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Background: Single-cell RNA-sequencing (scRNA-seq) is a rapidly evolving technology that enables measurement of
gene expression levels at an unprecedented resolution. Despite the explosive growth in the number of cells that can be
assayed by a single experiment, scRNA-seq still has several limitations, including high rates of dropouts, which result
in a large number of genes having zero read count in the scRNA-seq data, and complicate downstream analyses.
Methods: To overcome this problem, we treat zeros as missing values and develop nonparametric deep learning
methods for imputation. Specifically, our LATE (Learning with AuToEncoder) method trains an autoencoder with
random initial values of the parameters, whereas our TRANSLATE (TRANSfer learning with LATE) method further
allows for the use of a reference gene expression data set to provide LATE with an initial set of parameter estimates.
Results: On both simulated and real data, LATE and TRANSLATE outperform existing scRNA-seq imputation
methods, achieving lower mean squared error in most cases, recovering nonlinear gene-gene relationships, and better
separating cell types. They are also highly scalable and can efficiently process over 1 million cells in just a few hours
on a GPU.
Conclusions: We demonstrate that our nonparametric approach to imputation based on autoencoders is powerful
and highly efficient.
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Author summary: Single-cell sequencing technologies have revolutionized biology with the ability of measuring
molecular phenotypes (e.g., gene expression) in individual cells. However, due to technical limitations, single-cell gene
expression data often contain a large number of zeros, many of which do not indicate no expression, but are rather technical
artifacts. We have developed deep learning algorithms to recover the true gene expression values. The values imputed by
our algorithms are highly accurate. We can use these imputed values to recover nonlinear relationships in pairs of genes and
to identify and separate cell types, including the rare ones.

INTRODUCTION

Due to dropout and other technical limitations in single-
cell sequencing technologies, single-cell RNA-seq

(scRNA-seq) data typically contain many zero expression
values. This is particularly true for droplet-based scRNA-
seq technologies (such as 10X Genomics), which are the
most commonly used in the field (see review in
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Kolodziejczyk, et al. [1]). This often results in a read
count of zero for over 80% (sometimes over 90%) of all
the measurements across genes and across cells [2]. The
high rate of zeroes leads to difficulties in downstream
analyses: for example, it may obscure gene-gene relation-
ships, or blur differences in subpopulations of cells (i.e.,
cell types). Although some of the zeros represent no
expression, most are due to failures to capture the
transcript and do not indicate the true expression level.
Recovering true expression levels behind the zeros in
scRNA-seq data is therefore of great interest [3–7]. In this
work, we treat the zeros as missing values (see comments
on this assumption in Discussion) and aim to use a
computational approach to impute these missing values
using information available from nonzero values, exploit-
ing the dependence in gene expression levels across genes
and across cells. The imputed data will have better quality
than the original data, and may be used for diverse
downstream analyses. For example, using the imputed
scRNA-seq data, one may perform clustering analysis to
identify cell types, and differential expression analysis to
identify genes that are expressed differently in different
cell types, study relationships between certain genes, or
construct a co-expression network of genes in single cells
[8,9].
Here, we developed imputation methods based on

autoencoders for scRNA-seq data. Autoencoders [10] are
a type of architecture commonly used in deep learning
and enable reconstruction of the input through dimension
reduction. Our LATE (Learning with AuToEncoder)
method trains an autoencoder de novo on the highly
sparse scRNA-seq data, with the initial values of the
parameters randomly generated. Our TRANSLATE
(TRANSfer learning with LATE) method builds on
LATE and further incorporates a reference gene expres-
sion data set (e.g., bulk gene expression, a larger scRNA-
seq data set, data from a complementary scRNA-seq
technology, or scRNA-seq data of similar cells types
collected elsewhere) through transfer learning [11].
TRANSLATE learns the dependence structure among
genes in the reference panel; this information is stored in
the parameter estimates that are transferred to LATE for
imputation of the scRNA-seq data of interest. Auto-
encoders have demonstrated powerful performance in
other applications, such as reconstructing 2D images and
3D shapes [12]. We show with synthetic and real data that
they are also powerful for imputation in highly sparse
scRNA-seq data.

RESULTS

The LATE (Learning with AuToEncoder) method

An autoencoder is a neural network of one or more hidden

layers that allows for reconstructing the input, which is
the highly sparse scRNA-seq data here, through dimen-
sion reduction, and thus generates the output with the
missing values imputed (Fig. 1A). Each hidden layer
consists of many artificial neurons (or nodes), each of
which provides a certain representation of the input. An
autoencoder typically contains a bottleneck layer of a
lower (often much lower) dimension than that of the
input, and thus achieves dimension reduction. From the
input to the bottleneck layer, the salient features in the
data are encoded in reduced dimensions; this half of the
autoencoder is called the “encoder”. From the bottleneck
layer to the output, the compressed information is
gradually restored to eventually reconstruct all the values
in the input; this half is therefore the “decoder”. When
certain values are missing in the input, the autoencoder is
therefore able to learn the dependence structure among
available values and use the representations stored in the
hidden layers to recover missing values.
Let X be the input scRNA-seq matrix with values being

log10-transformed read counts with a pseudocount of 1
added, i.e., log10(count+ 1). The log10 transformation
reduces variance in the raw read counts, which may vary
from 0 to a few thousands. Let Y be the output matrix, and
Hk be the k-th hidden layer. The input matrix X and
output matrix Y have the same dimensions and layout. For
now, we consider genes as features and cells as
independent samples. Both X and Y have m genes
(columns) and n cells (rows). The i-th row in either
matrix thus corresponds to the i-th sample (cell). The first
hidden layerH1 with l1 nodes following the input X i (row
vector) is derived from the following model

H1=f ðw1X
T
i þ b1Þ,

where the superscript T represents transpose, the weight
matrix for the first hidden layer w1 is l1 � m, and the bias
term b1 is a vector of length l1. Similarly, from the k-th
hidden layer to the (k þ 1)st, the model is

