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Background: The reconstruction of clonal haplotypes and their evolutionary history in evolving populations is a
common problem in both microbial evolutionary biology and cancer biology. The clonal theory of evolution provides
a theoretical framework for modeling the evolution of clones.
Results: In this paper, we review the theoretical framework and assumptions over which the clonal reconstruction
problem is formulated. We formally define the problem and then discuss the complexity and solution space of the
problem. Various methods have been proposed to find the phylogeny that best explains the observed data. We
categorize these methods based on the type of input data that they use (space-resolved or time-resolved), and also
based on their computational formulation as either combinatorial or probabilistic. It is crucial to understand the
different types of input data because each provides essential but distinct information for drastically reducing the
solution space of the clonal reconstruction problem. Complementary information provided by single cell sequencing
or from whole genome sequencing of randomly isolated clones can also improve the accuracy of clonal reconstruction.
We briefly review the existing algorithms and their relationships. Finally we summarize the tools that are developed
for either directly solving the clonal reconstruction problem or a related computational problem.
Conclusions: In this review, we discuss the various formulations of the problem of inferring the clonal evolutionary
history from allele frequeny data, review existing algorithms and catergorize them according to their problem
formulation and solution approaches. We note that most of the available clonal inference algorithms were developed
for elucidating tumor evolution whereas clonal reconstruction for unicellular genomes are less addressed. We
conclude the review by discussing more open problems such as the lack of benchmark datasets and comparison of
performance between available tools.

Keywords: clonal theory; infinite sites assumption; clonal reconstruction problem; bacteria evolution; tumor evolution;
combinatorial algorithm; probabilistic algorithm

Author summary: As cells divide, they often gain new mutations creating newborn cells that are genetically distinct from
their parent cells. Each new genetically distinct cell is called a clone. The problem of inferring the number of clones in a given
population of cells, the unique set of mutations that identify each clone and the ancestral history of these identified clones is
known as the clonal reconstruction problem. In this review, we discuss the theoretical framework of this problem, briefly
review and classify the existing algorithms based on their approach and discuss open problems in this area of research.

INTRODUCTION

Many unicellular organisms like archaea and bacteria
reproduce by asexual cell division. Evolution in such

organisms is driven by the accumulation of mutations in
their genomes occurring during DNA replication [1,2].
The variations induced by the mutations fall into several
categories, including single nucleotide variations (SNVs),
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short insertions and deletions (indels), copy number
variations (CNVs) and large structural variations (SVs)
— some of which lead to novel cellular functions adaptive
to specific environmental conditions [3,4]. Interestingly,
rapidly dividing somatic cells such as cancer cells in
multi-cellular organisms are often hypothesized to follow
a similar evolutionary process as the unicellular organ-
isms. In particular, this hypothesis (known as the clonal
theory) assumes that cells in the evolving population or
tissue (i.e., the tumor tissue) are the descendants of one or
a few founder clones, where a clone is referred to as a
subpopulation of cells sharing identical genome (and thus
sharing the identical set of variations among the entire
population).
According to the clonal theory, during the course of

evolution, cells accumulate novel variations forming new
clones. An evolving population is considered to be clonal
if the ancestral relationships between clones are always
vertical, i.e., gene transfer from parent to offspring, while
the horizontal transfer (or transfer of genetic materials
between different cells or organisms outside of reproduc-
tion process) and the recombination across cells are
negligible [1]. As a result, the evolutionary history of the
clones can be represented by a directed tree, referred to as
the clonal tree, in which each vertex representing a clone
has one and only one incoming edge representing the
ancestor of the clone, except for the root node that
represents the founder clone.
The characterization of the evolutionary history and

dynamics in a clonal population is critical for under-
standing the mechanism of adaptation and evolution, and
for detecting genetic elements under selection [5]. For
instance, in cancer biology, characterizing the hetero-
geneity of cancer cells and reconstructing the ancestral
relationships between clonal cancer genomes is a key step
to identify driver mutations [6], i.e., the mutations
occurring in early tumorigenesis and driving tumor
progression, and to devise effective therapeutic
approaches. In long term evolution experiments
(LTEEs) of unicellular microbes and microbial commu-
nities, characterization of clonal structures is helpful for
elucidating subpopulations under selection in specific
environmental conditions (e.g., antibiotic treatments)
[5,7–11].
A straightforward approach to characterize clones and

