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Background: Molecular competition brings about trade-offs of shared limited resources among the cellular
components, and thus introduces a hidden layer of regulatory mechanism by connecting components even without
direct physical interactions. Several molecular competition scenarios have been observed recently, but there is still a
lack of systematic quantitative understanding to reveal the essence of molecular competition.
Methods: Here, by abstracting the analogous competition mechanism behind diverse molecular systems, we built a
unified coarse-grained competition motif model to systematically integrate experimental evidences in these processes
and analyzed general properties shared behind them from steady-state behavior to dynamic responses.
Results: We could predict in what molecular environments competition would reveal threshold behavior or display a
negative linear dependence. We quantified how competition can shape regulator-target dose-response curve,
modulate dynamic response speed, control target expression noise, and introduce correlated fluctuations between
targets.
Conclusions: This work uncovered the complexity and generality of molecular competition effect as a hidden layer of
gene regulatory network, and therefore provided a unified insight and a theoretical framework to understand and
employ competition in both natural and synthetic systems.
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Author summary: Competition for limited resources is ubiquitous in biological processes, playing as a hidden regulatory
mechanism with diverse functions. We built a unified coarse-grained competition motif model to quantitatively understand
and predict diverse phenomena mediated by molecular competition. We systematically analyzed the properties of competing
regulation from steady-state behavior to dynamic responses, evaluating how competition introduces indirect regulations and
constraints among the targets and how the existence of competitors could influence regulator-target response. These
properties provide new insights to understand natural biological systems, and can help to predict and refine the performance
of synthetic gene circuits.

INTRODUCTION

Competition for limited resources matters at all scales of

biology. Competition among different species can alter
population distributions and ecological niches [1–3].
Competition among individuals of the same species may
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slow down the growth rates of all competitors, driving
natural selection and evolution [4–6]. Competition among
adjacent cells in an organism can regulate their growth
and viability, and therefore enhance the dominance of
cells with better fitness [7–10]. In a microscopic scale,
biological molecules within cells also face competition.
Molecular competition brings about trade-offs of shared
limited resources among the cellular components [11–13],
and thus introduces a hidden layer of regulatory
mechanism by connecting components even without
direct physical interactions. Miscellaneous phenomena
caused by molecular competition have been reported in a
variety of biological processes in diverse organisms. For
example, DNA binding sites on plasmids can compete for
transcription factor (TF) LacI to dictate its target gene
expression in Escherichia coli [14]. Noncoding RNAs
transcribed from enhancer or promoter region can
competitively bind to TF Yin-Yang 1 to trap the TF
locally thus maintain gene expression stability in mouse
embryonic stem cells [15]. mRNA, long-noncoding RNA
(lncRNA) and circular RNA molecules can competitively
bind to microRNAs (miRNAs) to regulate various
processes, such as cell growth [16], cell differentiation
[17] and tumor suppression [18]. Competition between
RNA binding proteins PGL-3 and MEX-5 for mRNA
drives polar positioning of phase-separated liquid com-
partments in Caenorhabditis elegans embryos [19].
Comprehensive analysis on reconstructed lncRNA
regulatory networks also suggested that many lncRNAs
act as decoys to titrate miRNAs, TFs or RNA binding
proteins from their targets [20]. Furthermore, competition
effects are especially important in synthetic gene circuits.
Every synthetic gene inevitably competes for common
resources with each other in circuits and with endogenous
biological processes, introducing unexpected circuit fail-
ures or host metabolic burdens [21–23]. In addition, when
one genetic element drives two or more downstream
elements, competition will modulate the dynamics of
signal transduction [24,25]. As a result, characteristics of
each single component are insufficient for the accurate
prediction of the whole circuit behavior, posing a serious
obstacle in synthetic circuit design and application.
Several mathematical frameworks and synthetic gene

experiments have been built to quantitatively understand
the diverse biological phenomena caused by competition.
For example, a thermodynamic model was used to explain
the TF titration effect in E. coli [14]. Kinetic model has
been adopted to analyze competing endogenous RNA
(ceRNA) regulation [26,27], and we further quantified the
ceRNA effect through synthetic gene circuits in human
cell line [28]. A minimal model based on delay
differential equations was established to describe ribo-
some allocation between endogenous and synthetic genes
in E. coli [29]. Queueing theory was introduced to