H kþ1=f ðwkþ1H k þ bkþ1Þ:
We use the rectified linear unit (ReLU) function as the
activation function f , which means that for an arbitrary
value g,

f ðgÞ=maxðg, 0Þ:
From the last hidden layer to the output layer, we have

YT
i =wqHq þ bq,

where q represents the last hidden layer. Our autoencoder
will minimize the loss function, defined as the mean
squared error (MSE) between the input and output matrix
on the nonzero values
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where IðX ij≠0Þ is the indicator function that takes on
value 1 for a nonzero value in the input, and 0 otherwise.
On simulated and real data, we have experimented with 1,

3 and 5 hidden layers with 400 nodes for the single hidden
layer, with 400, 200 and 400 nodes for the three hidden
layers, respectively, and with 400, 300, 200, 300 and 400
nodes for the five hidden layers, respectively.
We use a suite of techniques to train the autoencoder

and obtain optimal estimates of the weights and biases.
Specifically, we use the backprop algorithm [13] to
calculate the gradients in each layer, and the Adaptive
Moment estimation (Adam) algorithm [14] to perform

Figure 1. Architectures of our deep learningmethods LATE and TRANSLATE for imputing zeros in scRNA-seq data. The input data

matrix is represented by X, and the output by Y. Both matrices have the same dimensions and layout. (A) LATE trains an
autoencoder of multiple layers directly on scRNA-seq data with random initial values of the weights and biases. (B) TRANSLATE
incorporates transfer learning and involves two steps: the first step trains an autoencoder on a reference gene expression dataset.

The weights and biases from the first step are then used to initialize the training process in the second step with the scRNA-seq data
of interest as the input.
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stochastic optimization using those gradients. We divide
samples (cells) in the input data by the ratio 70:15:15 for
training, validation and testing (although testing is
typically not performed for imputation on the same
input matrix). Optimization is performed iteratively with a
randomly-generated set of parameter values as the starting
point. The number of epochs (i.e., iterations) required for
optimization is determined by comparing two learning
curves: the curve of the MSE on the training data and that
of the MSE on the validation data over epochs. We expect
both learning curves to reach a minimal point with the
smallest gap. If the learning curve on the training data is
much lower than that on the validation data, it suggests
overfitting; if both training and validation MSEs are large,
it suggests underfitting. In addition, we adopt several
strategies during optimization to improve efficiency and
further reduce overfitting. For example, we randomly
“remove” a certain percentage of the nodes in the input
layer or a hidden layer, e.g., 20% or 50%. This technique,
known as “dropout” [15] in deep learning, provides a
computationally inexpensive but powerful method to
reduce overfitting (this “dropout” technique is not to be
confused with the “dropout” phenomenon in single-cell
sequencing data that results in a high percentage of zeros).
In each epoch, we randomly divide the training set into
mini-batches (typically of 256 samples per batch), and
one optimization epoch trains on multiple mini-batches
until all the samples have been used for training [16].
The input data matrix for LATE treats genes as features

and cells as samples, assuming that the cells are
independent of one another. However, cells can be
dependent as well: cells sampled from the same cell
type or differentiation stage tend to be more informative
of one another than cells from another cell type or another
stage. Therefore, to impute the expression value of a gene
in a cell, we need to account for dependence among cells
in addition to that among genes. Indeed, the MAGIC
(Markov affinity-based graph imputation of cells) method
[5], one of the existing imputation methods for scRNA-
seq data, exploits the dependence structure among cells
and establishes neighborhoods of cells based on the gene
expression profile. Motivated by this idea, we develop the
“LATE combined” method that accounts for information
from both dimensions in the input data. Specifically, we
perform imputation with LATE twice, first using genes as
features and cells as samples, and next using cells as
features and genes as samples. We obtain two imputed
matrices, denoted Y g and Y c, respectively, both of which
have genes in the rows and cells in the columns. Next, we
merge them by genes with a smaller MSE after
imputation: for gene i, we consider the i-th row in the
two matrices, denoted by ygðiÞ and ycðiÞ, with the

corresponding MSE, MSEg
ðiÞ and MSEc

ðiÞ, respectively. If
MSEg

ðiÞ < MSEc
ðiÞ, then we choose ygðiÞ. Otherwise we

choose ycðiÞ. The resulting imputed matrix contains values

from both matrices and has an MSE that is lower than the
MSE of either Y g or Y c.

TRANSLATE: TRANSfer learning with LATE

When prior knowledge about the gene-gene relationships
exists, we can incorporate this knowledge through
transfer learning, which effectively runs LATE twice
(Fig. 1B). In the first step, we train LATE on a reference
gene expression data set using genes as features. In the
second step, we train LATE on the scRNA-seq input data.
Instead of using random values as the initial parameter
values, we transfer the parameters (weights and biases)
learned from the first step to the second step as initial
values. As we demonstrate later, gene expression from
bulk samples or from a larger single-cell sample of similar
cell types may be used as the reference.
Similar to the LATE combined approach described

above, we also allow for the TRANSLATE combined
option, which applies TRANSLATE to the input data
matrix with genes being features and applies LATE to the
input matrix with cells being features. We use the same
approach as in the LATE combined method to combine
the two imputation matrices.