their ancestral relationships is to sequence a large number
of individual genomes sampled at random from the
population. However, even with reduced cost, this
approach is quite expensive, especially for large genomes
like the human genome. In practice, this is often achieved
by the pool-seq approach (also known as bulk sequen-
cing) [12], in which the variations and the variant allele
frequencies (VAF) are inferred from the whole genome
sequencing (WGS) of samples containing randomly

pooled cells that represent a mixture of clones.
From pool-seq data, it is non-trivial to reconstruct the

clonal evolutionary structure from the inferred allele
frequencies of variations, and many computational
approaches have been developed to tackle this problem.
It is worth noting that in some cases, we have data from
only one pooled sample (mixture of clones) while in other
cases, multiple samples from the same evolving popula-
tion are available. These samples may distinguish
themselves either by time and/or space, i.e., they are
sampled at different time points during the evolution
process and/or at different physical locations of the
population. Here, we refer to them as the time-resolved
and space-resolved samples, respectively.
In this review, we aim to describe various existing

computational approaches addressing the clonal recon-
struction problem— the problem of inferring the haplo-
types of all the clones in a given population and their
ancestral relationships from the variations and the variant
allele frequencies within the population. These
approaches will be compared based on their problem
formulation, modelling strategies and the type of input
data. The type of input data is a defining and discerning
feature in understanding the algorithmic ideas of clonal
reconstruction computation. Some algorithmic ideas are
solely based around SNV data while others are based on
CNV and SV data or a mixture of both. Whether these
data are derived from bulk sequencing of a single sample
or multi-sample or single-cell sequencing, clonal recon-
struction remains an active area of research. We will
address the advantages and limitations of currently
existing algorithmic methods and discuss some open
computational problems related to clonal reconstruction
that need to be addressed in the future. Also note that for a
more detailed review of the evolution of tumor phyloge-
netics, refer to Schwartz and Schaffer’s excellent review
[13].

CLONAL RECONSTRUCTION PROBLEM

Consider an evolving clonal population with n observed
variations and m samples from the population collected
and used to measure the variant allele frequencies (VAFs).
The resultingm� n frequency matrix F is provided as the
input to the clonal reconstruction problem. The clonal
evolution model follows the infinite sites assumption
(ISA) as proposed by Mitoo Kimura in 1969 [14], which
states that (1) a variation occurs at a single locus at most
once during the period of evolutionary process and cannot
be lost by subsequent reversal mutation; (2) there is no
recombination, and (3) all cells in the evolving population
are assumed to be descendents of a single founding clone.
Under these assumptions, the ancestral relationships
between the clones in the evolving population can be
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represented as a directed tree T , (i.e., the clonal tree), in
which the root node represents the founder clone, each
other node represents a clone introduced by one or more
novel variations, and each edge represents the direct
ancestral relationships between the clones. Each edge in
the clonal tree is labeled by the variation(s) that
distinguishes the child from its parent. Each node has
exactly one parent, while each parent may have multiple
children. When more than one mutation occurs during the
evolution from the parent to the child, they can be
clustered together and considered as a single variation
group. As a result, the haplotype of a clone, represented
by the set of variations that uniquely identify the clone,
corresponds to the unique path from the root (the founder
clone) to the node representing the clone. Each leaf node
thus represents a clone observed at the end of the
evolutionary process. The clonal tree can also be
represented as a n� n binary matrix B where each row
represents a clone (a node) in T , and each column
represents a variation. The rows contain 1’s where the
corresponding variation is present in the clone and 0’s
where it is absent.
Now assume that we represent the unknown frequen-

cies of the n clones in the m samples using a m� nmatrix
C. Then the observed VAF matrix F must satisfy the
equation

F=C � B: (1)

The goal of the clonal reconstruction problem is to
characterize (1) the haplotype of each clone, (2) the
frequency of each clone in each sample, and (3) the
evolutionary relationships between the clones (i.e., the
clonal tree) that best explain the observed data F.
Formally, it is often formulated as a matrix factorization
problem: given the observed VAF matrix F, find the
clonal frequency matrix C and the clonal matrix B such
that Equation (1) is satisfied (Figure 1). Typically there are
many valid combinations of C and B that satisfy Equation
(1). A naive approach to solve this problem is to
enumerate all possible clonal matrices B and the
corresponding clonal frequency matrices C that satisfy
Equation (1). Among all the valid solutions, only one
solution is chosen based on biological constraints and
heuristics.