describe the protein degradation process in E. coli, where
target proteins as queues compete for degradation
machine ClpXP as server [30,31]. However, there is
still a lack of a systematical and quantitative under-
standing of common properties and underlying mechan-
isms behind these diverse phenomena to reveal the
essence of molecular competition.
Here we propose that regulations by competition are

ubiquitous, essential and multifunctional through diverse
biological regulatory processes. By abstracting the
analogous competition motif shared by diverse molecular
systems, we built a unified coarse-grained kinetic model
to systematically integrate experimental evidences in
diverse biological processes and analyze the common
properties shared among them. We organized these
properties from steady-state behavior to dynamic
responses, to quantify how competition could introduce
constraints and indirect regulations among the targets and
how the existence of competitors might influence
regulator-target response characteristics. This work
demonstrated the complexity and generality of the
molecular competition effect as a ubiquitous hidden
regulatory mechanism with diverse functions throughout
different biological processes, and therefore provided a
unified insight and a theoretical framework to understand,
control and take advantage of competition in both natural
and synthetic systems.

RESULTS

A unified coarse-gained competition motif model

To grasp the essence of molecular competition, we
summed up several representative competition scenarios
following the life cycle of gene expression (Figure 1),
including competitions for transcription factors by DNA
binding sites (Figure 1B), competitions for miRNAs and
ribosomes by RNA molecules (Figure 1C and 1D), and
competitions for degradation enzymes by target proteins
(Figure 1E). Inspired by previous models studying
ceRNA effect [26,28], we proposed a generalized
competition motif model, in which two target molecule
species (target #1 and #2, T1 and T2) competitively bind
with a shared regulatory molecule species (regulator, R)
(Figure 1A), to describe the similar competition topology
these cases share. In this model, each molecule species is
produced and degraded with certain rates, and the
regulator is dynamically bound to targets following
biochemical mass-action laws to form complexes (Figure
1F, see details in the Supplementary Materials). Loss rates
of regulator (α) and its competing targets (β) were
introduced to describe reactions from pure stoichiometric
(α ~ 1, β ~ 1) to pure catalytic (α ~ 1, β ~ 0 where enzymes
act as competitors, or α ~ 0, β ~ 1 when substrates act as
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competitors) [26]. In different biochemical scenarios,
experimentally measured signals may reflect different
component levels of the competition motif. For example,
the activity of targets could be mainly reflected by the

abundance of complexes (T C) when the regulator is an
activator, or by the abundance of the free targets (T F)
when the regulator is a repressor.
This unified model can describe competitions in

Figure 1. The coarse-gained competition motif model. (A) Basic structure of the competition motif. Downstream products can be
produced from either free targets or complexes. (B–E) Competition motifs abstracted from diverse competition scenarios. (B) DNA

binding sites competing for TFs. (C) RNA molecules competing for miRNAs. (D) mRNA molecules competing for ribosomes. (E)
Proteins competing for proteases. (F) Unified kinetic model of the competition motif.
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various biological processes (Supplementary Figure
S1A–S1D). Despite of different parameter settings, all
these cases share the core competition motif structure,
suggesting that they may share common characteristics.
In the following sections, we used this model to analyze,
in the scenario of either steady-state behavior or dynamic
response, how the competition introduces indirect
regulations between targets and how the existence of
the competitors influences the property of regulator-target
response.

Relative abundance determines the regulatory
patterns between competitors

Competition can cause crosstalk between targets. By
quantifying the competition effect of one target upon the
abundance of another target, recent studies have reported
two apparently different steady-state behaviors named
“threshold behavior” of ceRNA regulation in mammalian
cells [26] and “negative linear dependence” behavior of
synthetic gene expression in bacteria [32,33]. How
could competition generate such two vastly different
phenomena?
The model predicted that the relative abundance

between regulator and target determines the diverse
behaviors. Figure 2A and Supplementary Figure S2A
illustrates how molecular abundance changes along with
the gradual increment of T2’s production rate. The system
went through three regimes: “R abundant”, “R near-
equimolar” and “R scarce”, which are mainly determined
by the production rates of each component (kT1, kT2 and
kR), the loss rates of regulator (α1 and α2) and the loss
rates of targets (β1 and β2) (see details in the Supplemen-
tary Materials), and the threshold distinguish regimes of
the system (Figure 2A) can be approximated as