Relationship to other scRNA-seq imputation
methods

Several methods have been developed recently to impute
missing values in scRNA-seq data. Some methods, such
as MAGIC [5] and scImpute [3], use similarity among
cells for imputation, whereas other methods, including
SAVER (single-cell analysis via expression recovery) [4],
DCA (deep count autoencoder) [6] and scVI (single-cell
variational inference) [7], rely on similarity among genes.
The latter methods effectively treat cells as independent
samples and model the read counts in scRNA-seq data
with a negative binomial distribution. Additionally, DCA
and scVI take a deep learning approach and develop deep
neural networks also based on autoencoders. However,
whereas DCA and scVI assume read counts to follow a
negative binomial distribution and estimate parameters of
this distribution as part of the inference with their
autoencoders, we do not make explicit assumptions on
read counts. ALRA (adaptively-thresholded low-rank
approximation) [17] performs randomized Singular
Value Decomposition (SVD) on the gene expression
matrix; whether the genes or cells are features is irrelevant
with this approach. This aspect is similar to our methods
that can take either genes or cells as features. Addition-
ally, scVI accounts for batch effects in their statistical
model and removes batch effects in imputation. Other
methods, including ours, do not address batch effects.
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Overall imputation accuracy

We first assessed the performance between LATE and
TRANSLATE, before comparing them to existing
methods. We ran LATE and TRANSLATE for 1,000
epochs with different architectures (with 1, 3, and 5
hidden layers) on simulated and real data (see sections of
“Generating synthetic data for assessing performance”
and “Data sets without the ground truth” in Materials and
Methods; the data sets are summarized in Supplementary
Table S1). We calculated the MSE, which compares the
imputed data matrix to the input and the gtMSE, which
compares the imputed data matrix to the ground truth,
respectively (see section of “Assessing imputation
accuracy” in Materials and Methods for the calculation
of gtMSE; Supplementary Tables S2 and S3). Both
metrics assess the deviation across genes and across cells.
We observed only small differences in MSE across
different architectures, and these differences typically
disappeared after we fine-tuned the hyperparameters (e.g.,
the number of nodes in a hidden layer, the learning rate,
the retain probability in the “dropout” (for deep learning)
procedure, the mini-batch size, etc.). We also did not
observe substantial differences between LATE and
TRANSLATE in gtMSE, except on the MAGIC mouse
data. Compared to LATE, TRANSLATE reduces both
MSE and gtMSE by half on the MAGIC mouse data,
indicating that the reference data significantly improves
imputation. However, the reference and the input in the
MAGIC mouse data come from the same data set, which
means that the dependence structure is essentially
identical in the reference and in the input. In reality,
however, such perfect reference is usually not available.
We next compared our methods with other imputation

methods, namely DCA, scVI, SAVER, MAGIC, ALRA
and scImpute, and summarized MSEs and gtMSEs in
Supplementary Table S3. We used the default settings of
these methods wherever possible. scImpute requires the
number of clusters (cell types) as part of the input. We
used the true number of clusters when known and the
value 1 otherwise. Since TRANSLATE uses the reference
data, which can contain a substantial amount of informa-
tion unavailable to other methods, it is unfair to compare
other methods to TRANSLATE. Instead, we compared
other methods only with LATE here.
Our LATE method achieves a lower MSE (with respect

to the input) than other methods in most cases. When the
ground truth is available, our method has a lower gtMSE
than the other methods on all the synthetic data sets except
for the GTEx_4tissues data. Since MSE and gtMSE are
calculated across genes and across cells, if imputed values
for a gene were allocated to the wrong cells, the MSE (and
gtMSE) would be larger. We can confirm this by
calculating the Pearson correlation across all the genes

between the imputed values and the ground truth for each
cell and generating the histogram of all the cells. The
histograms from our methods are generally closer to 1
than that of other methods (see an example in Supple-
mentary Fig. S1 between LATE and MAGIC).
The GTEx_4tissues data set was generated from the

data in the Genotype-Tissue Expression (GTEx) con-
sortium. Note that we calculated gtMSEall (using all
values) for GTEx_4tissues, but gtMSEnz (using only
nonzero values) for other data sets. For GTEx_4tissues,
DCA achieves the lowest gtMSE, followed by our
methods, scImpute, MAGIC, scVI, ALRA and SAVER.
Recall that both DCA and scVI estimate the “dropout
probability” of an expression value of zero being due to
scRNA-seq dropout and impute the zeros only when they
have a high dropout probability. The MSE/gtMSE
comparison above indicates that DCA can be successful
at detecting true zeros and is more successful than scVI.
On the other hand, the DCA model for nonzero values
may be biased. Note that for this data set, SAVER
achieves the lowest MSE, but the highest gtMSE (20
times higher than LATE did), suggesting that the SAVER
model is overfitting the nonzero values in the input and
does not extrapolate well for zeros. Also note that for all
the data sets, scImpute achieves an MSE of zero or nearly
zero but higher gtMSE than our methods. scImpute
performs imputation cell by cell, and divides genes of
each cell into genes with credible expression values and
those needing imputation. The higher gtMSEs from
scImpute suggest that this approach does not fully capture
the complex dependence among genes and cells.
We can further break down gtMSEall by calculating of

contributions from different sources: gtMSEnz, the gtMSE
for the nonzero values in the input; gtMSEbiol, the gtMSE
for the zeros in the ground truth, which represent no
expression and therefore are termed “biological zeros”;
and gtMSEtech, the gtMSE for the zeros introduced into
the input by masking nonzero values in the ground
truth— these values are termed “technical zeros” (see
section of “Assessing imputation accuracy” in Materials
and Methods; Supplementary Fig. S2 and Table S4).
Specifically, the ground truth for the MAGIC_mouse data
does not contain biological zeros. Only gtMSEtech can be
calculated and its value does not differ much from the
corresponding gtMSEall of each method under compar-
ison. The ground truth for the GTEx_4tissues contains
50.20% of biological zeros. LATE, TRANSLATE, DCA
and scVI all have a higher gtMSEbiol than gtMSEtech,
whereas SAVER, MAGIC, ALRA and scImpute are the
opposite. On this data set, DCA achieves lower gtMSEall