BIOLOGICAL PROBLEM
FORMULATIONS

Space-resolved versus time-resolved sampling

Methods to solve the clonal reconstruction problem
depend on the number and types of samples obtained
from the evolving population. When there is only one

sample available, very limited information can be
exploited that will help reduce the solution space. There
are only a few methods developed for single sample VAF
data. The data from more than one sample provides
additional information and constraints that will allow us
to define the best solution among the many possible
solutions (clonal trees). The multi-sample data that are
usually available for clonal studies can broadly be
classified into two categories: the space-resolved data
and the time-resolved data. In many cancer genomic
studies, variations are measured in multiple spatially
distinct regions from the same tumor tissue [15], which
falls under space-resolved frequency data. Methods that
use this kind of data rely on the samples containing
heterogeneous but overlapping sets of clones across
samples. This allows the clonal reconstruction methods to
select only those solutions that fit the model across all
samples. On the other hand, whole-genome sequencing
for long term evolution experiments (LTEEs) often
provide time-resolved VAF data collected from the
evolving population at different time points during
evolution process, which provide not only the snapshots
of variant calls such as VAFs in the population but also the
chronological order of the mutations. This information
can be exploited for the proposal of a likelihood function
that depends on the order of mutations and the VAFs over
time, which in turn allows us to find the maximum
likelihood solution that fit the model and the data. It
should be noted that we may be able to obtain a
combination of space-resolved and time-resolved data in
the future. Notably, in addition to these two kinds of
multi-sample pool-seq data, whole genome sequencing
performed on randomly isolated clones or single cell
sequencing data are sometimes available at a low
coverage, providing complementary information for
clonal reconstruction.

Single-nucleotide variations (SNVs) versus copy
number variations (CNVs)

Irreparable alterations in DNA sequence are the driving
force of evolutionary processes, which include point
mutations (resulting in SNVs) and genome rearrangments
(resulting in structural variations such as CNVs).
The classical evolution theory substantiates that only

mutations that occur in reproductive cells (known as the
germ line mutations) are essential for evolution of most
sexually reproduced higher organisms, whereas mutations
in non-reproductive cells (i.e., the somatic mutations) are
often non-essential. However, in clonal populations,
novel DNA mutations in somatic cells have significant
impact on the clonal expansion. Nevertheless, there is a
parallelism between the mechanism of evolution in these
two distinct evolving populations: in higher-organisms,
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Figure 1. Overview of the clonal reconstruction problem. The input data to the clonal reconstruction problem could be either time-resolved
(top panel) or space-resolved (bottom panel). The middle panel illustrates the formal formulation of the clonal reconstruction problem. Supposem

samples are collected and n variants are detected. The clonal reconstruction problem is formulated as the factorization problem, i.e., to find both
the matrix C representing the fraction of each clone contained by each sample, and the clonal matrix B representing the set of variants contained
by each clone, that are consistent with the observed VAF data. Note that the matrix B can be directly derived from a clonal tree T and vice-versa.

The ancestry graph (rightmost in the middle panel) shows all the possible ancestral relationships between the variations as dictated by the
ancestry condition. The solid arrows show the clonal tree which is a spanning arborescence of the ancestry graph.
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the evolution acts on the individuals while in clonal
populations it acts on the cells, leading to cancer evolution
theory of cancer for understanding the tumorigenesis and
tumor progression from an evolutionary perspective.
According to the cancer evolution theory, cancer is

viewed as an abnormal health condition resulting mainly
from cumulative DNA mutations subjected to the
selection pressure on the genomes of somatic cells in an
organism. Every tumor is thus characterized by a glaring
cell-to-cell genetic variability termed intra-tumor hetero-
geneity. For the most part, the evolution and clonal
expansion of tumors are highly driven by point mutations.
Nevertheless, CNVs and other structural variations (SVs)
play key roles in tumor evolution, and their impact has
been increasingly acknowledged [16–18]. Therefore,
characterizing tumor clones and their evolutionary
relationships provides insights into the mechanism of
tumorigenesis, tumor progression, and the response to
cancer therapy.
Understandably, because the cancer evolution is highly