α1
β1

kT1 þ
α2
β2
kT2=kR: (1)

When the left-hand side (LHS) of Equation (1) is far
smaller than the right-hand side (RHS), the system enters
the “R abundant” regime, in which free T1 level (T1

F) is
not sensitive to the increment of free T2 level (T2

F).
However, when the system enters the “R near-equimolar”
regime (LHS of Equation (1) approximately equals to
RHS), T1

F becomes more sensitive to T2
F changes, thus

generates the threshold behavior (Figure 2B and Supple-
mentary Figure S2B). In contrast, T1 complex level (T1

C)
is substantially unchanged with respect to T2 complex
level (T2

C) except in the “R scarce” regime (LHS of
Equation (1) is far bigger than RHS), where T1

C displays a
negative linear dependence with T2

C (Figure 2C).
In the case of ceRNA regulation, where miRNA is a

repressor, target activity can be reflected by the free
mRNA level. Increments of ceRNA2 (T2

F) can raise free

ceRNA1 (T1
F) level indirectly by sequestering shared

miRNAs. Such derepression caused by ceRNA effect is
negligible when the level of ceRNA2 is far less than that
of miRNA (in the “R abundant” regime), but becomes
detectable when the level of ceRNA2 is comparable to that
of miRNA (in the “R near-equimolar” regime) [26,28]. In
contrast, when the regulator is an activator, target activity
can be represented by the level of complexes. Recently a
phenomenon called “isocost line” behavior, originally
studied in economics, was also found in synthetic
biological systems [32,33] that the expressions of two
fluorescent proteins in E. coli displayed negative linear
dependence, which was caused by competition for the
transcription and translation resources (acting as activa-
tor) by the two synthetic genes. Due to the high
expression level of these genes, the system was always
restricted to the “R scarce” regime, thus showed negative
linear dependence.
In summary, threshold behavior and negative linear

dependence are two aspects generated by the same
competition motif. The threshold behavior is observed
when the regulator is a repressor and the system transfers
from the “R abundant” to the “R near-equimolar” regime;
while the negative linear dependence occurs when the
regulator is an activator and the system is restricted to the
“R scarce” regime.

Competition can shape dose-response curve

How does competition modulate the response of target to
varying levels of a regulator? The dose-response curve,
which quantitatively describes the magnitude of such
responses, was systematically analyzed. Firstly, the dose-
response curve of free T1 (T1

F) level to the total regulator
(R) level without competition effect (without T2) was
calculated as the baseline. As expected [34–36], T1

F was
not sensitive to the regulator changes in the “R scarce”
regime, but became sensitive in the “R near-equimolar”
regime, thus forming some “threshold behavior” (black
line in Figure 2D and 2E). Then we analyzed how the
molecular levels and the kinetic parameters of the
competitor T2 might influence the shape of the R–T1

F

dose-response curve. We first considered the case that T1
and T2 have the same kinetic parameters to bind R.
Increments of T2 production could elevate the maximum
sensitivity to enhance the threshold behavior, and shift the
position of the maximum sensitivity to a higher R level in
the new “R near-equimolar” regime (Figure 2D and 2E).
We next fixed T2’s production rate and analyzed the
influence of other kinetic parameters. The relative binding
affinity was found as the key parameters to modulate the
R–T1

F dose-response curve. If T2
C was formed slowly

(small k2+) or dissociated rapidly (large k2–), T2 could
hardly alter the R–T1

F response. Along with the increment
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Figure 2. Steady state behaviors of competition systems. (A–C) Regimes of competition systems. (A) Abundances changes of each

component with the increment of T2’s production rate (kT2). (B) Abundance of T1
F as a function of that of T2

F. (C) Abundance of T1
C as

a function of that of T2
C. Blue, white and green areas represent “R abundant”, “R near-equimolar” and “R scarce” regime respectively.