than our methods, which may be explained by its much
lower gtMSEbiol and slightly higher gtMSEtech than ours.
The two PBMC data sets (PBMC_G949 of 949 genes and
21K cells, and PBMC_G949_10K of the same 949 genes
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but from 10K cells) were generated from subsets of a
large, unimputed scRNA-seq data set with additional
masking. The ground truth for these two data sets contains
51.10% and 67% of zeros, respectively. These zeros are a
mixture of biological and technical zeros that cannot be
distinguished, and gtMSEbiol thus refers to the error on
this mixture. For these data sets, gtMSEnz is the metric for
the overall performance, and gtMSEtech reflects the error
on the additional technical zeros that we introduced to the
input through masking. Our methods and ALRA infer a
much lower gtMSEtech than gtMSEbiol, whereas other
methods infer a gtMSEtech that is similar to or slightly
higher than gtMSEbiol. Furthermore, gtMSEtech of our
methods is substantially lower than that of any other
methods, which explains the low gtMSEnz from our
methods. In summary, our methods impute technical
zeros much better than other methods, whereas DCA,
which has a competitive performance, infers biological
zeros better than our methods.
On the four real scRNA-seq data sets with no ground

truth (see section of “Data sets without the ground truth”
in Materials and Methods), we calculated only MSE to
compare the performance of different methods (Supple-
mentary Table S3). These data sets were derived from the
large scRNA-seq data generated by 10X Genomics in
human peripheral blood mononuclear cells (PBMCs) and
in mouse brain. LATE and TRANSLATE produced
similar MSEs, both being no more than a third of the
MSE from scVI, SAVER and MAGIC and just 2% of the
MSE from ALRA. DCA achieved 41% of the MSE by
LATE combined on the PBMC_G5561 data, but 450% of
the MSE by LATE combined on the PBMC_G9987 data
in which the number of genes nearly doubles. scImpute
was unable to run on these two PBMC data sets. Due to
similar performance between LATE and TRANSLATE,
we only ran LATE on the two mouse brain data sets. Other
methods either took a much longer time or were unable to
run on these two data sets (see detail in section of
“Scalability” in Results).

Recovery of nonlinear gene-gene relationships

We expect a good imputation method to perform well not
only on the overall accuracy, but also in capturing the true
dependence structure among genes. The previous section
shows that a small gtMSE indicates that the imputation is
close to the truth in all aspects. A small MSE, which is
calculated only on the nonzero values in the input, does
not necessarily represent good performance. It is of
interest to investigate whether the gtMSEs from our and
other methods are small enough to recover gene-gene
relationships. Additionally, when assessing pairwise
relationships, linear relationships between genes are
generally easy to capture, whereas nonlinear relationships

are much more difficult. Here, we examine the perfor-
mance of our methods and other methods on recapitulat-
ing nonlinear relationships in gene pairs.
The synthetic data sets we have generated contain

different types of nonlinear relationships. In the
MAGIC_mouse data, the diffusion process in the
MAGIC method provides an approach to generate gene
expression profiles that evolve and enhance the correla-
tion structure over diffusion time [5]. As the number of
diffusion time points, denoted by t, increases, the
diffusion process produces more sharply defined non-
linear patterns. Although the imputation results from
MAGIC are less satisfactory, their model allows us to
generate synthetic single-cell data with sharply defined
nonlinear patterns (see such pattern in the ground truth in
Fig. 2; by contrast, gene-gene relationships from other
synthetic data sets are more similar to having multiple
clusters; see below). The step of masking down to a
nonzero rate of 10% removes most of the nonlinear
features in the input, although the upper “arm” remains
(Fig. 2, input). Both LATE and TRANSLATE recovered
the nonlinear relationship. Surprisingly, even though the
ground truth and input were generated by MAGIC, it
could not recover this pattern. None of the other methods
recovered this pattern, either.
The other type of nonlinear patterns may be better

described as forming multiple clusters (the ground truth in
Figs. 3 and 4). Recall that the ground truth for the
GTEx_4tissues data set (Fig. 3) is the partial GTEx data,
which are bulk gene expression values, and that the
ground truth for the PBMC_G949 data set is the scRNA-
seq data in the PBMCs with a nonzero rate of 41% (Fig.
4). The nonlinear patterns in these data sets are therefore
directly obtained from the real data. Since the data were
not collected over time, it is reasonable that these
nonlinear patterns may reflect subpopulations of cells,
rather than a trajectory over which the cells evolve.
On the input data derived from these ground truth data

sets, LATE and TRANSLATE continue to recover the
truth on selected gene pairs (Figs. 3 and 4). The
performance of DCA and scVI improves drastically,
although not necessarily better than our methods. These
improved results suggest that DCA and scVI may be
sensitive to how the data are generated. Unlike DCA and
scVI that model the read count of genes with negative
binomial distributions, MAGIC focuses on the depen-
dence structure among cells and does not model read
counts. If the single-cell data were generated by the
MAGIC, which is likely incompatible with the model
behind DCA or scVI, the latter two methods may not be
able to produce sensible results. The performance of
MAGIC also improves somewhat, although it still
produces patterns that capture only partial features of
the true relationships. SAVER produces scatterplots that
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are similar to the input, confirming our earlier observation
that its imputation runs the risk of overfitting to the
nonzero values in the input. ALRA is unable to recover
either pattern. scImpute performs well on GTEx_4tissues
but not on PBMC_G949.
Additional gene-gene relationship plots on other data

sets without the ground truth are in Supplementary Figs.
S13–16. Although only a few gene pairs are shown in the
main text and Supplementary Figures, the performance of
the methods is largely consistent with their MSE and
performance on other data sets.