dependent on point mutations occurring in the tumor
tissues, a majority of the current algorithmic research on
clonal reconstruction focus on the variant allele frequency
data to infer the clones and their evolutionary relation-
ships. However, CNVs and other SVs may affect the
allele frequency of the SNVs. Thus, methods that are
based only on SNVs are often restricted to regions that are
free of large-scale variations. To address this limitation,
computational methods that take both SNVs and CNVs as
input become available for clonal reconstruction in cancer
genomics (as shown in Table 1). Even though SVs in
evolving bacterial populations are often neglected, a
general computational framework for clonal reconstruc-
tion that adequately address the biological significance of
CNVs in such populations is still desirable. As CNVs
evolve due to segmental duplications, reconstructing the
clonal composition of CNVs from pool-seq data requires
different problem formulations as the clonal reconstruc-
tion problem solely on SNVs, e.g., to minimize the
number of duplication events in the clonal phylogeny, as
proposed recently by Eaton et al. [54] and Lei et al. [55].
RCK [56] on the other hand addresses chromosomal
aberrations and attempts to reconstruct the clonal
haplotypes from bulk sequencing data. In addition, the
clonal reconstruction problem involving SNVs, CNVs
and other SVs together remain as an open challenge.

ALGORITHMIC APPROACHES

Many methods were proposed to solve the clonal
reconstruction problem in different biological contexts.
These methods broadly fall under two main categories
depending on their problem formulation and algorithmic
approaches: combinatorial or probabilistic. There are also

methods that combine the two types of formulations. We
will discuss these formulations and algorithms in this
section (see Table 1 for a summary).

Combinatorial formulations

The combinatorial formulation of the clonal reconstruc-
tion problem (also referred to as the variant allele
frequency factorization problem (VAFFP) [15]) attempts
to characterize the combinatorial space of valid solutions
to Equation (1) and the computational complexity of
finding a valid solution for a given F . Let T be the space
of all rooted clonal tree and C be the space of all m� n
clonal frequency matrices. The combinatorial approaches
aim at finding T

0
∈T and C

0
∈C by traversing the

solution space in efficient ways and discarding solutions
that are biologically not relevant. These approaches use
various heuristics like maximum parsimony—minimiz-
ing the total number of evolutionary events required to
explain the observed data, minimum number of clones
and shallowness of the clonal tree to reduce the searching
space and make it computationally feasible to find a
suitable solution. Some methods define an optimization
criteria such that to minimize the error of assigning each
variation to a clone while finding the global phylogeny
that satisfies pre-defined topological constraints, and is
consistent with the ISA framework.
To this end, El-Kebir et al. [15] proved two conditions

— the ancestry condition and the sum condition, that the
solutions need to satisfy in order for them to be consistent
with ISA. The ancestry condition states that no two
variations can be assigned to the same clone unless the
frequency of one variation is always greater than the other
across all samples. This is a necessary condition that gives
rise to a directed graph (named the Ancestry Graph) G that
represents all the possible ancestral relationships between
the variations in F (Figure 1). So the problem of finding a
clonal tree in T is reduced to the problem of finding a
spanning arborescence (directed spanning tree) of G
because all the other trees in T are invalid according to
the ancestry condition. While the ancestry condition
provides a necessary condition, sufficiency is provided by
the sum condition, which states that the VAF of a parent
node is at least equal to the sum of the VAFs of its children
in each sample. This further reduces the searching space
to find the spanning arborescence of G that also satisfies
the sum condition. Nonetheless, it is shown that the
VAFFP is a NP-complete problem, and the authors
proposed an integer linear programming (ILP) approach
for finding the largest spanning arborescence in an
ancestry graph that satisfies the sum condition. In this
ILP formulation, the graph problem is reduced to an
ILP— a mathematical optimization problem where a
linear objective function is maximized (or minimized)
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over a solution space specified by linear constraints. In
this case, the objective function is the maximum number
of edges in the spanning arborescence. It is to be noted
that the ILP approach only proves the existence of a valid
solution and does not discriminate between multiple
solutions. It also assumes that the VAFmatrix is error free.
To account for errors in VAF estimation and to define and
find the best solution, they proposed a probabilistic
framework which leads to an approximate ancestry graph,

and then used a mixed ILP (MILP) formulation to find the
largest arborescence in the approximate ancestry graph
that satisfies the sum condition. This method is imple-
mented in AncesTree [15]. It is worth noting that the same
group developed another combinatorial method called
SPRUCE [35] that infers the phylogeny from both SNV
and CNV data, which uses the infinite alleles assumption
instead of the ISA. This complements those methods
which often ignore the genomic regions with copy

Table 1 Various methods addressing the clonal reconstruction problem

Method Approach Multi-sample SNVs Read depth/CNVs ISA Phylogeny Ref.