Grey lines represent the approximate threshold (Supplementary Materials and Methods). (D–G) Dose-response curves modulated by

competition. (D–E) R–T1
F dose-response curves (D) and their derivatives (E) with different T2’s production rate (kT2). (F–G) R–T1

F

dose-response curves (F) and their derivatives (G) with different T2
C’s dissociation rate (k2–). R represents the total abundance of

regulator (RF + T1
C + T2

C). Black lines represent the dose response curve without T2 (kT2= 0). (H) RF–T1 dose-response curves with

different kT2. T1
0 represents the abundance of T1

F withoutR. Black line represents the dose response curve without T2 (kT2= 0). All the
curves with different kT2 are exactly overlapped. (I) Repression folds of all targets are determined by the same RF abundance in a
multi-target repression system.
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of T2 binding affinity (increasing k2+ or decreasing k2–),
T2’s competition blunted the sensitivity in the R~T1 near-
equimolar regime considering only R and T1, meanwhile
enhanced the sensitivity in the R~T1+ T2 near-equimolar
regime in the presence of T2 (Figure 2F–2G and
Supplementary Figure S2C–S2E).
The model analysis is consistent with the experimental

observations in diverse molecular competition scenarios
reported previously. In the case of ceRNA (Figure 1C),
the RNA competitors with comparable binding affinities
can enhance the maximum sensitivity and shift their
positions in the miRNA-target dose-response curve, and a
higher competing RNA level can cause a stronger
enhancement and shift [28]. Similarly, in the studies on
the TF titration effect (Figure 1B), introducing high
affinity competitive binding sites can greatly shift and
sharpen the response of primary target gene expression to
the TF [14,37]. In contrast, in the case of buffer solutions
in chemistry, for example the ammonium buffer, the weak
base NH4

+ compete with H+ for OH –, and NH4
+ has a

much lower binding affinity with OH – than H+

(Supplementary Figure S1E). When a mild change of
OH – (e.g., adding moderate amounts of NaOH or HCl) is
introduced into the solution, NH4

+ can buffer the response
of free H+ to OH –, thus keeping pH (potential of
hydrogen) almost constant in a certain range (see details
in the Supplementary Materials). In summary, introducing
the competitors can shape the R–T1

F dose-response curve.
A high affinity competitor can enhance the maximum
sensitivity and shift its position to a higher R level; while a
low affinity competitor may buffer the response. The
extents of such modulations are dictated by the abundance
of competitors.
However, it should be noticed that when it comes to the

response curve of a free primary target to the level of a
free regulator (RF–T1

F), the curve was not influenced by
the existence of competitor at all (Figure 2H). This is
because, rather than the total regulator abundance, the free
regulator abundance is the one that effectively determines
the kinetic reaction rate with each single target [38].
Thus, responses of two or more targets to the shared
regulator are mutually independent given the level of RF,
which provides an efficient way, by using RF level as the
medium, to analyze the relative regulatory efficiency
among multi-targets [39]. Once given the dose-response
of each component (RF–Ti

F, which could be separately
measured or calculated) and the expected regulatory
efficiency of a specific target, the level of all other targets
could be immediately predicted because they are all
exposed to the same free regulator level (Figure 2I, see
details in the Supplementary Materials). Such property is
especially important for designing synthetic circuits,
where we know the characteristics of each single part
and would like to predict the whole system’s behavior

when putting them together. This property has been
applied to siRNA design principle: by both in silico
simulation and experimental validation, we found that the
influence of a high off-target gene expression level could
be compensated by introducing a suitable number of
siRNAs, whereas off-target genes with strong binding
affinity should be avoided [28,39]. In summary, the dose-
response to the free regulator level is not influenced by
any competitors, therefore providing an efficient way to
extract the relative response relations in multi-target
networks.

Competition can delay or accelerate dynamic
response

How does the existence of competitors influence the
dynamic behavior of the system in response to a time-
varying regulator? To answer this question, we simulated
the response of a switching system with regulator level
changing between “ON” and “OFF” states (Figure 3A).
On the rising edge of R’s change, the existence of T2’s
competition always delays the response of both T1

F and
T1

C, because it can sequester R from binding with T1 and
may cause additional R loss via T2

C degradation, both of
which resist the increment of available R to regulate T1.
However, on the falling edge, competing can either
accelerate or delay the response depending on the kinetic
parameters (Figure 3B, 3C and Supplementary
Figure S3A–S3F, see details in the Supplementary
Materials). On the one hand, T2