Separation of cell types

Single-cell data often consist a mixture of cell types, and
the high dropout rate tends to obscure the differences
among cell types. While broad classifications of cell types
are still possible with the aid of marker genes, the
obscured relationship makes it difficult to identify novel
or poorly characterized cell types. Imputation is therefore
a powerful approach to help recover cell types: it provides
higher-quality data for downstream clustering analyses,
which separate known cell types and may suggest novel
ones. Using single-cell data with known cell type labels,
we can examine imputation performance on separating
cell types.
We applied all the methods discussed above to the

PBMC_G949_10K data, which was derived from a larger
PBMC data set with cell type labels, generated tSNE (t-
distributed stochastic neighbor embedding) plots of all the
cells before and after imputation, and colored the cell
types (see section of “Principal component analysis
(PCA)-based tSNE plots for visualization” in Materials
and Methods; Fig. 5A). We also calculated the between-
cluster sum of squares (BCSS) to quantify the separation
of the cell types and the within-cluster sum of squares
(WCSS) to measure the closeness of cells to each other of
the same cell type (see section of “Metrics for cell type
separation” in Materials and Methods; Fig. 5B). When
running TRANSLATE, we used the other 30K cells from
the 40K cells with cell type labels as the reference, which
we refer to as reference (i) (Supplementary Table S2).
Indeed, whereas cells of the same type (or color) are
largely grouped in a cluster in the tSNE plot of the ground
truth, different cell types are completely scrambled and
indistinguishable in the tSNE plot of the input, resulting
in both WCSS and BCSS being low. LATE, TRANS-
LATE, DCA and scVI all manage to group similar cells
and separate cell types after imputation, producing a tSNE
plot similar to that of the ground truth and achieving a
high BCSS and a low WCSS. By contrast, none of the
other methods separates the cell types: SAVER produces a
tSNE plot that is almost identical to the input with
similarly low BCSS and low WCSS. scImpute does not

separate the cell types, either, but achieves a higher BCSS
than SAVER. MAGIC and ALRA separate cells into tiny
clusters that do not reflect the cell types, which is also
indicated by their low BCSS and high WCSS.
A closer look at the results from LATE, TRANSLATE,

DCA and scVI reveals subtle differences: apart from the
larger clusters being visually separated, TRANSLATE
with the 30K PBMC single-cell data being the reference
(the 30k_NZ33 data set, which has a nonzero rate of 33%)
manages to also separate the c8 cluster of 60 cells (0.6%
of the total 10K cells; represented by yellow dots in
Fig. 5A, C) and the even smaller clusters of c5 (18 cells;
magenta in Fig. 5A, C) and c9 (5 cells; turquoise in
Fig. 5A, C) from the larger clusters, although c5 and c9
are not distinguishable. Since tSNE generates a different
layout each time it is run, we ran tSNE on the
TRANSLATE imputed data multiple times, and c5 and
c9 are generally separated from the large clusters. In
addition to reference (i), we next experimented with three
other references for TRANSLATE in order to understand
the role of reference in the cell type separation (Fig. 5C
and Supplementary Table S2): (ii) “another sample”: the
single-cell PBMC data from another sample collection of
the same individual; (iii) “30k_NZ10”: the 30K PBMC
cells with masking (the nonzero rate is also 10%); and
(iv) all the tissues in the GTEx data. Most cells in c8 and
all the c5 and c9 cells are clearly clustered together and
separated from other clusters in the tSNE plots from
references (ii) and (iii), whereas using GTEx as the
reference does not lead to satisfactory results (Fig. 5B, C).
However, the MSEs do not differ too much among the
four references: both MSE and gtMSE are only slightly
higher under the GTEx reference than the other three
references (Supplementary Table S3). The poor perfor-
mance with the GTEx reference on separating cell types is
likely due to the tissue types in the GTEx data being very
different from the PBMCs. As a result, the weights and
biases TRANSLATE learns from GTEx are a rather poor
starting point for the single-cell input data. Among other
methods we compared with, scVI and LATE can separate
most of c5 and c9 cells, but cannot group the c8 cells
together. DCA is not able to group the c8 or c9 cells
together or separate them from other clusters. This
analysis indicates the additional advantage of having a
relevant reference in our TRANSLATE method, and also
provides an example where a reference from irrelevant
tissue or cell types may increase the MSE and produce
less satisfactory imputation results.
The synthetic data above test the performance of the

imputation methods in realistic settings. For comparison,
we also simulated scRNA-seq read count data of 1,000
genes, 20,000 cells from six clusters using the R package
Splatter [18] (see section of “simulation with the R
package Splatter” in Materials and Methods). The

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020 87

Autoencoder for imputation of single-cell gene expression



Figure 5. tSNE plots of cells from the synthetic data based on the 10X Genomics PBMC data with known cell types (PBMC_G949_10K;
949 genes and 10K cells). Each dot is a single cell, and each color indicates a cell type. Methods under comparison are: LATE, TRANSLATE,

DCA, scVI, SAVER, MAGIC, ALRA and scImpute. (A) Comparison of all the methods. LATE, TRANSLATE (30k_NZ33 as the reference), DCA
and scVI all recovered the clustering. (B) Between-cluster and within-cluster sum of squares to assess the cell type separation. (C) Comparison of
different reference gene expression data sets in TRANSLATE. Using other scRNA-seq data as the reference (e.g., another sample, and

30k_NZ10), TRANSLATE also managed to separate rare cell types (c8 in yellow, c5 in magenta and c9 in turquoise). The bulk gene expression of
multiple tissues from GTEx did not serve as a good reference for separating cell types.
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statistical model underlying this simulation procedure
assumes the same relative magnitude of a gene (to other
genes in the same cell) across cells. The dependence
among genes in a cell is therefore similar to that in a
multinomial distribution: for a large number of genes,
they are nearly independent of each other within a cell.
However, these assumptions are far from reality, as genes
are known to act in complex regulatory networks. None of
the methods under comparison is able to recover the
clusters (Supplementary Fig. S17) due to the weak
dependence among genes. However, their performance
on this data set is not indicative of that on real and more
complex data. This is the reason why we generated other
synthetic data from real gene expression data, such that
the complex regulatory relationships among genes were
retained.
We next examined the imputation performance of our

methods on data with batches. We reanalyzed the mouse
retina data previously analyzed by scVI [19] (see section
of “Data availability”; Fig 6). This data contains 13,166
genes and 19,829 cells with a nonzero rate of 6.7%. The
tSNE plot on the input of log10-transformed count data
displays the claw-shaped clusters of cell types; the claws
reflect the two batches in this data set. scVI provides a
cleaner separation than our LATE method does, although
the claw shapes remain in several cell types even though
scVI has removed the batch effect. This is particularly
encouraging to us as our methods do not account for batch
effect in the deep learning architecture. The tSNE plot
indicates that LATE still manages to group similar cell
types together while retaining the batch effect. For
downstream analysis, one may apply batch correction
(e.g., [20]) to LATE-imputed data.