AncesTree Combinatorial y y n y y [15]

CITUP Combinatorial y y n y y [19]

Clomial Probabilistic n y n n n [20]

CloneHD Probabilistic y y y n n [21]

CNT-MD Combinatorial y n y n y [22]

MIPUP Combinatorial y y n y y [23]

LICHeE Combinatorial y y n y y [24]

Phylosub Probabilistic y y n y y [25]

PhyloWGS Probabilistic y y y y y [26]

PyClone Probabilistic y y n y n [27]

Rec-BTP Combinatorial n y n y y [28]

SciClone Probabilistic y y y n n [29]

ThetA Probabilistic n n y n n [30]

TrAp Combinatorial n y n y y [31]

QuantumClone Probabilistic y y n n n [32]

CTPSingle Combinatorial n y n y y [33]

ClonalTREE Probabilistic y y n y y [34]

SPRUCE Combinatorial y y y n y [35]

TargetClone Probabilistic y y n y y [36]

BitPhylogeny Probabilistic y y n y y [37]

Canopy Probabilistic y y y y y [38]

TITAN Probabilistic n n y n n [39]

CALDER Combinatorial y y n y y [40]

Bayclone Probabilistic y y n n n [41]

BayClone2 Probabilistic y y y n n [42]

CloneFinder Regression y y n n y [43]

Cloe Probabilistic y y n y y [44]

TreeClone Probabilistic y y n n y [45]

PairClone Probabilistic y y n n n [46]

SubcloneSeeker Combinatorial y y y n n [47]

SiFit Probabilistic SCS y n n y [48]

SCITE Probabilistic SCS y n y n [49]

OncoNEM Probabilistic SCS y n y y [50]

SPhyR Combinatorial SCS y n n y [51]

B-SCITE Probabilistic SCS/BSD y n y y [52]

ddClone Probabilistic SCS/BSD y y n n [53]

SNVs: single nucleotide variations, CNVs: copy number variations, ISA: infinite sites assumption, SCS: single cell sequencing data, BSD:bulk

sequencing data, y:yes and n:no.
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number aberrations. Another method which uses a similar
framework as AncesTree is LICHeE [24], which also
constructs an ancestry graph and then looks for a spanning
tree that satisfies the sum condition, but uses a
sophisticated backtracking algorithm to search all the
spanning trees. Since the running time of this algorithm
depends on the number of spanning trees in a given
ancestry graph and some graphs may have many spanning
trees, they provide a bound to the number of trees that are
explored. Recently, Myers et al. [40] published CALDER
which introduces a variant of VAFFP called Longitudinal
VAFFP (or LVAFFP) where the input VAF data from the
samples are time-resolved instead of space-resolved. The
longitudinal order of mutations provide additional con-
straints to the solution. So, not all solutions to the VAFFP
are solutions to the LVAFFP. The longitudinal order
constraint is modeled using another tree (the long-
itudinally observed clonal tree) with nodes colored
based on the times the clone is observed. Spanning
arborescences of G that satisfy the sum condition and is
consistent with the longitudinal observed clonal tree
obtained from the corresponding C matrix, are considered
as valid solutions.
One of the earliest studies that formalizes the clonal