C dissociation could
compensate R’s decrease, but on the other hand, T2

C

degradation may cause R loss, and these two opposing
effects can dominate the final modulation of the dynamic
response. T2 with a large complex degradation rate (g2)
and a large loss rate (α2) could lead to a quick response by
mediating more R loss (Figure 3B); while T2 with
different binding affinities could either accelerate or
delay the response under different parameter settings
(Figure 3C and Supplementary Figure S3C–S3F),
because T2 with a strong binding affinity can enhance
both R compensation and R loss via T2

C degradation at the
same time.
Recently, it has been experimentally observed that the

competition for LacI binding in E. coli delayed the rising
edge response, but accelerated the falling edge response
because of the loss of the regulator binding with targets
through degradation and dilution (large α2) [25]. On the
contrary, the existence of competitive binding sites for
transcription factor SKN7m in S. cerevisiae was found to
delay the response of the primary target on both the rising
and the falling edges [40], which implied that the
regulator might be protected from degradation when
binding with targets (g2 is small) [25,41]. In summary,
competition can modulate the dynamic response of some
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Figure 3. Dynamic properties of competition systems. (A) Quantitative measurements of response time. Δtr and Δtf represent the
alteration of response time on the rising and falling edge of R’s change respectively. Here response time is defined as the time taken
by T1

C level to change from 0% to 90% between its initial and final steady states. (B–C) Heatmaps of Δtf under different α2 and g2 (B),

or k2+ and g2 (C). (D) Schematic diagram of the target expression noise in the miRNA-target competition scenario.
(E–H) Modification of target expression noise by competition. (E) Product expression noise (CV(P1)) with different R’s production
rates (kR). (F) CV(P1) with different T2’s production rates (kT2) where T2 acts as a strong competitor. (G) CV(P1) with different kT2
where T2 acts as a weak competitor. (H) Comparison of CV(P1) with or without competition. Here miRNA-RNA competing system is

taken as an example. Black lines represent systemwithoutR. Dashed blue lines are highlighted as the basal lines in (F) and (G). The
thick blue and green lines in (H) are taken from (E) and (G) respectively. Black dots represent the approximate threshold (there are
no black dots on some curves because kT2 is too large to form the threshold). (I–K) Correlated fluctuations introduced by

competition. (I) Stochastic simulations of each component’s abundance in competition motif. (J–K) Correlations of T1
F and T2

F (J), or
T1

C and T2
C (K) changing with T2’s production rate (kT2). Black dots represent the approximate threshold.
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targets to their upstream regulators. This may implicate a
general parameter tuning method to adjust the response
dynamics in the presence of the competitors.

Competition can modify target expression noise
level

Competition can modulate the sensitivity and the speed of
a target response to a changing regulator, both of which
are highly relevant to target fluctuation [42,43]. A natural
question is how the existence of competitors may
influence noise in the system? Here we took miRNA
regulation as an example to analyze the noise level of
protein products (Figure 3D, see details in the Supple-
mentary Materials). In systems without R and T2, T1
expression noise is derived from fluctuations in transcrip-
tion, translation and degradation, and the coefficient of
variance (CV) of T1 gene expression approaches the
“power law”, as expected by the “1=

ffiffiffiffi

N
p

rule” proposed
by Schrödinger [44]. The introduction of R (miRNA) as
repressor can decrease the noise of lowly expressed
genes, meanwhile generate a noise peak in the “R near-
equimolar” regime for highly expressed genes (Figure
3E), consistent with previous studies [45,46].
Theoretical results indicated that the competition effect

of T2 could modify T1 expression noise significantly. As
expected, introducing T2 weakens R’s ability to suppress
T1, thus may impair the noise reduction in the low
expression zone. Interestingly, in the high expression
zone of T1, T2 with strong binding affinity with R may
elevate T1 noise level (Figure 3F); while T2 with weak
binding affinity may substantially depress T1 noise level
(Figure 3G). Therefore, comparing with the one-regula-
tor-one-target scenario, introducing higher level of
miRNAs and compensable weak competitors could
reduce target expression noise at the low expression
zone and suppress the noise peak introduced by miRNA
at the high expression zone at the same time, thus could
repress gene expression noise in a wide range (Figure
3H). In summary, competition effects may modulate gene
expression noise level, and in particular, abundant weak
competitors have the capability to buffer gene expression
noise globally (Supplementary Figure S3G–S3J).