Scalability

We used the mouse brain data also from 10X Genomics to
test scalability (see section of “Data sets without the
ground truth” in Materials and Methods). The entire
mouse brain data consists of 28K genes and 1.3M cells,
with a nonzero rate of 7% (mouse_brain_28K). We ran
LATE but not TRANSLATE on this large data set because
LATE and TRANSLATE have similar performance on
most data sets, and because our interest here is primarily
scalability. Nevertheless, TRANSLATE in principle can
run on this data set as well, as it is essentially running
LATE twice. Note that although LATE and TRANSLATE
provide the “combined” option, this option does not work
on this data set. This is because this option first uses genes
as features and next uses cells as features. However, our
code based on TensorFlow currently cannot handle 1.3M
features, which is the number of cells, on existing
graphics processing units (GPUs) or central processing
units (CPUs) even with a large random access memory
(RAM).
To further investigate the scalability of LATE, we

Figure 7. GPU runtime of LATE (genes as features) on multiple

subsets of the mouse brain scRNA-seq data from 10X Genomics.
The entire data set contains 28K genes and 1.3M cells. We
sampled a subset of 10K genes. For the 28K and 10K genes, we

further sampled multiple subsets of cells and used them as the
input.

Figure 6. Imputation performance on cell type separation in the mouse retina data with batch effects. A tSNE plot is generated for the
input, for the output from LATE, and for the output from scVI. The claw-shaped clusters are due to two batches in the data.
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generated multiple data sets from the mouse brain data, by
sampling the cells from the data set of 10K genes and that
of 28K genes. We ran LATE for 300 epochs on these data
sets on multiple GPUs (including NVIDIA GTX 1080 Ti,
V100, and Titan RTX GPUs) and recorded the runtime
(Fig. 7 and Supplementary Table S5). We used 300
epochs here as this is the default setting in DCA, the most
competitive method. Although several models of GPUs
were used in this investigation, the runtime is essentially
independent of the GPU models. The increase in the
runtime increase is better than linear with respect to the
number of cells or the number of genes. Specifically,
LATE took only less than 11 hours to impute the entire
mouse brain data (28K genes and 1.3M cells), and 7.3
hours to impute half of the genes (also 1.3M cells).
We further ran the data sets of 10K genes on a CPU

(Dell M820 Blade with 1TB RAM); see Supplementary
Fig. S18 and Table S6. Similar to the trend for GPUs, the
increase in runtime is also linear or better with respect to
the number of cells. Additionally, LATE took 53.2 hours
on this CPU to impute the 1.3M cells, which is over seven
times (53.2/7.3 = 7.3) the corresponding GPU time. In
general, the CPU runtime is at least seven times the GPU
runtime. We ran other imputation methods on this CPU
for the data set of 10K genes and 1.3M cells. DCA took
42 hours for the default of 300 epochs, scVI completed
only 8% of training after running for 56 hours, MAGIC
and ALRA failed to run, and SAVER reported memory
error after running for more than 129 hours. scImpute
failed to run on this data set, and also took a much longer
time than other methods on smaller data sets. For
example, scImpute took 68 hours to run on a subsample
of 15K cells from mouse_brain_10K (10K genes and 15K
cells), and kept running after 6 days on a subsample
containing 31K cells (10K genes and 31K cells), but
failed to run on a subsample containing 62K cells (10K
genes and 62K cells; half of the mouse_brain_10K data).

DISCUSSION

Here we presented our novel deep learning algorithms for
efficiently and accurately imputing zeros in highly sparse
single-cell RNA-seq data that often have a low nonzero
rate. Our algorithms are nonparametric: they do not make
assumptions on the statistical distributions of the single-
cell data. Similar results between LATE and TRANS-
LATE on most of the data sets examined here indicate the
effectiveness of autoencoders in quickly reaching optim-
ality or near optimality, regardless of the starting point.
Our algorithms are also fast and highly scalable.
Additional work is needed to improve our methods.

Here we manually tuned hyperparameters, but did not
explore the possibility of systematically tuning these

parameters, as that implemented in DCA. When combin-
ing imputation results from both dimensions, our current
approach of combining two imputed data matrices is
rather ad hoc; joint optimization for both dimensions
simultaneously may help further improve the results.
In our simulation study, we reported the results from

generating the input data by masking 90% of the values in
the ground truth, which corresponds to assigning a
Bernoulli distribution of probability 0.9 to each value in
the data matrix. We also experimented with subsampling
from the ground truth with other distributions to also
arrive at a nonzero rate of 10%, such as an exponential
distribution (similar to that used in van Dijk et al. [5] for
MAGIC) and a binomial distribution (similar to that used
in Lopez et al. [7] for scVI). However, the performance of
the methods we investigated here varied with different
sampling distributions (see [21] for a recent exploration of
the statistical properties of imputation with principal
component analysis under heterogeneous missingness).
Since it is unknown which is the true process during
dropout, we reasoned that the sampling distribution in
simulation should be simple and introduce minimal
additional uncertainty in the assessment of the perfor-
mance.
In LATE and TRANSLATE we make the central

assumption that all the zeros in the scRNA-seq data are
missing values. As a result, our methods impute zeros
always with a nonzero value. However, it is desirable to
distinguish biological zeros from technical ones. One way
to approach this problem is to estimate the probability of
an expression value being a dropout event. Both scVI and
DCA have an explicit model for the read counts and
indeed estimate this probability, although their perfor-
mance is rather unsatisfactory based on our comparison.
DCA infers biological zeros well (low gtMSEbiol) but
cannot impute technical zeros well (high gtMSEtech),
whereas scVI does not do well on either type of zeros. It is
therefore unclear whether the unsatisfactory performance
in DCA and scVI is due to scRNA-seq data not containing
enough information for distinguishing the zeros, or
whether these two methods being unable to make such
distinction. Our method comparison on simulated and real
data indicates that our nonparametric approach to
imputation based on an autoencoder achieves satisfactory
performance overall, which is driven by the superior
performance on technical zeros. Work is still needed to
better handle biological zeros without sacrificing the
accuracy on technical zeros.

