.,
eQTL or sQTL) from the GTEx data can be served as
functional annotations to genetic variants indicating
whether the variant can affect gene expression or splicing
pattern. A variety of methods have been proposed to
integrate variant annotations in this manner, including the
ones to conduct SNP-based analysis, e.g., PAINTOR [59],
CAVIAR [60], fgwas [61], GPA [28], LSMM [30] and
others, and the ones to conduct genebased analysis, e.g.,
EPS [29]. Additionally, many efforts have been made to
colocalize the signals either from QTLs and GWAS
results or from different QTLs, e.g., coloc [62], enloc
[63], and moloc [64].

Genetic analysis incorporating pleiotropy and annotation
(GPA)

GPA is a statistical method that integrates multiple GWAS
analysis and functional annotations for genetic variants to
prioritize GWAS signals. Suppose we have conducted
genomewide hypothesis testing in a GWAS study for all
M genetic variants and their corresponding p-values are
denoted as pm,

Null hypothesis:         H ð1Þ
0 , :::,H ðMÞ

0 ,

p-values:         p1, :::, pM :

We consider the “two-groups model” [65] and assume
that the observed p-values come from the mixture of null
and non-null distribution, with probability π0 and π1 = 1
– π0, respectively. Let zm2 {0, 1} be the latent variable
indicating the association status for the m-th variant,
either under null or non-null distribution, respectively.
Moreover, we assume the prior for the latent variable zm,
π0 = Pr(zm = 0) and π1 = Pr(zm = 1). Then conditioned on
the latent variable zm, the two-groups model assumes the
distributions of p-values are pm|zm = 0~U (0, 1) and pm|zm
= 1~B (α, 1), where the p-values from the null group
follows a uniform distribution, and p-values from the non-
null group follows a Beta distribution with shape
parameters α (0< α< 1) and 1. To incorporate SNP
annotations, GPA extends the above basic “two-groups”
model as follows. Suppose we have annotation matrix
A2ℝM�T for T functional annotation sources across all M
genetic variants. The most straightforward way is to
annotate genetic variants using binary indicators. In this
case, Amt2 {0, 1} indicates whether genetic variant m is
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annotated in the t-th annotation source. For example, if
SNP j is a significant eSNP in liver tissue, we may
annotate a genetic variant with Ajt= 1, otherwise we may

assign 0 to Ajt indicating that it is not a significant eSNP in
liver. Then the relationship between zm and Ajt can be
modeled as Ajt|zm = 0 ~ Bernoulli(qt0) and Ajt|zm =

Table 3 Single-tissue and multi-tissue methods of TWAS on the GTEx data
Method Individual-level Summary-statistics Multi-tissue Software

PrediXcan √ � � https://github.com/hakyimlab/PrediXcan

S-PrediXcan � √ � https://github.com/hakyimlab/MetaXcan

MultiXcan √ √ √ https://github.com/hakyimlab/MetaXcan

UTMOST √ √ √ https://github.com/Joker-Jerome/UTMOST

CoMM √ � � https://github.com/gordonliu810822/CoMM

CoMM-S2 � √ � https://github.com/gordonliu810822/CoMM

TisCoMM √ √ √ https://github.com/XingjieShi/TisCoMM

Figure 6. TWAS analysis of NFBC1966 data. (A) The qq-plots for ten quantitative traits in NFBC1966 with CoMM, PrediXcan: Ridge and

PrediXcan: Enet by leveraging eQTL data of muscle-skeletal tissue in the GTEx Project; (B) and (C) The Manhattan plot for PVD using
TisCoMM-S2 and the qq-plot for PVD using TisCoMM-S2, S-MultiXcan, and UTMOST.

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020 13

The statistical practice of the GTEx Project



1 ~Bernoulli(qt1), where qt0 and qt1 can be interpreted as
the proportion of genetic variants being annotated in the
t-th annotation for the null and non-null group, respec-
tively. In this setting, the risk variants can be prioritized
using the following posterior.

Pr zjp,Að Þ ¼ PrðpjzÞPrðzjAÞX
z
PrðpjzÞPrðzjAÞ : (8)

In the framework of expectation-maximization (EM)
algorithm, given an annotation tissue in the GTEx data,
we may conduct hypothesis testing to examine whether
the eQTLs identified in that tissue are enriched in some
disease related GWAS hits:H0 : qt0 = qt1 vs. H1 : qt0≠ qt1.
More importantly, the integration of functional genomic
annotation would assist identifying weak signals missed
by the traditional single-variant analysis. We conducted
GPA analysis on BMI of European Summary Statistics
[66] with muscle skeletal tissue annotation. In details, we
annotate a genetic variant as 1 if this variant was identified
as an eSNP in eQTL analysis using muscle skeletal tissue
in the GTEx; otherwise we annotate this variant as 0.
Manhattan plots of local false discovery rate are shown in
Fig. 7, where the enhanced genetic variants due to the
incorporation of functional annotation were marked in
blue.

CONCLUSION

The GTEx Project provides the largest resource for intra-
and inter-individual genotype and transcriptome measure-
ments across a spectrum of tissues. Its current V8 release
contains 17,382 RNA-seq samples among 948 donors and
also includes splicing quantitative trait loci (sQTL) in this

version. We firstly explore the genetic architecture of gene
expression traits, showing that cis-eSNP contribute a
considerable amount of signals to the variation in
expression and eSNP signals are sparse other than
polygenic in expression traits. Secondly, the GTEx data
forms a large genome and transcriptome database across
multiple tissues in addition to whole blood, providing an
opportunity to explore the tissue sharing patterns of
eQTLs as well as its tissue-specific effects. Thirdly,
investigators may explore the tissue sharing and tissue-
specific patterns of co-expression network using the
GTEx data.
Aside from transcriptome QTL and co-expression

network analysis, the GTEx data can be used as a
resource to leverage transcriptome QTL information
directly or indirectly in genetic studies. TWAS has been
widely used to integrate gene expression from eQTL
studies with GWAS to prioritize trait-associated genes
across the genome. Its prototype, PrediXcan, performs a
step-wise analysis by conducting imputation for gene
expressions and then performing subsequent association
analysis. To account for uncertainty in the process of
imputation, Yang et al. [52] proposed CoMM in a unified
probabilistic model. To further explore the tissue-specific
role of genes in complex traits, Shi et al. [26] proposed
TisCoMM, a principled method to perform gene-trait joint
and tissue-specific association tests across multiple
tissues. Moreover, the transcriptome information across
tissues can be utilized indirectly, as exemplified by GPA.
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