Competition can introduce correlated fluctuation
between targets

Competition can not only modify the strength of target
fluctuation, but also couple fluctuations between these
targets (Figure 3I). Dynamic analysis of the model’s
behavior around steady state with different molecular
environments predicted that the free T1 (T1

F) and T2 (T2
F)

are positively correlated (Figure 3J), while the competitor
complexes (T1

C and T2
C) are negatively correlated (Figure

3K). The correlation strengths in both cases are
maximized in the “R near-equimolar” regime, and
gradually decrease with the system away from the regime.
This phenomenon has been predicted as the “correla-

tion resonance” by some previous theoretical analysis on
gene translation [47] and protein degradation [30,31].
Two kinds of proteins (T1

F and T2
F) competing for

degradation enzyme ClpXP (R) showed positive corre-
lated fluctuation, which reached the maximum when the
sum of two protein production rates approached to the
ClpXP’s processing capacity [30,31]. Another theoretical
analysis showed that in translation process, fluctuations of
mRNA-ribosome complexes (T1

C and T2
C) were nega-

tively correlated [47]. In summary, competition can
introduce negatively correlated fluctuation between free
targets and positively correlated fluctuation between
complexes, and both of their strength reach the maximum
in the “R near-equimolar” regime.

Regulator allocation to multiple targets

Regulators often bind more than two target species
simultaneously. How will a regulator be allocated to
multiple target species? A system with multiple targets
competing for the same regulator can be described by the
set of allocation equations (Figure 4A), where the
proportion of the regulator occupied by a certain target
in steady state is mainly determined by this target’s
abundance and its capabilities to bind to (and hence to
consume) the regulator (see details in the Supplementary
Materials). It was noticed that, the form of the regulator
allocation equation is analogous to Kirchhoff’s laws in
current divider circuits, where R’s production rate is
analogous to the total current, the capability of Ti

C to
consume R is analogous to the i-th branch current, and the
capability of Ti

F to occupy R is analogous to the i-th
branch conductance (the reciprocal of resistance)
(Figure 4B). Therefore, electronic circuits and biological
systems with competition may exhibit similar properties,
such as the “negative linear dependence” behavior when
resources are insufficient (in the “R scarce” regime) [33].
Such allocation equations have displayed in diverse

mathematical models, such as the reaction rates of product
formation in enzymatic reactions when multiple sub-
strates competing for the same catalytic enzyme under the
Michaelis-Menten kinetics [48], and the probabilities of
promoter-TF binding when multiple promoters competing
for the same TF under the thermodynamic model [49].
Meanwhile, this property has helped quantify the
allocations of the transcription or the translation resources
for synthetic gene circuits [23,33]. We also applied such
property to predict the miRNA occupancy on each target
site in a specific cell type with the miRNA and the target
RNA expression levels, and significantly improved the
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accuracy of the miRNA target prediction [50]. Those
miRNAs with significant occupancy changes during
tumorigenesis could serve as potent biomarkers in
addition to differentially expressed miRNAs.

DISCUSSION

Competition for limited resources is ubiquitous through-
out diverse molecular reactions in both natural and
synthetic biological systems. Using a coarse-gained
mathematical model, we systematically analyzed the
steady-state behavior and the dynamic properties of
various competition network motifs, from the view of
indirect regulations among the competitors as well as the
effects of the competitors on the regulator-target response
(Table 1). It should be noticed that, most of the mentioned
properties are connected with the concept of the regimes
determined by the regulator-target relative abundance
(Figure 2A–2C): threshold behavior occurs when system
transfers from the “R abundant” to the “R near-equimolar”
regime, and linear negative dependence happens when
system is in the “R scarce” regime; while the sensitivity of
the dose-response curve, the correlated fluctuation, and
the noise of the target level are all maximized in the “R
near-equimolar” regime.