MATERIALS AND METHODS

Assessing imputation accuracy

We calculated the MSE with respect to the nonzero values
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in the input data matrix as an overall measure of
imputation accuracy. When the ground truth T is avail-
able, which has the same dimension as Y , we can also
calculate another MSE with respect to all the values in T
in order to assess how close the imputed data matrix is to
the ground truth:

gtMSEall=

Xm

i

Xn

j

ðY ij –T ijÞ2

mn
:

There are cases where zeros in the ground truth may still
represent missing values: for example, we may use a real
single-cell data set with a high nonzero rate as the ground
truth and mask certain values to generate synthetic input.
Then the zeros in the ground truth still represent missing
values and should not be interpreted as no expression. In
such cases, it is sensible to exclude the zeros when
calculating this MSE:

gtMSEnz=

Xm

i

Xn

j

ðY ij –T ijÞ2IðX ij≠0Þ

Xm

i

Xn

j

IðX ij≠0Þ
:

We can further break gtMSE down to that for biological
zeros and that for technical zeros. Biological zeros are
zeros in the ground truth and indicate no expression.
Technical zeros are entries that have nonzero values in the
ground truth but zeros in the input; in other words, these
zeros are due to technical artifacts (such as dropouts) and
do not reflect the actual expression levels (Supplementary
Fig. S2). Let p0 be the percentage of zeros in the input,
and q0 the percentage of zeros in the ground truth. Then
q0 is the rate of biological zeros, whereas p0 – q0 is the rate
of technical zeros. Let gtMSEbiol be the gtMSE for
biological zeros and gtMSEtech for technical zeros. Recall
that there are m genes and n cells. To calculate these
gtMSEs, we can break down the total sum of squares in
gtMSEall in two ways:

gtMSEallmn=gtMSEnzð1 – q0Þmn  þ   gtMSEbiolq0mn

=MSEð1 – p0Þmn  þ   gtMSEtechðp0 – q0Þmn 
þ   gtMSEbiolq0mn:

Cancelling the term mn, we have

gtMSEall=gtMSEnzð1 – q0Þ þ   gtMSEbiolq0

=MSEð1 – p0Þ  þ   gtMSEtechðp0 – q0Þ 

þ  gtMSEbiolq0:

Then we have

gtMSEbiol=
gtMSEall –   gtMSEnzð1 – q0Þ

q0
,

and

gtMSEtech=
gtMSEall –   gtMSEbiolq0 –MSEð1 – p0Þ

p0 – q0

 =
gtMSEnzð1 – q0Þ –  MSEð1 – p0Þ

p0 – q0
  :

In the special case where the ground truth has no
biological zeros (i.e., q0=0), gtMSEall=gtMSEnz, and
we can compute only gtMSEtech:

gtMSEtech=
gtMSEall –  MSEð1 – p0Þ

p0

 =
gtMSEnz –  MSEð1 – p0Þ

p0
:

Generating synthetic data for assessing
performance

Using real gene expression data sets (from bulk tissues
and single cells) in human and mouse (see section of
“Data availability”), we generated several synthetic data
sets, including the input and the corresponding ground
truth, for assessing the performance of imputation
methods (summary statistics of the data sets in Supple-
mentary Table S1).
1. The MAGIC_mouse data. The authors of the

MAGIC method analyzed a mouse bone marrow data
set of 16,114 genes and 2,576 cells [5,22]. This data set
contains cells at multiple differentiation stages of
hematopoiesis; each stage had been associated with the
expression of a number of surface marker genes. This data
set therefore contains dynamic changes of gene expres-
sion and is valuable for assessing how the imputation
method captures the dynamics.
The original scRNA-seq data is highly sparse. To

enhance the dynamic changes in gene expression and the
correlation structure among genes, we applied the
MAGIC method to generate the imputed data set.
Although the dynamic patterns produced in the imputed
data set may not be real, the imputed data provide the
ground truth that contains sharply-defined nonlinear
patterns. We randomly selected 30% of the cells in the
imputed data and split the data into two subsets. The
subset containing 30% of the cells was used as the ground
truth. We then generated the input data by randomly
masking 90% of the values in the ground truth as zero. We
applied LATE and other methods to the input and
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compared the imputed data matrix with the input and with
ground truth. We used the other subset that contained 70%
of the cells as the reference expression data for
TRANSLATE.
2. A subset of the GTEx data from human (GTEx_4-

tissues). The GTEx consortium contains bulk gene
expression data from 53 tissues (GTEx Portal v7),
which is useful for us to assess the impact of using
relevant and irrelevant tissues as the reference in
TRANSLATE. This data set also contains many zeros
that are more reliable indication of no expression, which
we may use to assess how the imputation method perform
in the presence of true zeros. From the 53 tissues, we
selected four tissues with large sample sizes as the ground
truth: muscle (564), heart (600), skin (1,203) and adipose
(797). This data contains 56,202 genes from 3,164
samples, with a nonzero rate of 49.8%. We then randomly
masked 90% of the values as zero to create an input data
set. When assessing the performance of TRANSLATE,
we considered two references: (i) the entire GTEx data
from all the tissues, including the four tissues in the input;
and (ii) the GTEx data without the four tissues in the
input. We were interested in whether including the right
tissues in the reference is necessary for imputation. Note
that when calculating gtMSE for GTEx_4tissues, we
needed to calculate gtMSEall, instead of gtMSEnz that was
used for other data sets. This is because zeros in the GTEx
data were obtained from bulk sequencing and therefore
should be interpreted as no expression.
3. A small subset of the data in human PBMCs from