reconstruction problem in a combinatorial framework is
designed for single sample VAF input. This method—
TrAP [31], attempts to find the clonal evolutionary tree
that sequentially minimizes the number of clones, the
number of populated clones (i.e., clones whose frequen-
cies in the sample is> 0), and the depth of the clonal tree.
The algorithm enumerates all possible trees in a greedy
approach that sequentially optimizes each of the above
criteria. An alternative method, CITUP [19] uses a
quadratic integer programming (QIP) formulation to
minimize the squared error in assigning variations to
clones. To avoid overfitting, CITUP also minimizes the
Bayesian information criterion (BIC), assuming that the
noise is normally distributed. BIC is a method used in
model selection to reduce overfitting by introducing a
penalty term for the number of parameters in the model.
CITUP iterates through all tree topologies up to a user
defined threshold, and hence it is a combinatorial
algorithm. A related method—CTPsingle [33] developed
by the same group, is designed for low-coverage
sequencing data from a single sample. This method
takes read depths instead of VAFs as input to infer the
number of clones using a probabilistic approach for
clustering in advance of clonal tree reconstruction. It then
uses a MILP formulation for the clonal tree reconstruc-
tion.
Yet another related work designed for single sample

data is Rec-BTP [28]. This tool operates under the
assumption that each clonal expansion splits the current
population into exactly two sub-populations giving rise to

a rooted binary tree representing the ancestral relation-
ships between sub-populations. Hence, the problem is
formulated as to find a binary tree partition (BTP) that
satisfies the sum condition, which is proved to be NP-
complete. The program Rec-BTP is a recursive algorithm
for solving ε -BTP problem, a variant of the BTP problem
that accounts for errors in VAFs.

Probabilistic formulations

Probabilistic approaches in clonal reconstruction attempt
to model the problem as a probabilistic inference problem,
where the solutions are assumed to be distributed over a
standard probability distribution. Then an inferrence
algorithm is used to produce the solution that has the
highest probability of generating the observed data— in
this case, the input VAF data. For example, PhyloSub [25]
defines a generative probabilistic model that attempts to
explain the observed VAFs in terms of an unobserved
clonal tree. It uses Bayesian inference based on Markov
Chain Monte Carlo (MCMC) sampling algorithm to infer
a distribution over phylogenies, where the Dirichlet
distribution over all potential phylogenies is used as the
prior. The inference itself implicitly models the ancestry
condition and the sum condition by inferring the unknown
clonal tree that has the highest probability of generating
the observed VAF data. PhyloWGS [26] is a method that
uses the same probabilistic model as PhyloSub but
applied to the CNV data in addition to SNVs. Another
method that uses a similar Bayesian framework is Canopy
[38], which jointly models SNVs and CNVs allowing
inference of temporal order of the CNVevents in relation
to the SNV events.
ClonalTREE [34] like CALDER discussed in combi-

natorial approaches, is a method developed for clonal
reconstruction from time-resolved multi-sample VAF
data. It uses a framework where a likelihood function is
defined based on the assumption that at any given time,
the likelihood of a candidate clone to acquire a new
variation and hence spawn a new clone is proportional to
the frequency of the clone in the population at that time.
This assumption solely relies on the advantage that time-
resolved sampling provides— the order of variation
occurrence. The method also provides an option to
incorporate clonal sequencing data as additional con-
straints for reconstructing the unknown clonal haplotypes,
referred to as the hybrid input.

Other approaches

Other methods that address clonal reconstruction but do
not exactly fit into the specific problem definition that we
discuss here are also listed in Table 1. Among them,
Clomial [20], CloneHD [21], PyClone [27], SciClone
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[29], ThetA [30] and QuantumClone [32] infer the
haplotypes of clones but do not infer their phylogeny.
CNT-MD [22] was specifically designed for CNV data.
MIPUP [23] takes a binary input matrix that represents the
presence or absence of a variation in a sample based on a
given threshold of VAF and attempts to find the minimum
perfect phylogeny. SiFit [48], SCITE [49], OncoNEM
[50] and SPhyR [51] are designed for clonal reconstruc-
tion in single cell sequencing data. TargetClone [36] is a
method specifically designed for targeted sequencing data
obtained from microdissected tumor samples. It relies on
the assumption that each sample contained approximately
one major subclone. BitPhylogeny [37] reconstructs
phylogeny from methylation patterns and from single-
cell exomes. B-SCITE [52] and ddClone [53] are the first
computational approaches that integrate pool-seq data and
SCS data to infer the clonal composition and the
corresponding clonal tree. B-SCITE uses a joint like-
lihood model of both SCS data and pool-seq data and uses
a Markov chain Monte Carlo approach to search for a
single maximum likelihood mutation tree that is a joint fit
for both SCS data and pool-seq data. On the other hand, in
ddClone, SCS data are used to inform clusters of mutation
in pool-seq data: SCS data are used to derive a non-
parametric Bayesian prior used by the likelihood model
based on pool-seq data to infer clonal composition, but it
does not find the clonal tree. However, both B-SCITE and
ddClone use SNV data. Lei et al. [55] proposed and
formulated a mixed membership model integrating both
SCS data and pool-seq data for clonal decomposition
based only on CNV data using non-negative matrix
factorization. In their approach, the clonal deconvolution
from pool-seq data is gauged and optimized by its
similarity to SCS data via a coordinate descent algorithm.
Integrative approaches combining both SCS data and
pool-seq data are needed. Finally, we note that a few
algorithms were recently developed for dimension
reduction and clustering in single-cell RNA-seq
(scRNA-seq) data analysis [57], which have striking
resemblances with the clonal reconstruction algorithms.
Although they address a very different biological
problem— in case of scRNA-seq data analysis, the goal
is to characterize the similarities of gene expression
profiles among cells, they benefit from the same
algorithmic framework based on matrix factorization
[58–60].