Competition motif is a common network component. It
seldom functions as an isolated module in real-world

biological systems, but often interacts with other
components to form complex networks. For example,
simulation analysis on ceRNA regulation suggested that
additional targets and regulators connected with different
topology could enhance or weaken the ceRNA effect [26].
Theoretical analysis predicted that competition for
degradation enzyme could either promote or suppress
the robustness of biological oscillating circuit with
different topological structures [51]. In addition, competi-
tion motif could perform a variety of functions by
combining with other network motifs. For example,
cooperating with the positive feedback motif, competition
can generate the winner-take-all (WTA) behavior [52],
which have been applied to design in vitro molecular
circuits for supervised learning and pattern classification
using DNA strand displacement [53,54].
The unified competition model gives inspirations for

transferring knowledge among different molecular
scenarios, since similar molecular network topologies
may perform similar functions. For example, the case that
ceRNA competition can sharpen the dose-response curve
of miRNA regulation [28] is quite similar to that observed
for TF titration effect [14]. Such generality and feasibility
give us confidence to make new predictions based on the
competition model. For instance, the properties of pH
buffer solutions demonstrated that some weak competi-
tors could desensitize the response of the primary target to
the regulator, which implies the potential role of many
competitors as noise buffer. Functions of numerous
miRNA target sites have long been a mystery that each
miRNA species in mammalian cell could bind to
hundreds target RNA species, but only a small portion
of the targets with multiple high affinity binding sites
could be moderately repressed (rarely exceeds 2-folds).
That is to say, in most cases, miRNA binding are not
functioned as intensive repression [55]. Why are there so
many evolutionary conserved miRNAs and potential
targets if this is an inefficient regulatory mechanism? The
competition model provides a possible explanation that

Figure 4. Regulator allocation for multi-target competition. (A) Regulator allocation equations and schematic graph

representation. Rtotal represent the total abundance of regulator including free regulator and regulator in complexes. (B) Kirchhoff’s
laws in current divider circuits.

Table 1 Properties of regulation by competition

Regulation between targets
Influences on regulator-

target response

Steady-state

behavior

Threshold behavior

Negative linear

dependence

Regulator allocation

Shaping dose-response

curves

Dynamic

responses

Correlated fluctuation Response time modula-

tion Noise modifica-

tion
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such widespread miRNA competitors with low binding
affinity could buffer noise and stabilize gene expression.
Competition effect is one of the major challenges for

circuits design in synthetic biology. Synthetic gene
expression can lead to intracellular resource reallocation,
which may affect the performance of both exogenous
gene circuits and host gene networks simultaneously. It
may change the network structure of the original designed
circuits by introducing a hidden layer of regulation,
making it difficult to predict the whole circuit’s behavior
based on the characteristic of each individual component.
For example, competition for cellular resources may
reshape the response of genetic activation cascades in
E. coli [23], and multiple downstream genes competing
for upstream signal molecules may accentuate the “retro-
activity” [56]. It has been found that the induction
strength of the synthetic gene oscillator could influence
the growth rate of host cell, the expression of endogenous
genes, and the performance of the oscillator, such as
amplification and period [12]. On the other hand,
interestingly, using competition effect properly to reba-
lance synthetic circuits’ relation to the host cell is
emerging as an effective way to refine circuits perfor-
mance. For example, the robustness of the synthetic
oscillator can be greatly improved by introducing
competing binding sites for TF LacI to sharpen target
gene dose response curves and suppress gene expression
noise [57]. Models incorporating circuit-host competition
effects can predict synthetic gene behaviors better [58].
Reallocating the cellular translational resources by
introducing the endoribonuclease MazF circuit can
significantly enhance exogenous enzyme expression to
promote metabolite production [59]. Utilizing synthetic
miRNA and its competitive binding RNA sponges, a
RNA-based AND gate circuit was designed for selec-
tively triggering T cell-mediated killing of cancer cells
[60].
As discussed in this paper, competition of molecules

matters in diverse biological processes, not only con-
voluting regulations in cell, but also introducing plentiful
functions. The concept of regulation by competition and
its coarse-gained model provides a unified insight to
understand diverse molecular competition scenarios as
instances of a common underlying competition motif.
This view may help transfer knowledge between different
biological systems and provide a natural approach to
modulate biological networks by coupling or decoupling
components on the hidden layer.

MATERIALS AND METHODS

Detailed information about mathematical derivations and
simulations is available in the Supplementary Materials.
Parameters for simulations are shown in Supplementary
Table S1.

SUPPLEMENTARY MATERIALS

The supplementary materials can be found online with this article at https://

doi.org/10.1007/s40484-018-0162-5.
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