10X Genomics [23] (PBMC_G949). The original data set
contains 68K cells. We selected 949 genes in 21,065 cells,
such that the total read count per gene is > 10K and the
total read count per cell is > 1.5K. This data set has a
nonzero rate of 41% and is used as the ground truth (zeros
were discarded when calculating gtMSE). We randomly
masked nonzero values so that the resulting data contains
only 10% of nonzero values. When applying TRANS-
LATE, we explored several options for the reference,
which is explained in detail in Results.
4. Another subset of the 10X Genomics PBMC data

with cell type labels (PBMC_G949_110k). To assess the
ability of the methods in separating different cell types,
we generated another data set from the same PBMC data
as mentioned above. The original data set contains 40K
cells with cell type labels and 10 cell types. We focused on
the same 949 genes as in the PBMC_G949 data set,
subsampled 10K cells while retaining the relative
frequencies of the ten cell types; this data set, with a
nonzero rate of 33%, is used as ground truth. Similar to
before, we randomly masked values in the ground truth to
generate the input, such that the resulting nonzero rate is
10%. We refer to the masked data set as PBMC_G949_10K
(see summary statistics in Supplementary Table S1).

Data sets without the ground truth

We assessed the method performance also on the
following real scRNA-seq data sets without the ground
truth (Supplementary Table S1; also see section of “Data
availability”):
1. A medium-sized PBMC data set (PBMC_G5561) of

5,561 genes in 53,970 cells, such that the total read count
is > 1K per gene and > 1K per cell, and the nonzero rate
is 10%.
2. A large PBMC data set (PBMC_G9987) of 9,987

genes and 53,970 cells with the total read count > 200 per
gene and > 1K per cell and a nonzero rate of 6%.
3. A smaller mouse brain data set from 10X Genomics

(mouse_brain_G10K) of 10K genes and all the 1.3M cells
with a nonzero rate of 20%.
4. The entire mouse brain data set (mouse_b-

rain_G28K) of all the 27,998 genes and 1.3M cells with
a nonzero rate of 7%.

Principal component analysis (PCA)-based tSNE
plots for visualization

When investigating the separation of cell types, we
generated PCA-based tSNE plots to visualize how cells
are grouped. To generate such plots, we first applied PCA
to the data matrix, extracted the top principal components
(e.g., 50 or 100), and then generated a tSNE plot using
these top principal components (PCs) as the input. Since
important features are summarized in top PCs, a tSNE
plot based on these PCs provides a better visualization of
key features than that based on the data matrix directly.

Metrics for cell type separation

We calculated two metrics to assess the separation of cell
types in the tNSE plots generated above: the between-
cluster sum of squares (BCSS) and within-cluster sum of
squares (WCSS). Denote the coordinates in the tSNE plot
for the i-th cell of the k-th cell type (i.e., cluster) by zki,
which has length two, one for each dimension in the tSNE
plot. Denote the number of cell types by S and the number
of cells in the k-th cell type by nk. Then we have the
cluster mean as follows:

zk$=
1

nk

Xnk

i=1

zki,

and the overall mean as follows:

z::=

XS

k=1
z
k$XS

k=1
nk

:

The sums of squares are defined as
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BCSS=
XS

k=1

nkkzk$ – z::k2

and

WCSS=
XS

k=1

Xnk

i=1

kzki – zk$k2:

In the analysis of variance, BCSS is the between-
treatment sum of squares, representing the source of
variation due to different treatment groups (which are cell
types here), whereas WCSS is the within-treatment sum
of squares, representing the source of variation within a
group. The sum of these two variations is the total sum of
squares (TSS):

TSS �
XS

k=1

Xnk

i=1

kzki – z::k2=BCSS  þWCSS:

For the tSNE plot of cells here, BCSS measures the
separation of cell types, and WCSS measures the
closeness of cells within a cell type. In an extreme
example, if all the cells are stacked on top of one another,
then WCSS is zero, indicating extreme closeness within
any cell type, and BCSS is also zero, indicating no
separation of cell types. Conversely, clear cell type
separation is indicated by large BCSS and small WCSS.

Simulation with the R package Splatter

We used the R package Splatter (v1.6.1) to simulate
scRNA-seq count data for 1,000 genes and 20,000 cells
from six clusters. The number of cells in each cluster
ranges from nearly 700 to just above 6,000. We used the R
function splatSimulate, setting the log normal distribution
for the library size to have mean 15 and scale 0.2. For
other parameters, we used the default values of this
function. This step generated the ground truth. We then
randomly masked 90% of the values with zero to create
the input.

ABBREVIATIONS

DATA AVAILABILITY

Data sets used in this paper are published and publicly available at the

following website:

� Mouse bone marrow data: GEO GSE72857 (www.ncbi.nlm.nih.gov/

geo/query/acc.cgi?acc = GSE72857).

� GTEx gene expression data (Gene TPMs) (gtexportal.org/home/

datasets).

� Human PBMC and mouse brain data from 10XGenomics (sup-

port.10Xgenomics.com/single-cell-gene-expression/datasets).

�Mouse retina data: provided in the scVI software package (github.com/

YosefLab/scVI/tree/master/tests/data); original data from GEO GSE81905

(www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc = GSE81905).

CODE AVAILABILITY
Our software is implemented in Python and builds on Google TensorFlow. It

can be run on CPUs and GPUs. The source code is available at the website

(github.com/audreyqyfu/LATE).

SUPPLEMENTARY MATERIALS

The supplementary materials can be found online with this article at https://
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