CONCLUSION

Clonal theory of natural evolving unicellular organisms
draws parallelism with tumor evolution. However, most
of the available clonal sequencing data and algorithms
were developed for elucidating tumor evolution whereas
clonal reconstruction for unicellular genomes are less

addressed. In fact, the clonal reconstruction for unicellular
genomes (e.g., using the WGS data from bacterial LTEE
[34]) serves as an excellent system for benchmarking the
clonal reconstruction algorithms because (1) the genomes
are much smaller and thus sequencing (even at a very high
coverage) cost a relatively low price; (2) the reference
genome is often well characterized; (3) the variations of
interests are usually fewer and simpler (e.g., typically no
more than a few hundreds variations, mostly SNVs) than
those occurring in cancer evolution); and (4) it is
relatively straightforward to obtain time-resolved and/or
space-resolved samples. Therefore, one future research is
to generate high quality benchmark datasets from
evolving microbial population, which can be used to
evaluate different clonal reconstruction algorithms, as
discussed below.
Despite the rapid advance of clonal reconstruction

algorithms, there remain some open problems and
challenges. One open problem is evaluating the different
methods and comparing their performance. The major
challenge in such an endeavor is the fact that each method
uses different sets of model assumptions and objective
functions to optimize which leads to difficulties in
creating unbiased simulated data for evaluation. The
community would greatly benefit from curation of
comprehensive biological datasets consisting of pool-
seq data from multiple samples matched with single-cell
sequencing data that accurately define the haplotypes of
clones present in each sample. Such datasets would prove
to be valuable benchmarking resources that will not only
help compare the performances of various methods
discussed above but also help prove the model assump-
tions made by each method. Other open problems include
solving the clonal reconstruction problem that take as
input both time-resolved and space resolved samples
simultaneously. Similarly, algorithmic approaches
encompassing different types of data, for example,
matched allele frequency and gene expression data, for
clonal reconstruction are not yet available and remain a
challenge for future researchers.
The most trivial approach to obtain the haplotypes of all

clones in an evolving population is to acquire single-cell
sequencing at a sufficient depth on many cells randomly
selected from the population. In this case, the reconstruc-
tion of evolutionary relationships among the clones
becomes the traditional phylogeny problem. But currently
this approach is not feasible because single-cell sequen-
cing (SCS) is still either expensive or has high error rate
(e.g., by using the Nanopore technique). Hence, most of
the tools currently available focus variant allele frequen-
cies derived from bulk sequencing (pool-seq) data. VAF
generated from bulk sequencing are well suited to detect
and reconstruct high abundant clonal populations but may
fail to reconstruct clones with CNVs. Another advantage
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of VAF from bulk sequencing data is that they allow
temporal order of mutations. However, these topological
and ancestral constraints make the characterization and
identification of branching events very challenging. On
the other hand, clonal reconstruction from SCS data can
characterize cell-to-cell genomic heterogeneity and gen-
erate an accurate phylogeny. In addition, SCS data capture
branching events, despite of the lack of the temporal order
of mutations. Integrating both SCS and bulk sequencing
data presents a great potential in effectively and
accurately addressing the clonal reconstruction problem;
however, there is only a handful of available tools that
integrate both types of data [52,53,55]
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